Geotechnical Investigation and Pavement Design Report Horizon Drive and G Road Roundabout City of Grand Junction, Colorado RockSol Project No. 599.76 August 31, 2023

Prepared for:

City of Grand Junction

Public Works Department 333 West Avenue, Building D Grand Junction, Colorado 81501

Attention: Lisa Froshaug, PMP, CFM, Project Engineer

Prepared by:

RockSol Consulting Group, Inc. 566 W Crete Circle, Unit 2 Grand Junction, Colorado 81505

(970) 822-4350

Geotechnical Investigation and Pavement Design Report Horizon Drive and G Road Roundabout City of Grand Junction, Colorado RockSol Project No. 599.76 August 31, 2023

Prepared for:

City of Grand Junction Public Works Department 333 West Avenue, Building D Grand Junction, Colorado 81501

Attention: Lisa Froshaug, PMP, CFM, Project Engineer

Prepared by:

RockSol Consulting Group, Inc. 566 W Crete Circle, Unit 2 Grand Junction, Colorado 81505 (970) 822-4350

Alec Moens, E.I.T.

Civil Engineering Associate

Senior Pavement Engineer

Donald G. Hunt. P.E.

Senior Geotechnical Engineer

Table of Contents 1.0 PROJECT OBJECTIVE AND DESCRIPTION...... 1 2.0 PROJECT SITE CONDITIONS2 3.0 GEOLOGICAL CONDITIONS2 4.0 SURFACE AND SUBSURFACE CONDITIONS......4 5.0 5.1 5.2 Native Subgrade Soils5 5.3 54 Groundwater 6 6.0 7.0 SUBGRADE CHARACTERIZATION6 7.2 7.3 7.4 8.0 PAVEMENT DESIGN RECOMMENDATIONS 8 Traffic Loading9 8.1 8.2 8.3 8.3.1 Flexible ME-Pavement Design Recommendations......11 8.3.2 AASHTO 1993 Flexible Pavement Design12 8.3.3 AASHTO 1998 Rigid Pavement Recommendations13 8.3.4 RockSol Pavement Section Recommendations14 8.4 8.5 9.0 EARTHWORK......15 OTHER DESIGN AND CONSTRUCTION CONSIDERATIONS15 10.0 11.0 **ATTACHMENTS** Borehole Location Plans; 30% Design Drawings (CDOT / City of Grand Junction) Appendix A: Appendix B: Legend and Individual Borehole Logs Appendix C: Summary of Laboratory Test Results G Road 20 and 30-Year Design Life for Flexible PMED Output Sheets Appendix D: 27 1/2 Road 20 and 30-Year Design Life for Flexible PMED Output Sheets Appendix E: Appendix F: Horizon Drive 20 and 30-Year Design Life for Flexible PMED Output Sheets Appendix G: Horizon Drive and G Road Roundabout 20 and 30-Year Design Life for Flexible PMED Output Sheets G Road Rigid PMED Output Sheets Appendix H: Appendix I: 27 1/2 Road Rigid PMED Output Sheets Appendix J: Horizon Drive Rigid PMED Output Sheets Horizon Drive and G Road Roundabout Rigid PMED Output Sheets Appendix K: Appendix L: AASHTO 1993 20 and 30-Year Design Life for Flexible Pavement Output Sheets Appendix M:

AASHTO 1998 Rigid Pavement Output Sheets

i

1.0 PROJECT OBJECTIVE AND DESCRIPTION

This report documents the geotechnical engineering investigation and pavement design performed by RockSol Consulting Group, Inc. (RockSol) for the Horizon Drive and G Road Roundabout Project in the City of Grand Junction, Colorado (see Figure 1, *Site Vicinity Map*).

Figure 1 – Project Site Location Map (Google Earth)

This project focuses on the design and construction of a proposed multi-lane roundabout for the City of Grand Junction. A new roundabout is proposed at the 4-way intersection of Horizon Drive and G Road. Improvements also include drainage, curb, gutter, and sidewalk.

The geotechnical investigation was conducted by RockSol for the City of Grand Junction. The scope of work for this geotechnical investigation included:

- Preparing a drilling/sampling program to perform a subsurface investigation and implementing the program to collect soil samples for laboratory testing.
- Performing laboratory tests and analyzing the data.
- Preparing a report that presents subsurface conditions encountered, the results of the laboratory testing, pavement design recommendations, and earthwork/subgrade recommendations.

Surface and groundwater hydrology, hydraulic engineering, and environmental evaluation of site soils and groundwater for possible contaminant characterization were not included in RockSol's geotechnical scope of work.

Unless otherwise specified, all recommendations presented in this report are based on the Colorado Department of Transportation (CDOT) 2022 Standard Specifications for Road and Bridge Construction; the City of Grand Junction Standard Specifications for Road and Bridge Construction; and the City of Grand Junction Transportation Engineering Design Standards.

2.0 PROJECT SITE CONDITIONS

A combination of commercial, residential, and undeveloped land surrounds the project limits (See Figure 1). Currently, Horizon Drive consists of two travel lanes in each direction within the project limits with dedicated left turn lanes in each direction. G Road currently consists of two lanes, one in each direction and a dedicated right and left turn lane as it approaches Horizon Drive from the west. G Road turns into 27 ½ Road to the east of Horizon Drive which consists of one travel lane in each direction with a dedicated right and left turn lane. The existing lanes are approximately 12 feet wide and surfaced with asphalt pavement throughout the project vicinity.

Topography throughout the project limits of consist of nearly flat slopes with mild slopes rising to the southwest along 27 ½ Road.

3.0 GEOLOGICAL CONDITIONS

Based on information presented in the United States Geological Survey (USGS) Geologic Map (See Figure 2, *Site Geology Map*) of the Grand Junction Quadrangle, Mesa County, Colorado, by Roger B. Scott, Paul E. Carrara, William C. Hood, and Kyle E. Murray, dated 2002, the project site is predominantly underlain by alluvium deposited by tributary streams (Holocene and late Pleistocene) (Qa). Alluvium generally consists of silt, sand, and gravel. Alluvium and colluvium (Qac) deposits are mapped near the project site. The colluvium generally consists of sandy silt, silty to clayey sand, and sandy clay. The materials identified by the USGS mapping were consistent with native soils encountered during our geotechnical investigation. Mancos Shale bedrock (Km) is mapped at or near the surface to the west and southeast of the project site, however, no bedrock was encountered during this investigation.

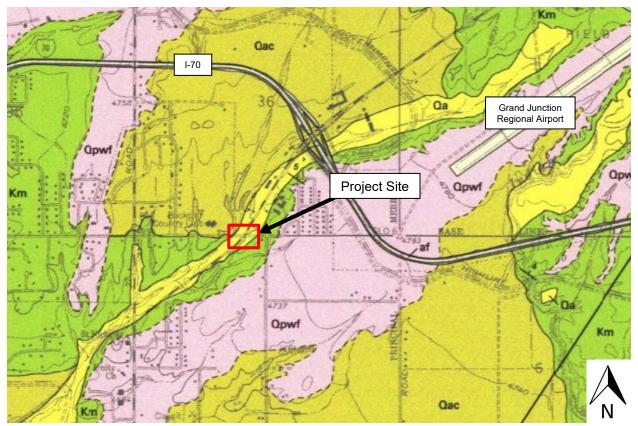


Figure 2 – Site Geology Map (Grand Junction, Mesa County, Colorado 2002)

4.0 SUBSURFACE EXPLORATION

For this investigation, RockSol completed a total of 4 boreholes identified as BH-1 through BH-4, shown in Figure 3. All boreholes were drilled for the purpose of soil investigation for pavement design of the proposed roundabout intersection. Boreholes extended to an approximate depth of 10 feet below existing grade.

The locations of the geotechnical investigation boreholes are summarized below in Table 1 and shown in Figure 3 – Borehole Location Plan. Boreholes are shown in relation to 30% design drawings supplied by the City of Grand Junction in Appendix A. The boreholes were drilled on April 11, 2023.

Table 1 - Borehole Location Summary

Borehole ID	Borehole Location	
BH-1	Eastbound G Road, Right Turn Lane	
BH-2	Southbound Horizon Drive, Left Turn Lane	
BH-3	Westbound 27 ½ Road, Left Turn Lane	
BH-4	Northbound Horizon Drive, Left Turn Lane	

Figrue 3 – Borehole Location Plan (Google Earth)

The boreholes were advanced with a truck mounted Simco 2800 drill rig using 6-inch outside diameter solid stem auger. The boreholes were logged in the field by a representative of RockSol with the depth to groundwater, if encountered, noted at the time of drilling. The boreholes were backfilled at the completion of drilling and groundwater level checks and patched with surface asphalt patch mix when drilled within existing pavement.

Subsurface materials were sampled via bulk samples from auger cuttings. Depths at which the samples were taken are shown on the Borehole Logs (See Appendix B).

5.0 SURFACE AND SUBSURFACE CONDITIONS

The surface and subsurface materials encountered by RockSol at our borehole locations included asphaltic pavement, road subbase (aggregate base course/pit run material), and native soils. Field logging of the soil encountered in the boreholes was per procedures presented in ASTM D-2488. A brief description of the materials encountered is presented below.

5.1 Existing Asphalt Pavement Sections

Asphalt pavement was encountered in all boreholes. The asphalt pavement ranged in thickness from 6 to 7 inches and was underlain by 18 - 30 inches of imported fill gravel base except at BH-3 which was underlain by 18 inches of aggregate base course (ABC). The ABC appeared to be similar to CDOT Class 6 ABC when observed in the field. The fill gravel material generally

consisted of 2-4 inches rounded cobbles in a soil matrix. A woven geotextile was encountered between the asphalt and the subbase in Borehole BH-3, shown in Figure 4. A summary of existing pavement section thickness encountered at each borehole location is presented in Table 2. Existing pavement section thicknesses are also shown on the individual borehole logs found in Appendix A.

Table 2 – Existing Pavement Sections

Borehole ID	HMA Pavement Thickness (in)	Base Thickness (in)	Base Material Type
BH-1	7.0	5.0	Fill Gravel
BH-2	6.0	30.0	Fill Gravel
BH-3 (Note 1)	6.0	18.0	ABC
BH-4	6.0	30.0	Fill Gravel

HMA = Hot Mix Asphalt; ABC = Aggregate Base Course

Note 1: Woven geotextile fabric located between HMA and ABC

Figure 4 – Woven Geotextile Encountered below HMA in Borehole BH-3

5.2 Native Subgrade Soils

Native soils were encountered below existing pavement and subbase materials and extended to maximum depths drilled at all borehole locations. Native soils encountered generally consisted of very soft to very stiff, slightly moist to wet, tan-gray to tan-brown, sandy to silty clay. The native soils encountered by RockSol are generally consistent with the alluvium and colluvium materials identified on the USGS Geological Map (See Figure 3) found in Section 3.0 of this report.

5.3 Sedimentary Bedrock

Sedimentary Bedrock was not encountered to total depths drilled during drilling operations.

5.4 Groundwater

Groundwater was encountered during drilling/sampling activities at BH-4 at an approximate depth of 4 feet below existing grades at the time of drilling operations. Depth to groundwater where encountered is presented on individual borehole logs in Appendix B. Groundwater encountered at the site may be associated with the alluvium identified in Section 3.0.

Depth to groundwater is subject to change depending on climatic conditions, water flows in nearby drainage channels, local irrigation practices, changes in local topography, and changes in surface storm water management. Long-term monitoring of groundwater elevations is required to establish groundwater fluctuations.

6.0 LABORATORY TESTING

Soil samples retrieved from the borehole locations were examined by the project geotechnical engineer in the RockSol laboratory. Selected samples were tested and classified per the Unified Soil Classification System (USCS). The following laboratory tests were performed in accordance with the American Society for Testing and Materials (ASTM), American Association of State Highway and Transportation Officials (AASHTO), and current local practices:

- Percent Passing No. 200 Sieve (ASTM D-1140)
- Liquid and Plastic Limits (ASTM D-4318)
- Gradation (ASTM D 6913)
- Water-Soluble Sulfates (CDOT CP-L 2103)
- Water-Soluble Chloride Content (CDOT CP-L 2104)
- Standard Test Method for pH of Soils (ASTM D4972-01)
- Soil Resistivity (ASTM G187 Soil Box)
- Soil Classification (ASTM D-2487 and AASHTO M145)
- Resistance Value (AASHTO T-190)

R-Values (Resistance Values) were tested by CMT Technical Services. All other laboratory tests were performed by RockSol. Laboratory test results are presented in Appendix C and are also summarized on the Borehole Logs presented in Appendix B.

7.0 SUBGRADE CHARACTERIZATION

Laboratory test results were used to characterize the engineering properties of the subsurface material encountered. For soil classification, RockSol conducted sieve analyses and Atterberg Limits tests. Lab testing was also performed on selected samples to determine the water-soluble sulfate content of subsurface materials to assist with cement type recommendations. A summary of physical and chemical test results is included in Appendix C.

7.1 Roadway Subgrade Soil Classification

Subgrade bulk samples of existing roadway grades were obtained at various depths from each pavement borehole location and were tested for AASHTO soil classification. The native subgrade soils tested were classified as A-4 AASHTO soil types. Fill soils and ABC soils tested classified as A-1-b AASHTO soil types. A summary of the roadway subgrade soil classifications is presented in Table 4.

Table 4 – Roadway Subgrade Soil Classifications

Borehole Location	Depth (feet)	AASHTO Classification
BH-1	1 - 10	A-4 (7)
BH-2	0.5 - 5.5	A-4 (1)
BH-2	5.5 - 10	A-4 (2)
BH-3	0.5 - 2	A-1-b (0)
BH-3	2 - 10	A-4 (6)
BH-4	3 - 4	A-4 (0)
BH-4	4 - 10	A-4 (3)

7.2 Water-Soluble Sulfate Content

Cementitious material requirements for concrete in contact with soils or groundwater are based on the percentage of water-soluble sulfate. Mix design requirements for concrete exposed to water-soluble sulfates in soils or water is considered by the Colorado Department of Transportation (CDOT) as shown in Table 5 and in the 2022 CDOT Standard Specifications for Road and Bridge Construction. Water-soluble Sulfate Testing Results are summarized in Table 6.

Table 5 – Requirements to Protect Against Damage to Concrete by Sulfate Attack from External Sources of Sulfate

Water-Soluble Sulfate (SO₄) In dry soil, percent	Sulfate (SO₄) In water, ppm	Cementitious Material Requirements
0.00 to 0.10	0 to 150	Class 0
0.11 to 0.20	151 to 1,500	Class 1
0.21 to 2.0	1,501 to 10,000	Class 2
2.01 or greater	10,001 or greater	Class 3

Table 6 – Water-Soluble Sulfate Testing Summary

Borehole I.D.	Sample Depth (Feet)	Water-Soluble Sulfate (SO ₄) In dry soil, percent	Cementitious Material Requirements	
BH-1	1 – 10	0.54	Class 2	
BH-2	0.5 – 5.5	0.53	Class 2	
BH-2	5.5 – 10	1.34	Class 2	
BH-3	2 – 10	0.12	Class 1	
BH-4	4 – 10	0.60	Class 2	

The concentration of water-soluble sulfates measured in soil samples obtained from RockSol's exploratory boreholes ranged from 0.12 percent to 1.34 percent by weight (See Appendices B and C). Based on the results of the water-soluble sulfate testing, Exposure Class 2 may be considered for concrete in contact with subgrade materials at the Horizon Drive and G Road Roundabout. Refer to CDOT's current Specifications in Section 601 for concrete mixtures that satisfy appropriate sulfate exposure Class 2 requirements.

7.3 Corrosion Resistance Level

Water-soluble chloride content, water-soluble sulfate content, pH, and electrical resistivity tests were performed on bulk samples obtained from the boreholes. All corrosion testing was performed in the RockSol laboratory and is summarized in Table 7.

Table 7 - Corrosivity Test Results

Borehole Location	Sample Depth (Feet)	Water-Soluble Chloride (% by weight)	Water-Soluble Sulfate (% by weight)	рН	CR Level
BH-1	1 - 10	0.0162	0.54		CR 4
BH-2	0.5 - 5.5	0.0162	0.53		CR 4
BH-2	5.5 – 10	0.0162	1.34		CR 5
BH-3	2 – 10	0.0444	0.12		CR 2
BH-4	4 – 10	0.0246	0.60	7.8	CR 4

Comparison of the test results of the sulfate, chloride, and pH testing performed with *Table 1 - Guidelines for Selection of Corrosion Resistance Levels as presented in the CDOT Pipe Materials Selection Guide*, dated April 30, 2015, suggests corrosion resistance levels of CR 2, CR 4, and CR 5 are present within the project limits. Additional testing at specific structure locations may be performed to provide structure specific corrosion resistance recommendations. Of the three variables (water-soluble sulfate, water-soluble chloride, and pH) that are used in determining the CR level, the water-soluble sulfate is the predominant component affecting the CR level selection.

Electrical resistivity testing was performed on a bulk sample from 2 feet to 10 feet in Borehole BH-3 and on a bulk sample from 3 feet to 4 feet in Borehole BH-4 using the soil box method (ASTM G-187) and resulted in resistivities of 370 and 760 ohm-cm, respectively. Based on AASHTO LRFD Bridge Design Specifications, Ninth Edition, Section 10.7.5, resistivity less than 2,000 ohm-cm indicates an aggressive condition. Based on AASHTO criteria, the site soils exhibit an aggressive condition to metals such as steel.

Comparison of the results of the electrical resistivity and pH testing performed with *Table 2 – Minimum Pipe Thickness for Metal Pipes Based on The Resistivity And pH of the Adjacent Soil* as presented in the *CDOT Pipe Materials Selection Guide*, effective April 30, 2015, suggests the minimum required gauge thickness for metal pipe material, if used, for this project is *0.052 inches (18 Gauge) Polymer Coated*. Additional testing at specific structure locations may be performed to provide structure specific recommendations.

7.4 Subgrade Support Test Results (R-Value)

To test the subgrade support characteristics of soils representative of the project site, two R-Value laboratory tests were performed on bulk samples obtained from Borehole BH-1 from a depth of 1 to 10 feet below existing grade and Borehole BH-3 from a depth of 2 to 10 feet below existing grade. R-Value test results of 12 and 14 were obtained from these samples, respectively. The Colorado Department of Transportation (CDOT) Pavement Design Manual equation 4-1 was used to determine the resilient modulus of 6,815 psi and 7,111 psi, respectively.

8.0 PAVEMENT DESIGN RECOMMENDATIONS

Horizon Drive and G Road are classified as minor arterials, and 27 ½ Road is classified as a major collector by the City of Grand Junction. The roadway classifications for this project were found on the website for the City of Grand Junction's Transportation Map as shown in Figure 5.

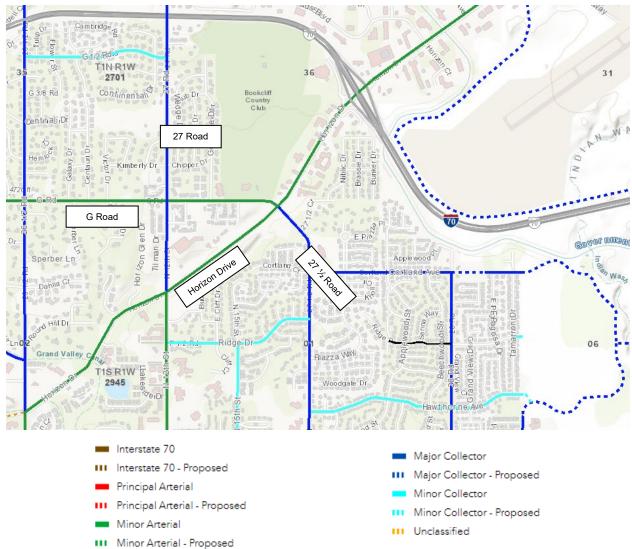


Figure 5 – Roadway Classifications (City of Grand Junction Transportation Map)

A 2-lane roundabout is planned at the intersection of G Road, Horizon Drive, and 27 ½ Road. In this report Hot Mix Asphalt (HMA) pavement is identified as flexible pavement. Portland Cement Concrete (PCC) pavement is identified as rigid pavement.

Pavement thickness evaluation for the development of flexible and rigid pavement design recommendations within the City of Grand Junction right of way were performed in accordance with CDOT's 2021 M-E Pavement Design Manual as modified in 2022 which uses Version 2.3.1 of AASHTO's Pavement Mechanistic-Empirical Design (PMED) software, *Subsection 29.32 – Pavements and Truck Routes* in the City of Grand Junction Municipal Code as passed in Ordinance 5136 on March 15, 2023, and a spreadsheet developed by RockSol to replicate the 1993 AASHTO flexible pavement design as recommended in 29.32.040(a).

8.1 Traffic Loading

Traffic loading was estimated for a 20 and 30-year flexible pavement design life and 30-year rigid pavement design life in accordance with the City of Grand Junction Municipal Code (Subsection 29.32). The average daily traffic (ADT) was taken from current data supplied by the City's

Transportation Engineer and the City of Grand Junction's Transportation Map (Traffic Counts). Based on discussions with the City's Transportation Engineer, it was decided to use the highest traffic count in the pavement designs with a compound growth rate of 2.0 percent.

The ADT from traffic station 1046 for G Road ranged from a low of 4,775 in 2023 to a high of 5,782 in 2007. Using the highest ADT of 5,782 as the 2023 ADT and the compound growth rate of 2 percent, the 2024 ADT used for the pavement design for G Road is 5,898.

The ADT from traffic station 1175 for 27 $\frac{1}{2}$ Road ranged from a low of 10,018 in 2004 to a high of 11,864 in 2018. Using the highest ADT of 11,864 as the 2023 ADT and the compound growth rate of 2 percent, the 2024 ADT used for the pavement design for 27 $\frac{1}{2}$ Road is 12,101.

The ADT from traffic station 1172 for Horizon Drive ranged from a low of 13,319 in 2023 to a high of 23,768 in 2009. Using the highest ADT of 23,768 as the 2023 ADT and the compound growth rate of 2 percent, the 2024 ADT used for the pavement design for Horizon Drive is 24,243.

The Average Annual Daily Truck Traffic (AADTT) has a significant effect on the predicted pavement performance as compared to cars and pick-up trucks. For this project, predominately Class 5 vehicles when using the Federal Highway vehicle type classification system were noted on all roads. Based on discussions with the City's Transportation Engineer, an average of 15.0 percent will be used to determine the AADTT for this project. The compound growth rate of 2 percent was used over a 20-year and 30-year design life to develop the 18,000-pound equivalent single axle loads (ESAL's). The calculated ESAL's was derived from the PMED software. The AADTT used for the pavement designs of roadway segments is shown in Table 8. Based on CDOT's Pavement Design Manual, Cluster 1 truck percentages will be used to model the truck traffic in the PMED software.

Table 8 – Summary of Traffic Loading

Pavement Section Location	2024 ADT	Estimated AADTT	20-Year Flexible Design Life 18k ESALS	30-Year Flexible Design Life 18k ESALS	30-Year Rigid Design Life 18k ESALs
G Road	5,898	890	3,050,000	5,090,000	6,580,000
27 1/2 Road	12,101	1,820	6,240,000	10,410,000	13,460,000
Horizon Drive	24,243	3,640	9,350,000	16,620,000	20,190,000
Roundabout (G Rd. + 27 ½ Rd. + Horizon Dr.)	42,242	6,350	16,320,000	27,250,000	35,220,000

8.2 Pavement Subgrade Characterization

Based on R-Value testing, a conservative R-Value of 10 with a corresponding subgrade resilient modulus value of 6,482 psi was used by RockSol as the design R-value for evaluation of new pavement constructed on the existing soils for this project.

To provide an appropriate structural layer for Hot Mix Asphalt (HMA), RockSol recommends 8 inches of a subbase layer of non-stabilized A-1-b CDOT Class 2 Aggregate Base Course (ABC) material be included as part of the pavement design section in addition to 8 inches of CDOT Class 6 ABC directly underlying the pavement. A structural coefficient of 0.12 was used for Class 6 Aggregate Base Course (ABC), 0.11 for Class 2 ABC, and 0.44 for HMA. The Class 2 material must have an R-Value of at least 40 and the Class 6 material must have an R-Value of at least 78 when tested in accordance with AASHTO T 190.

8.3 Pavement Section Recommendations,

Three pavement thickness design procedures were used for the 20 and 30-year design life of new flexible pavement and 30-year design life of new concrete pavement. The first procedure used for flexible and rigid pavement design was performed in accordance with the 2021 Colorado Department of Transportation M-E Pavement Design Manual as modified in 2022 and the PMED software, Version 2.3.1. The second procedure used a spreadsheet developed by RockSol to replicate the 1993 AASHTO flexible pavement design since the AASHTOWare DARWin version 3.1 Pavement Design and Analysis System recommended in subsection 29.32.040 (a) of the City of Grand Junction Transportation Engineering Design Standards is no longer available. The third procedure used the 1998 version of the AASHTO Guide for the Design of Pavement Structures in accordance with subsection 29.32.040 (b) of the City of Grand Junction Transportation Engineering Design Standards. Typical flexible pavement designs for the City of Grand Junction usually include a layer of Class 2 aggregate base course below the Class 6 ABC to help provide a stable platform for the pavement. The concrete pavements typically do not require the Class 2 material, therefore the aggregate base sections presented in this report for concrete pavements are reduced.

8.3.1 Flexible ME-Pavement Design Recommendations

A summary of the PMED minimum pavement section thicknesses for flexible pavement are presented in Table 9 for the 20-year design life and Table 10 for the 30-year design life with the pavement design output sheets included in Appendices D through G.

Table 9 – Flexible Pavement Section Minimum Thickness Recommendations (PMED) (20 Year Design Life)

Pavement Section	Material Type	Thickness (inches)	Appendix
	HMA SX(100) PG 64-22	2.0	
G Road	HMA S(100) PG 64-22	5.0	D
G Road	ABC Class 6	8.0	D
	ABC Class 2	8.0	
	HMA SX(100) PG 64-22	2.0	
27 ½ Road	HMA S(100) PG 64-22	7.0	Е
ZI /2 NOau	ABC Class 6	8.0	
	ABC Class 2	8.0	
	HMA SX(100) PG 64-22	2.0	
Horizon Drive	HMA S(100) PG 64-22	7.5	F
TIONZON DIIVE	ABC Class 6	8.0	'
	ABC Class 2	8.0	
	HMA SX(100) PG 64-22	2.0	
Horizon Drive and G	HMA S(100) PG 64-22	9.5	G
Road Roundabout	ABC Class 6	8.0]
	ABC Class 2	8.0	

HMA = Hot Mix Asphalt; ABC = Aggregate Base Course

Table 10 – Flexible Pavement Section Minimum Thickness Recommendations (PMED) (30 Year Design Life)

Pavement Section	Material Type	Thickness (inches)	Appendix
	HMA SX(100) PG 64-22	2.0	
G Road	HMA S(100) PG 64-22	6.0	D
G Road	ABC Class 6	8.0	
	ABC Class 2	8.0	
	HMA SX(100) PG 64-22	2.0	
27 ½ Road	HMA S(100) PG 64-22	8.0	E
ZI /2 NUau	ABC Class 6	8.0	
	ABC Class 2	8.0	
	HMA SX(100) PG 64-22	2.0	
Horizon Drive	HMA S(100) PG 64-22	9.5	F F
TIONZON DIIVE	ABC Class 6	8.0	_ '
	ABC Class 2	8.0	
	HMA SX(100) PG 64-22	2.0	
Horizon Drive and G	HMA S(100) PG 64-22	10.5	G
Road Roundabout	ABC Class 6	8.0]
	ABC Class 2	8.0	

HMA = Hot Mix Asphalt; ABC = Aggregate Base Course

8.3.2 Rigid ME-Pavement Design Recommendations

A summary of the PMED minimum pavement section thicknesses for the 30-year design life of rigid pavement are presented in Table 11 and the pavement design output sheets are included in Appendices H through K.

Table 11 – Rigid Pavement Section Minimum Thickness Recommendations (PMED) (30 Year Design Life)

Pavement Section	Material Type	Thickness (inches)	Appendix
G Road	PCC	9.5 or 10.0	Н
G Road	ABC Class 6	8.0	П
27 ½ Road	PCC	10.0	ı
ZI /2 RUdu	ABC Class 6	8.0	I
Horizon Drive	PCC	10.0	1
Horizon Drive	ABC Class 6	8.0	J
Horizon Drive and G	PCC	10.5 or 11.0	I/
Road Roundabout	ABC Class 6	8.0	Γ.

PCC = Portland Cement Concrete; ABC = Aggregate Base Course

8.3.3 AASHTO 1993 Flexible Pavement Design

A summary of the AASHTO 1993 minimum pavement section thicknesses for the 20-year design life of flexible pavement are presented in Table 12 and the 30-year design life of flexible pavement are presented in Table 13. The pavement design output sheets are included in Appendix L.

Table 12 – Flexible Pavement Section Minimum Thickness Recommendations (AASHTO 1993) (20 Year Design Life)

Pavement Section	Material Type	Thickness (inches)
	HMA SX(100) PG 64-22	2.0
G Road	HMA S(100) PG 64-22	3.5
G Road	ABC Class 6	8.0
	ABC Class 2	8.0
	HMA SX(100) PG 64-22	2.0
27 ½ Road	HMA S(100) PG 64-22	4.0
27 / ₂ Roau	ABC Class 6	8.0
	ABC Class 2	8.0
	HMA SX(100) PG 64-22	2.0
Horizon Drive	HMA S(100) PG 64-22	5.0
TIONZON DIIVE	ABC Class 6	8.0
	ABC Class 2	8.0
	HMA SX(100) PG 64-22	2.0
Horizon Drive and G	HMA S(100) PG 64-22	5.5
Road Roundabout	ABC Class 6	8.0
	ABC Class 2	8.0

Table 13 – Flexible Pavement Section Minimum Thickness Recommendations (AASHTO 1993) (30 Year Design Life)

Pavement Section	Material Type	Thickness (inches)
	SX(100) PG 64-22	2.0
G Road	S(100) PG 64-22	4.0
G Noau	ABC Class 6	8.0
	ABC Class 2	8.0
	SX(100) PG 64-22	2.0
27 ½ Road	S(100) PG 64-22	5.0
ZI /2 Rudu	ABC Class 6	8.0
	ABC Class 2	8.0
	SX(100) PG 64-22	2.0
Horizon Drive	S(100) PG 64-22	5.5
TIONZON DIIVE	ABC Class 6	8.0
	ABC Class 2	8.0
	SX(100) PG 64-22	2.0
Horizon Drive and G	S(100) PG 64-22	6.5
Road Roundabout	ABC Class 6	8.0
	ABC Class 2	8.0

8.3.4 AASHTO 1998 Rigid Pavement Recommendations

A summary of the AASHTO 1998 minimum pavement section thicknesses for the 30-year design life of rigid pavement are presented in Table 14 and the pavement design output sheets are included in Appendix M.

Table 14 – Rigid Pavement Section Minimum Thickness Recommendations (AASHTO 1998) (30 Year Design Life)

Pavement Section	Material Type	Thickness (inches)
G Road	PCC	9.0
G Road	ABC Class 6	8.0
27 ½ Road	PCC	10.0
ZI /2 Ruau	ABC Class 6	8.0
Horizon Drive	PCC	10.0
Holizoli Dilve	ABC Class 6	8.0
Horizon Drive and G	PCC	10.5 or 11.0
Road Roundabout	ABC Class 6	8.0

8.4 RockSol Pavement Section Recommendations

After reviewing the various designs, the recommended section by RockSol for the construction of the Horizon Drive and G Road Roundabout is a minimum of 10.5-inches of PCCP with 1.5-inch dowel bars. However, a 11-inch-thick PCCP section may be better suited for construction.

The recommended transverse and longitudinal joint spacing for PCCP should be a maximum of 15 feet. The 8 inches of ABC should consist of material meeting CDOT Class 6 Aggregate Base Course per CDOT 703.03. In order to reduce the constructability issues and to develop a consistent section outside the roundabout, on G Road, 27 ½ Road, and Horizon Drive, RockSol recommends using the 10.0-inch section with 1.25-inch diameter dowel bars with a maximum joint spacing of 15 feet along with the 8 inches of Class 6 ABC. The shoulder should be tied to the curb and gutter or the driving lanes in accordance with CDOT's M-Standards.

If the flexible pavement alternative is selected for some or all of the segments, RockSol recommends the sections shown in Table 9 be used for this project.

Rigid or flexible pavement shall consist of CDOT-approved mix designs.

8.5 Subgrade Preparation (Prior to Pavement Construction)

Prior to construction of new pavements on subgrade soils, the underlying subgrade should be properly prepared by removal of all organic matter (topsoil), debris, loose material, and any deleterious material identified by the Project Engineer followed by scarification, moisture conditioning and re-compaction. The minimum depth of scarification, moisture conditioning and re-compaction in all cases shall be 6 inches. Based on the results of our field and laboratory tests, A-1-b and A-4 soils are anticipated to be encountered at existing pavement subgrade elevations within the project limits.

Materials classified as AASHTO A-1, A-2-4, A-2-5, and A-3 soils shall be compacted at plus or minus 2 percent of Optimum Moisture Content (OMC) and to at least 95 percent of maximum dry density determined in accordance with AASHTO T 180 as modified by CDOT CP 23. All other soil types shall be compacted to 95 percent of the maximum dry density determined in accordance with AASHTO T 99 as modified by CDOT CP 23. Soils with 35 percent fines or less shall be compacted at plus or minus 2 percent of OMC. Soils with greater than 35 percent fines shall be compacted at a moisture content equal to or above OMC to achieve stability of the compacted lift. Stability is defined as the absence of rutting or pumping as observed and documented by the Contractor's Process Control Representative and as approved by the Project Engineer. If the soils cannot be compacted and prove to be unstable at a moisture content equal to or above OMC,

then the required moisture content for compaction may be reduced below OMC if approved by the Engineer.

Prior to pavement section construction, subgrade proof rolling with pneumatic tire equipment shall be performed using a minimum axle load of 18 kips per axle after specified subgrade compaction has been obtained. Areas found to be weak and those areas which exhibit soft spots, non-uniform deflection or excessive deflection as determined by the project engineer shall be ripped, scarified, wetted, or dried if necessary, and re-compacted to the requirements for density and moisture. Complete coverage of the proof roller will be required.

Where areas of unstable subgrade soils remain after proof rolling, it is recommended that a maximum of 6 inches of the unstable material be removed and a woven geotextile material such as Mirafi® HP570 or similar product be placed along with 6 inches of a CDOT Class 3 ABC meeting the following requirements:

Maximum Particle Dimension: 6-inches

Minus 200 Screen Size: 20% max.

• Liquid Limit (LL): 35 maximum

If the area remains unstable after proof rolling the Class 3 ABC, it is recommended that another layer a woven geotextile material such as Mirafi® HP570 or similar product be placed prior to placing the Class 6 ABC.

9.0 EARTHWORK

To accommodate the new roundabout, new embankment may be required along the roadway alignments. At some locations minor cuts may be required. Materials used to construct embankments, roadway side slopes, structure backfill, and aggregate base course materials should meet the material and moisture density control requirements specified Section 8.5 of this report.

At a minimum, the ground surface underlying all embankment fills should be carefully prepared by removing all organic matter (topsoil), scarification to a minimum depth of 6 inches and recompacting to the requirements for maximum dry density/compaction and moisture content presented in Section 8.5 of this report prior to fill placement.

Where fill material is to be placed on existing slopes steeper than 4 (H):1 (V), benching must be performed to tie the new fill into the existing slope. Benching into the existing slopes shall allow sufficient bench width to accommodate placing and compaction equipment to operate in a horizontal orientation.

Broken concrete, broken asphalt, or other solid materials more than 6 inches in greatest dimension shall not be placed within embankment areas supporting the roadway shoulders and pavement structure. Claystone/shale materials shall not be used for construction of new embankment. Imported fill material used for embankment constructed shall be compatible with designed side slopes. Material excavated from utility trenches may be used for backfilling provided it does not contain unsuitable material. Unsuitable material includes, but is limited to, topsoil, vegetation, brush, sod, trash, and other deleterious substances.

10.0 OTHER DESIGN AND CONSTRUCTION CONSIDERATIONS

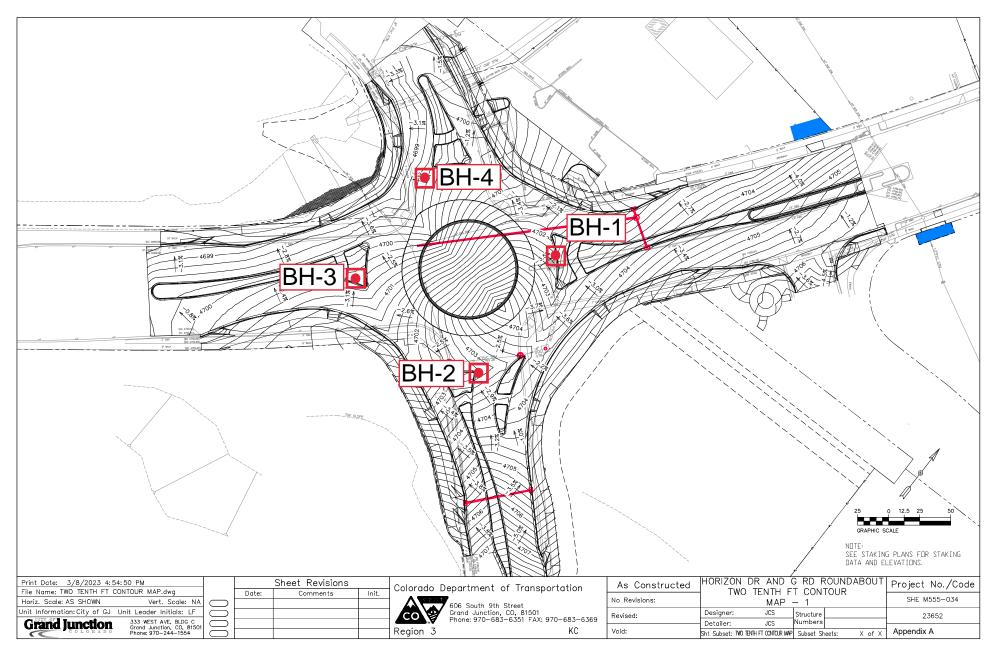
Proper construction practices, in accordance with the Colorado Department of Transportation (CDOT) 2022 Standard Specifications for Road and Bridge Construction; the City of Grand

Junction Standard Specifications for Road and Bridge Construction; and the City of Grand Junction Transportation Engineering Design Standards, should be followed during site preparation, earthwork, excavations, roadway and bridge construction, and embankment and retaining wall construction for the suitable long-term performance of the proposed improvements. Excavation support should be provided to maintain onsite safety and the stability of excavations and slopes. Excavations shall be constructed in accordance with local, state, and federal regulations including OSHA guidelines. The contractor must provide a competent person to determine compliance with OSHA excavation requirements. For preliminary planning, existing fill material and native soils may be considered as OSHA Type C soils.

Surface drainage patterns may be altered during construction and local landscape irrigation (if any) must be controlled to prevent excessive moisture infiltration into the subgrade soils during and after construction.

Environmentally contaminated material, if encountered, should be characterized, and removed under the direction of the project environmental consultant. Design and construction plans should be reviewed, and onsite construction should be observed by the professional engineers.

11.0 LIMITATIONS


This geotechnical investigation was conducted in general accordance with the scope of the work. RockSol's geotechnical practices are similar to those used in Colorado with similar soil conditions and based on our understanding of the proposed work. This report has been prepared for use by the City of Grand Junction for the project described in this report. The report is based on our exploratory boreholes and does not consider variations in the subsurface conditions that may exist between boreholes. Additional investigation is required to address such variation. If during construction activities, materials or water conditions appear to be different from those described herein, RockSol should be advised at once so that a re-evaluation of the recommendations presented in this report can be made. RockSol is not responsible for liability associated with interpretation of subsurface data by others.

APPENDIX A

BOREHOLE LOCATION PLANS

Borehole Location Plan

APPENDIX B

LEGEND AND INDIVIDUAL BOREHOLE LOGS

CLIENT City of Grand Junction

PROJECT NAME Horizon Drive and G Road Roundabout Investigation

PROJECT NUMBER 599.76

PROJECT LOCATION Grand Junction, Colorado

LITHOLOGY

Asphalt Pavement

Fill - SAND, clayey to silty

Native - CLAY

Fill - Aggregate Base Course

Native - SAND, silty

Fill - GRAVEL, silty

SAMPLE TYPE

Auger Cuttings

Fines Content indicates amount of material, by weight, passing the US No 200 Sieve (%)

PROJECT LEGEND 599.76_HORIZON DR AND G RD ROUNDABOUT.GPJ 5/15/23

▼ GROUND WATER LEVEL AT TIME OF DRILLING

RockSol
Consulting Group, Inc.

LOG - STANDARD 599.76_HORIZON DR AND G RD ROUNDABOUT.GPJ 5/18/23

			rand Junction											
				PROJECT LOCATION Grand Junction, Colorado GROUND ELEVATION STATION NO										
			ACTOR Colorado Drilling and Sampling							т				
			D Solid Stem Auger HOLE SIZE 6.0"			ION: East		G Roa	ad, Rigi	ht Turr	1 Lane	!		
			Mannelein HAMMER TYPE Automatic	0.100.12		R LEVELS:			l =	14/00				
NOTE	S Cer	iter oi	Lane	WAI	EK DEP	TH None	Encou	ntered	1 on 4/1	1/23	A ===			_
7					씸		SWELL POTENTIAL (%)	(%	Ë.		AII 	ERBE	RG S	FINES CONTENT (%)
ELEVATION (ft)	Ξ	GRAPHIC LOG			SAMPLE TYPE	BLOW	A F	SULFATE (%)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)		()	۲	N (
¥€	DEPTH (ft)	ZAP LOX	MATERIAL DESCRIPTION		P.E) See	NEWE ENT	FAT	<u> </u>	TSE TE	5	STIC	든X	00%
=		G.			AM		STO	SUL	ᇫ	ΑÖ	LIQUID	PLASTIC LIMIT	PLASTICITY INDEX	VES
	0.0				<i>O</i>		مَ		Ц				П	분
			Asphalt pavement, approximately 7 inches thick											
		. VIC	(Fill) CDA\(Fill a conductoral inhabitation with a community state of the community of the		VI .									
			(Fill) GRAVEL, sandy to slightly silty, approximatel inches thick	· K	BULK									23.8
			(Native) CLAY, with sand and cobbles, moist, tan-b	orown										
					}									
					}									
	2.5			K										
				Į										
					}									
				S	<u> </u>									
				K										
				Į										
				IJ	}									
					}									
	5.0			l\	<u> </u>									
			Approximate Bulk Depth 1-10											
			Liquid Limit= 34 Plastic Limit= 25	Į	BULK			0.54			34	25	9	78.5
			Plasticity Index= 9 Fines Content= 78.5	J	}									
			Sulfate= 0.54		}									
				l\	<u> </u>									
				K										
				Į										
	7.5			IJ	}									
					}									
					<u> </u>									
	_			Į										
					}									
					}									
				K										
	10.0		_											
			Bottom of hole at 10.0 feet.											

Consulting Group, Inc.

CLIENT City of Gi	rand Junction	_ PROJECT NAM	IE Horizon	Drive a	nd G	Road F	Rounda	about	nvesti	gation	1
PROJECT NUMBER	R 599.76	_ PROJECT LOC	ATION Gr	and Jun	ction,	Colora	do				
	4/11/23 COMPLETED 4/11/23						ON NO)			
DRILLING CONTRA	ACTOR Colorado Drilling and Sampling	_ NORTH				EAS	т				
	D Solid Stem Auger HOLE SIZE 6.0"		TION: Sou	uthbound	d Horiz	zon Dri	ve, Le	ft Turr	Lane		
LOGGED BY A. M	Mannelein HAMMER TYPE Automatic	GROUND WAT	ER LEVELS	S :							
NOTES Center of	Lane	WATER DE	PTH None	e Encou	nterec	d on 4/1	1/23				
_		Щ		(%	<u></u>		@	AT	TERBE LIMITS	RG	Z.
ELEVATION (ft) (ft) O DEPTH GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE	BLOW	SWELL POTENTIAL (%)	SULFATE (%)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (9	LIQUID		PLASTICITY INDEX	FINES CONTENT (%)
	Asphalt pavement, approximately 6 inches thick										
	(Fill) GRAVEL, silty to clayey with sand, slightly gray-brown Approximate Bulk Depth 0.5-5.5 Liquid Limit= 25 Plastic Limit= 18 Plasticity Index= 7 Fines Content= 48.8 Sulfate= 0.53	moist,	.K		0.53			25	18	7	48.8
7.5	(Native) CLAY, sandy to silty, moist, tan-gray Approximate Bulk Depth 5.5-10 Liquid Limit= 28 Plastic Limit= 23 Plasticity Index= 5 Fines Content= 67.1 Sulfate= 1.34 Bottom of hole at 10.0 feet.	(B) BUL	.K		1.34			28	23	5	67.1
10.0	Bottom of hole at 10.0 feet.										

PAGE 1 OF 1

RockSol	
Consulting Group, Inc.	
CLIENT City of Grand Junction	PRO IECT N

LOG - STANDARD 599.76 HORIZON DR AND G RD ROUNDABOUT.GPJ 5/18/23

PROJECT NAME Horizon Drive and G Road Roundabout Investigation PROJECT LOCATION Grand Junction, Colorado PROJECT NUMBER 599.76 __ COMPLETED 4/11/23 GROUND ELEVATION _____ STATION NO. ____ DATE STARTED 4/11/23 DRILLING CONTRACTOR Colorado Drilling and Sampling NORTH EAST DRILLING METHOD Solid Stem Auger HOLE SIZE 6.0" **BORING LOCATION:** Westbound 27 1/2 Road, Left Turn Lane LOGGED BY A. Mannelein HAMMER TYPE Automatic **GROUND WATER LEVELS:** NOTES Center of Lane WATER DEPTH None Encountered on 4/11/23 **ATTERBERG** FINES CONTENT (%) SWELL POTENTIAL (%) SAMPLE TYPE DRY UNIT WT. (pcf) MOISTURE CONTENT (%) LIMITS ELEVATION (ft) SULFATE (%) GRAPHIC LOG BLOW COUNTS PLASTICITY INDEX DEPTH (ft) PLASTIC LIMIT LIQUID MATERIAL DESCRIPTION Asphalt pavement, approximately 6 inches thick Woven Geotextile Fabric encountered below asphalt Aggregate base course, approximately 18 inches thick BULK NP NP NP 16.4 (Native) CLAY, with sand, slightly moist, tan-brown Approximate Bulk Depth 0.5-2 Liquid Limit= NP Plastic Limit= NP Plasticity Index= NP Fines Content= 16.4 5.0 Approximate Bulk Depth 2-10 Liquid Limit= 34 BULK 0.12 7 83.4 Plastic Limit= 27 34 27 Plasticity Index= 7 Fines Content= 83.4 Sulfate= 0.12 7.5 10.0 Bottom of hole at 10.0 feet.

Consulting Group, Inc.

CLIENT City of G	rand Junction											
PROJECT NUMBE	R 599.76	PROJE	CT LOCA	TION Gra	nd Jun	ction,	Colora	do				
DATE STARTED	4/11/23 COMPLETED 4/11/23	GROUN	D ELEVA	TION			STATI	ON NO)			
DRILLING CONTR	ACTOR Colorado Drilling and Sampling	NORTH					EAS	т				_
DRILLING METHO	D Solid Stem Auger HOLE SIZE 6.0"	BORING	LOCATI	ON: North	hbound	l Horiz	zon Driv	ve, Let	ft Turn	Lane		
LOGGED BY A. I	Mannelein HAMMER TYPE Automatic	GROUN	D WATE	R LEVELS:								
NOTES Center of	Lane	_ 🔻 wa	TER DEP	TH 4.0 ft	on 4/1	1/23						
			III		<u></u>				ATT	ERBE		F
ELEVATION (f) DEPTH (f) (R) GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE	BLOW	SWELL POTENTIAL (%	SULFATE (%)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)				FINES CONTENT (%)
0.0 O.0 O.0 O.0 O.0 O.0 O.0 O.0 O.0 O.0			SAMF	CGB	S POTEI	SULF	DRY	CON	LIQUID	PLASTIC LIMIT	PLASTICITY INDEX	FINES
	Asphalt pavement, approximately 6 inches thick											
	(Fill) GRAVEL, sandy with clay, 2-4 inch cobbles, material	pit run										
0	Approximate Bulk Depth 3-4		BBULK									3.3
2.5	Liquid Limit= 20 Plastic Limit= 17 Plasticity Index= 3 Fines Content= 47.3		{									
	(Native) SAND, silty with clay and gravel, brown											
			B)BULK						20	17	3	47.3
	(Native) CLAY, slightly sandy, wet, tan-gray Approximate Bulk Depth 4-10 Liquid Limit= 29 Plastic Limit= 24 Plasticity Index= 5 Fines Content= 73.6 Sulfate= 0.60		(B)			0.60			29	24	5	73.6
10.0	Bottom of hole at 10.0 feet.											

APPENDIX C

SUMMARY OF LABORATORY TESTS RESULTS

SUMMARY OF PHYSICAL & CHEMICAL TEST RESULTS

PAGE 1 OF 1

CLIENT _City of Grand Junction

PROJECT NAME Horizon Drive and G Road Roundabout Investigation

PROJECT NUMBER 599.76

PROJECT LOCATION Grand Junction, Colorado

Borehole	Depth	epth Liquid	Liquid	Liquid Limit	Liquid Limit	oth Liquid	Plastic	Plasticity	Swell Potential	%<#200	Class	ification	Water	Dry	Unconfined Compressive	Sulfate	Resistivity	рН	Chlorides	P S=Standa	roctor ard M=Modit	fied
Dotellole	(ft)	Limit	Limit	Index	(%)	Sieve	USCS	AASHTO	Content (%)	Density (pcf)	Strength (psi)	(%)	(ohm-cm)	рп	(%)	MDD	ОМС	S/M				
BH-1	0.58-1					24					, ,											
BH-1	1-10	34	25	9		79	ML	A-4 (7)				0.54			0.0162	109.8	16.5	S				
BH-2	0.5-5.5	25	18	7		49	GC-GM	A-4 (1)				0.53			0.0162							
BH-2	5.5-10	28	23	5		67	ML	A-4 (2)				1.34			0.0162							
BH-3	0.5-2	NP	NP	NP		16	GM	A-1-b (0)														
BH-3	2-10	34	27	7		83	ML	A-4 (6)				0.12	370 @ 24.5%	8.4	0.0444							
BH-4	0.5-3					3	GW															
BH-4	3-4	20	17	3		47	SM	A-4 (0)					760 @ 22.1%									
BH-4	4-10	29	24	5		74	ML	A-4 (3)				0.60		7.8	0.0246							

RY - STANDARD LANDSCAPE 599.76_HORIZON DR AND G RD ROUNDABOUT.GPJ 5/10/2

5/10/23

ROCKSOL TEMPLATE.GDT

HORIZON DR AND G RD ROUNDABOUT.GPJ

599.76

ATTERBERG LIMITS - STANDARD

ATTERBERG LIMITS RESULTS AASHTO T89 Method A/T90

CLIENT City of Grand Junction PROJECT NAME Horizon Drive and G Road Roundabout Investigation PROJECT NUMBER 599.76 PROJECT LOCATION _Grand Junction, Colorado 60 (CL) (CH) 50 A S T 40 C 30 Ν 20 D E 10 CL-ML (ML)(MH) 100 LIQUID LIMIT Specimen Identification LL PL PI Fines | Classification ● BH-1 1.0-10.0 34 25 9 78.5 | SILT with SAND (ML) (A-4) **■** BH-2 48.8 SILTY, CLAYEY GRAVEL with SAND (GC-GM) (A-4) 0.5-5.5 25 18 7 **BH-2** 5.5-10.0 28 23 67.1 SANDY SILT (ML) (A-4) 5 **★** BH-3 0.5-2.0 NP NP NP 16.4 SILTY GRAVEL with SAND (GM) (A-1-b) ⊙ BH-3 2.0-10.0 34 27 7 83.4 | SILT with SAND (ML) (A-4) BH-4 3.0-4.0 20 17 3 47.3 SILTY SAND with GRAVEL (SM) (A-4) O BH-4 4.0-10.0 29 24 5 73.6 | SILT with SAND (ML) (A-4)

GRAIN SIZE DISTRIBUTION

0.01

0.001

CLIENT City of Grand Junction PROJECT NAME Horizon Drive and G Road Roundabout Investigation PROJECT NUMBER 599.76 PROJECT LOCATION Grand Junction, Colorado U.S. SIEVE OPENING IN INCHES 6 4 3 2 1.5 1 3/4 U.S. SIEVE NUMBERS | 810 14 16 20 30 40 50 60 100 140 200 HYDROMETER 1/23/8 100 95 90 M·* 85 80 75 70 65 PERCENT FINER BY WEIGHT 60 55 50 45 40 35 30 25 20 15 10 5

GRAIN SIZE IN MILLIMETERS

COBBLES	GRA	VEL		SAND)	SILT OR CLAY
	coarse	fine	coarse	medium	fine	SILT OR CLAT

	Specimen I	dentification			(LL	PL	PI	Сс	Cu			
•	BH-1	0.6-1.0											
	BH-1	1.0-10.0			SILT w	34	25	9					
A	BH-2	0.5-5.5	SIL	TY, CLA	YEY GR	AVEL w	ith SAND (G	GC-GM) (A-4)	25	18	7		
*	BH-2	5.5-10.0			SAND	Y SILT	(ML) (A-4)		28	23	5		
_	BH-3	0.5-2.0		SILTY	GRAVE	L with S	AND (GM)	(A-1-b)	NP	NP	NP		
ı ~	Specimen I	dentification	D100	D60 D30 D10 %Gravel %Coarse Sar					%Fine S	Sand	%Silt	%	Clay
•	BH-1	0.6-1.0	19	3.163	0.157		44.7	7.4	24.1		23.8		
×	BH-1	1.0-10.0	19				7.2	4.2	10.1		-	78.5	
	BH-2	0.5-5.5	50	1.224			37.7	7.2	6.3		-	48.8	
★	BH-2	5.5-10.0	19				9.8	4.4	18.7			67.1	
0	BH-3	0.5-2.0	19	5.476	0.346		16.0)		16.4			

ROUNDABOUT.GPJ ROCKSOL TEMPLATE.GDT 5/10/23

0

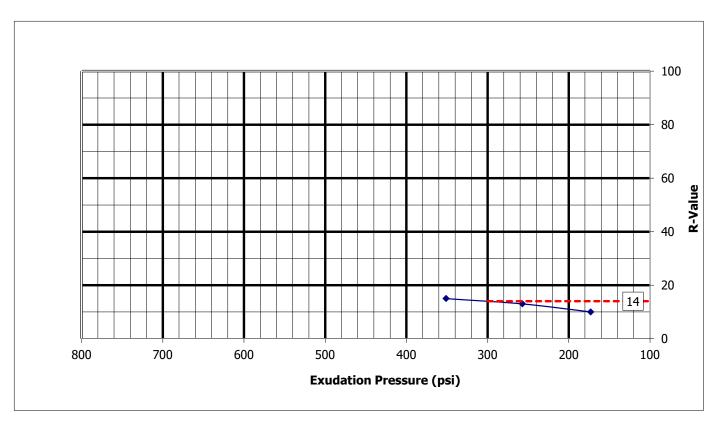
GRAIN SIZE DISTRIBUTION

PROJECT NAME Horizon Drive and G Road Roundabout Investigation CLIENT City of Grand Junction PROJECT NUMBER 599.76 PROJECT LOCATION Grand Junction, Colorado U.S. SIEVE OPENING IN INCHES 6 4 3 2 1.5 1 3/4 U.S. SIEVE NUMBERS | 810 14 16 20 30 40 50 60 100 140 200 HYDROMETER 100 95 90 85 80 75 70 × 65 PERCENT FINER BY WEIGHT 60 55 50 45 40 35 30 25 20 15 10 5 0.1 0.01 0.001 **GRAIN SIZE IN MILLIMETERS**

CORRIES	GRA	VEL		SAND)	SILT OR CLAY
COBBLES	coarse	fine	coarse	medium	fine	SILT OR CLAY

	ВП	4 0530	63	1-4	12 952	3 088	01.5	26	26		1	2 2	
•	BH-	3 2.0-10.0	9.5				2.0	4.2	10.3	}		83.4	
	pecim	nen Identification	D100	D60	D30	D10	%Gravel	%Coarse Sar	nd %Fine S	Sand	%Silt	%	Clay
							, , , ,,				-		
*	BH-	4 4.0-10.0			SILT w	ith SANE) (ML) (A-4)	-	29	24	5		
lack	BH-	4 3.0-4.0		SILT	Y SANE	with GF	RAVEL (SM)	(A-4)	20	17	3		
×	BH-	4 0.5-3.0		V	/ELL-G	RADED G	RAVEL (G	W)				2.50	7.0
•	BH-	3 2.0-10.0			SILT w	rith SAND) (ML) (A-4)		34	27	7		
	pecim	nen Identification	1			Classific	ation		LL	PL	PI	Сс	Cu
			coarse	fine	coa	rse me	dium	fine					
		COBBLES	GRA	VEL			SAND		SILT	OR (CLAY		
	ı					SRAIN SIZE	IN MILLIMET	ERS					7
l		100		10		1		0.1		0.01		0.	001
	0												
	5									+			-
	10									++++			-
	15												1
				\mathbb{N}									
	20				:								

~	9	pecimen	identification	טטוט	טסט	D30	טוט	%Graver	%Coarse Sand	%Fine Sand	70 SIIL	70Clay
STANDARD	•	BH-3	2.0-10.0	9.5				2.0	4.2	10.3	83	3.4
STAN	X	BH-4	0.5-3.0	63	21.726	12.952	3.088	91.5	2.6	2.6	3	.3
S-NOI	A	BH-4	3.0-4.0	19	0.364			30.2	8.5	14.1	47	7.3
Þ١	*	BH-4	4.0-10.0	12.5				4.1	2.6	19.7	7:	3.6
3RAD,												


R-VALUE TEST GRAPH (ASTM D2844)

Project Number: 23.022, Rocksol Consulting Date: 04/19/23
Project Name: City of GJ Horizon and G (RockSol Project No. 599.76) Technician: J. De Los Santos

Lab ID Number: 232294 Reviewer: G. Hoyos

Sample Location: BH-3; west bound G Road Lt. Center Turn Lane at 2 to 10 feet (RockSol ID No. GJ 23-56)

Visual Description: CLAY, sandy, light brown

R-Value @ Exudation Pressure 300 psi:	14
Specification:	

CDOT Pavement Design Manual, 2011.

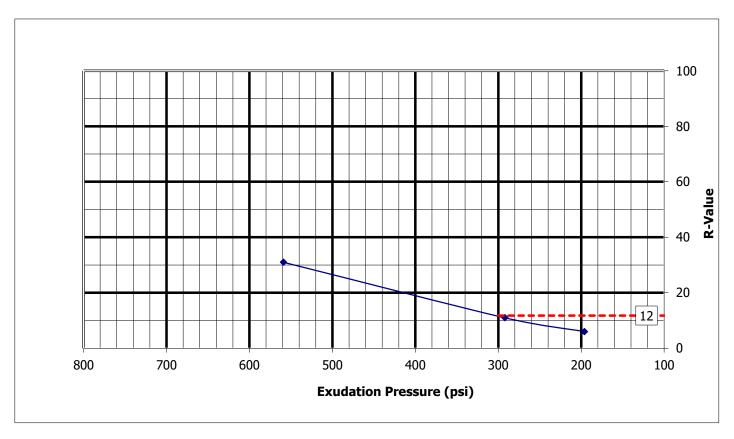
Eq. 2.1 & 2.2, page 2-3.

 $S_1 = [(R-5)/11.29] + 3$ $S_1 = 3.80$ $M_R = 10^{[(S_1 + 18.72)/6.24]}$ $M_R = 4.060$

 M_R = Resilient Modulus, psi S_1 = the Soil Support Value R = the R-Value obtained

Test Specimen:	1	2	3	
Moisture Content, %:	17.1	18.8	21.4	
Expansion Pressure, psi:	1.06	0.70	-0.09	
Dry Density, pcf:	115.9	112.1	105.1	
R-Value:	15	13	10	
Exudation Pressure, psi:	351	257	173	

Note: The R-Value is measured; the M_R is an approximation from correlation formulas.



R-VALUE TEST GRAPH (ASTM D2844)

23.022, Rocksol Consulting Project Number: Date: 04/21/23 Project Name: City of GJ Horizon and G (RockSol Project No. 599.76) Technician: J. Holiman Lab ID Number: 232295 Reviewer: G. Hoyos Sample Location: BH-1; east bound G Road right turn lane 12 inches to 10 feet (RockSol ID No. GJ 23-54)

SAND, clayey, with gravel, light brown Visual Description:

R-Value @ Exudation Pressure 300 psi:	12
Specification:	

CDOT Pavement Design Manual, 2011.

Eq. 2.1 & 2.2, page 2-3.

 $S_1 = [(R-5)/11.29] + 3$ $S_1 = 3.60$ $M_R = 10^{[(S_1 + 18.72)/6.24]}$ $M_R = 3,778$

M_R = Resilient Modulus, psi S_1 = the Soil Support Value R = the R-Value obtained

Test Specimen:	1	2	3
Moisture Content, %:	14.7	17.2	19.3
Expansion Pressure, psi:	4.91	0.76	0.06
Dry Density, pcf:	120.6	114.3	108.6
R-Value:	31	11	6
Exudation Pressure, psi:	559	292	196

Note: The R-Value is measured; the M_R is an approximation from correlation formulas.

APPENDIX D

G ROAD

20 AND 30-YEAR DESIGN LIFE FOR FLEXIBLE PAVEMENT M-E DESIGN OUTPUT SHEETS

G Road HMA (64-22) Design

Design Life: 20 years Base construction: May, 2024 Climate Data 39.134, -108.538

Sources (Lat/Lon) Design Type: **FLEXIBLE** Pavement construction: July, 2024

> Traffic opening: September, 2024

Design Structure

Layer type	Material Type	Thickness (in)		
Flexible	R2 Level 1 SX(100) PG 64-22	2.0		
Flexible	R4 Level 1 S(100) PG 64- 22	5.0		
NonStabilized	Crushed gravel	8.0		
NonStabilized	CDOT Class 2 ABC	8.0		
Subgrade	A-4	6.0		
Subgrade	A-4	Semi-infinite		

Volumetric at Construction:		
Effective binder content (%)	11.2	
Air voids (%)	5.1	

Traffic

Age (year)	Heavy Trucks (cumulative)
2024 (initial)	890
2034 (10 years)	2,135,670
2044 (20 years)	4,739,040

Design Outputs

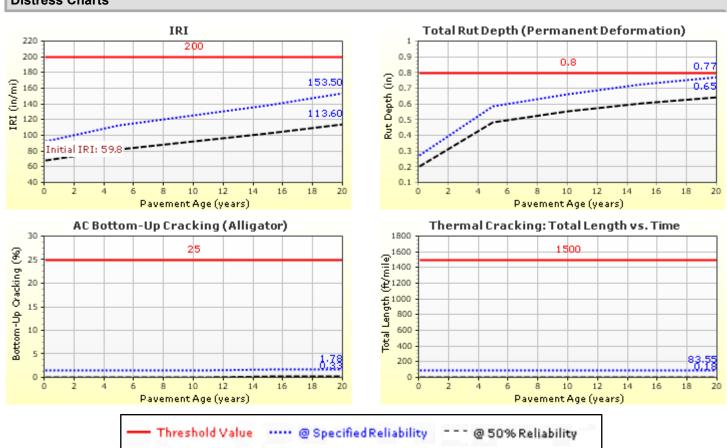
Distress Prediction Summary

Distress Type		Distress @ Specified Reliability		Reliability (%)	
	Target	Predicted	Target	Achieved	Satisfied?
Terminal IRI (in/mile)	200.00	153.45	90.00	99.73	Pass
Permanent deformation - total pavement (in)	0.80	0.77	90.00	93.94	Pass
AC bottom-up fatigue cracking (% lane area)	25.00	1.78	90.00	100.00	Pass
AC thermal cracking (ft/mile)	1500.00	83.55	90.00	100.00	Pass
AC top-down fatigue cracking (ft/mile)	3000.00	266.28	90.00	100.00	Pass
Permanent deformation - AC only (in)	0.65	0.15	90.00	100.00	Pass

Report generated on: 5/24/2023 5:33 PM

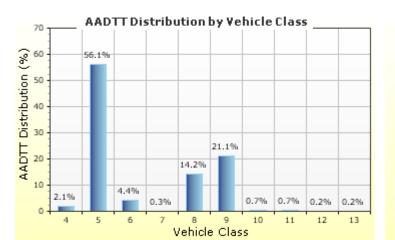
Version: 2.3.1+66

Created^{by:} on: 8/5/2016 12:00 AM

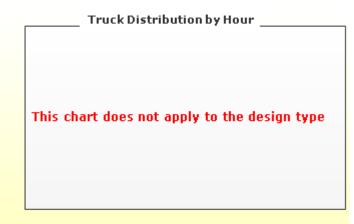

Approved by: on: 8/5/2016 12:00 AM

Page 1 of 23

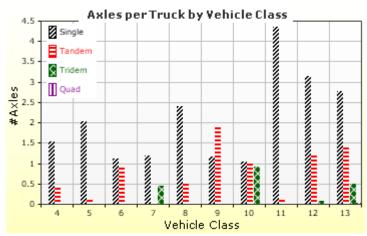
Distress Charts

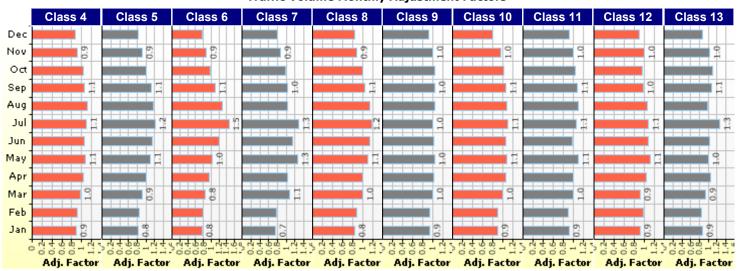

File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\G Road HMA (64-22) Design.dgpx

Traffic Inputs


Graphical Representation of Traffic Inputs

Initial two-way AADTT: 890


Number of lanes in design direction: 1


Percent of trucks in design direction (%): 60.0
Percent of trucks in design lane (%): 100.0
Operational speed (mph) 35.0

Traffic Volume Monthly Adjustment Factors

File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\G Road HMA (64-22) Design.dgpx

Tabular Representation of Traffic Inputs

Volume Monthly Adjustment Factors

Level 3: Default MAF

Month	Vehicle Class									
WOITH	4	5	6	7	8	9	10	11	12	13
January	0.9	0.8	0.8	0.7	0.8	0.9	0.9	0.9	0.9	0.9
February	0.9	0.8	0.8	0.8	0.9	0.9	0.9	0.9	1.0	0.8
March	1.0	0.9	0.8	1.1	1.0	1.0	1.0	1.0	0.9	0.9
April	1.0	1.0	0.9	1.0	1.0	1.0	1.1	1.0	1.0	1.1
May	1.1	1.1	1.0	1.3	1.1	1.0	1.1	1.1	1.1	1.0
June	1.1	1.1	1.2	1.1	1.1	1.0	1.1	1.0	1.1	1.0
July	1.1	1.2	1.5	1.3	1.2	1.0	1.1	1.1	1.1	1.3
August	1.1	1.2	1.3	1.0	1.1	1.0	1.1	1.1	1.1	1.0
September	1.1	1.1	1.1	1.0	1.1	1.0	1.1	1.1	1.0	1.1
October	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.9	1.1
November	0.9	0.9	0.9	0.9	0.9	1.0	1.0	1.0	1.0	1.0
December	0.9	0.8	0.8	0.8	0.8	0.9	0.8	0.9	0.9	0.9

Distributions by Vehicle Class

Truck Distribution by Hour does not apply

Vehicle Class	AADTT Distribution (%)	Growth Factor		
	(Level 3) `´	Rate (%)	Function	
Class 4	2.1%	2%	Compound	
Class 5	56.1%	2%	Compound	
Class 6	4.4%	2%	Compound	
Class 7	0.3%	2%	Compound	
Class 8	14.2%	2%	Compound	
Class 9	21.1%	2%	Compound	
Class 10	0.7%	2%	Compound	
Class 11	0.7%	2%	Compound	
Class 12	0.2%	2%	Compound	
Class 13	0.2%	2%	Compound	

Axle Configuration

Traffic Wander			
Mean wheel location (in)	18.0		
Traffic wander standard deviation (in)	10.0		
Design lane width (ft)	12.0		

				_
0	Tire press	sure (ps	si)	

Average axle width (ft)

Dual tire spacing (in)

Axle Configuration

8.5

12.0 120.0

Wheelbase does not apply

Number of Axles per Truck

Vehicle Class	Single Axle	Tandem Axle	Tridem Axle	Quad Axle
Class 4	1.53	0.45	0	0
Class 5	2.02	0.16	0.02	0
Class 6	1.12	0.93	0	0
Class 7	1.19	0.07	0.45	0.02
Class 8	2.41	0.56	0.02	0
Class 9	1.16	1.88	0.01	0
Class 10	1.05	1.01	0.93	0.02
Class 11	4.35	0.13	0	0
Class 12	3.15	1.22	0.09	0
Class 13	2.77	1.4	0.51	0.04

Average Axle Spacing		
Tandem axle spacing (in)	51.6	
Tridem axle spacing (in)	49.2	
Quad axle spacing (in)	49.2	

Report generated on: 5/24/2023 5:33 PM

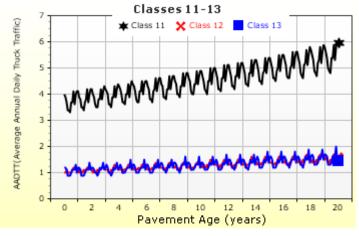
Version: 2.3.1+66

Cre

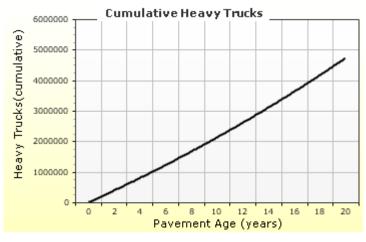
Created by: on: 8/5/2016 12:00 AM

Approved by: on: 8/5/2016 12:00 AM


Page 4 of 23


File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\G Road HMA (64-22) Design.dgpx

AADTT (Average Annual Daily Truck Traffic) Growth

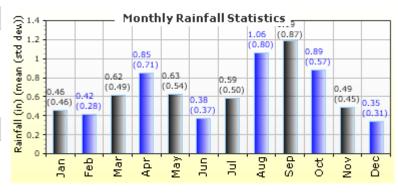

* Traffic cap is not enforced

File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\G Road HMA (64-22) Design.dgpx

Climate Inputs

Climate Data Sources:

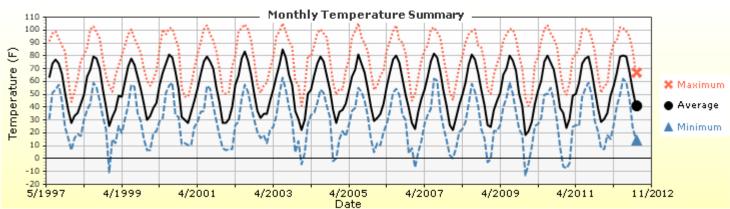
Climate Station Cities: Location (lat lon elevation(ft))
GRAND JUNCTION, CO 39.13400 -108.53800 4839

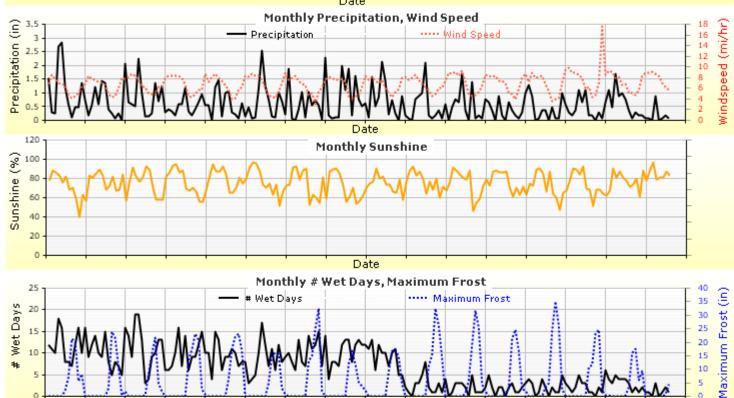


Mean annual air temperature (°F) 53.75

Mean annual precipitation (in) 7.96

Freezing index (°F - days) 360.58


Average annual number of freeze/thaw cycles: 111.77



Water table depth (ft)

4.00

Monthly Climate Summary:

Report generated on: 5/24/2023 5:33 PM

5/1997

Version: 2.3.1+66

4/2001

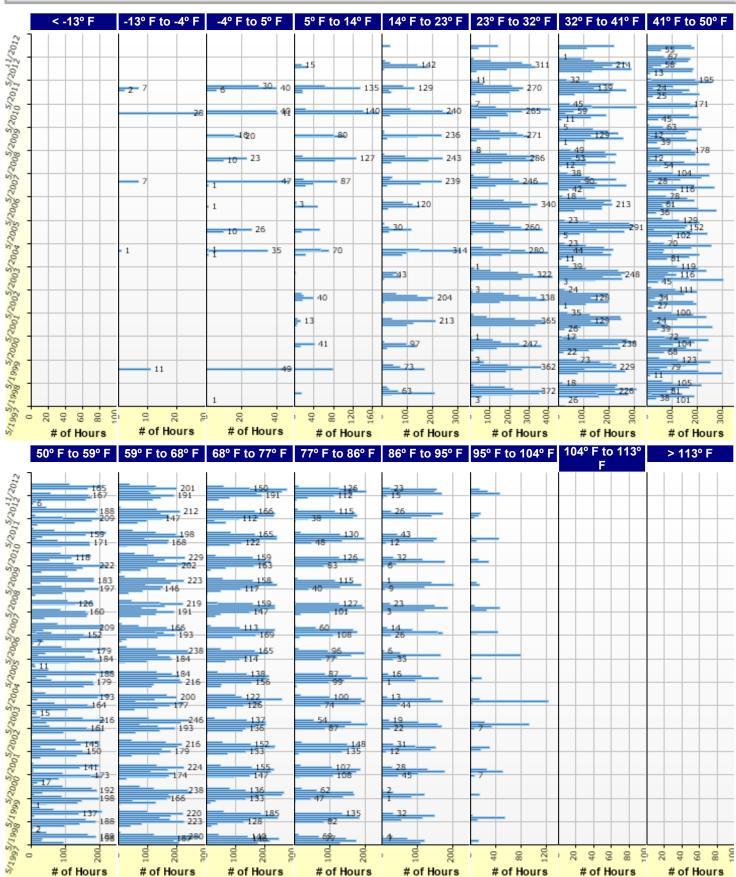
Created^{by:} on: 8/5/2016 12:00 AM

4/2005

4/2007

4/2003

Approved by: on: 8/5/2016 12:00 AM


11/2012

File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\G Road HMA (64-22) Design.dgpx

Hourly Air Temperature Distribution by Month:

Design Properties

HMA Design Properties

Use Multilayer Rutting Model	False
Using G* based model (not nationally calibrated)	False
Is NCHRP 1-37A HMA Rutting Model Coefficients	True
Endurance Limit	-
Use Reflective Cracking	True

	-
Structure - ICM Properties	
AC surface shortwave absorptivity	0.85

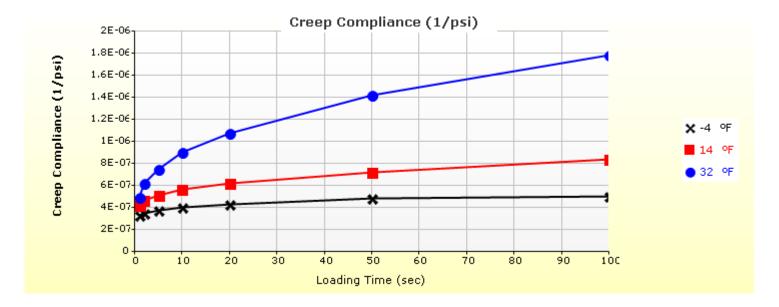
Layer Name	Layer Type	Interface Friction
Layer 1 Flexible : R2 Level 1 SX (100) PG 64-22	Flexible (1)	1.00
Layer 2 Flexible : R4 Level 1 S (100) PG 64-22	Flexible (1)	1.00
Layer 3 Non-stabilized Base : Crushed gravel	Non-stabilized Base (4)	1.00
Layer 4 Non-stabilized Base : CDOT Class 2 ABC	Non-stabilized Base (4)	1.00
Layer 5 Subgrade : A-4	Subgrade (5)	1.00
Layer 6 Subgrade : A-4	Subgrade (5)	-

Report generated on: 5/24/2023 5:33 PM

Version: 2.3.1+66 Created by: on: 8/5/2016 12:00 AM

Approved by: on: 8/5/2016 12:00 AM

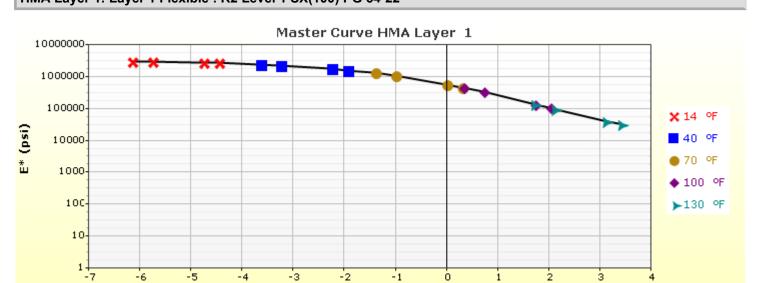
Page 8 of 23



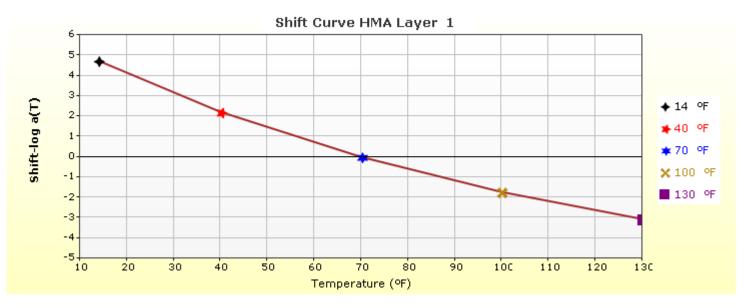
Thermal Cracking (Input Level: 1)

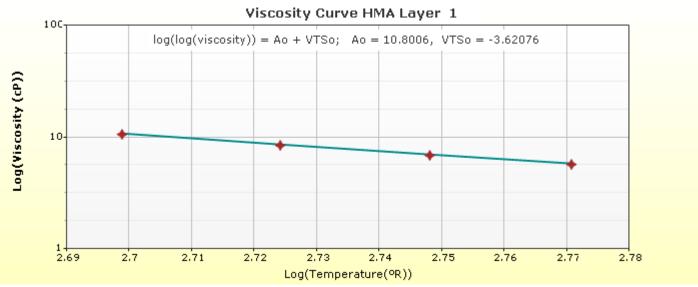
Indirect tensile strength at 14 °F (psi)	451.00
Thermal Contraction	
Is thermal contraction calculated?	True
Mix coefficient of thermal contraction (in/in/ºF)	-
Aggregate coefficient of thermal contraction (in/in/°F)	5.0e-006
Voids in Mineral Aggregate (%)	16.3

	Creep Compliance (1/psi)			
Loading time (sec)	-4 °F	14 °F	32 °F	
1	3.34e-007	4.19e-007	4.99e-007	
2	3.53e-007	4.64e-007	6.19e-007	
5	3.79e-007	5.15e-007	7.49e-007	
10	4.05e-007	5.70e-007	9.08e-007	
20	4.31e-007	6.26e-007	1.08e-006	
50	4.87e-007	7.27e-007	1.43e-006	
100	5.05e-007	8.41e-007	1.79e-006	



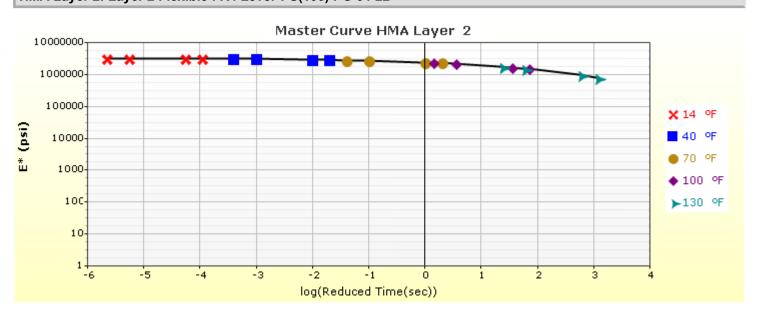
Created^{by:} on: 8/5/2016 12:00 AM

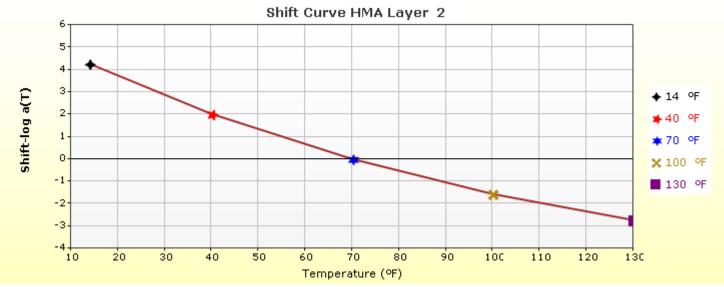


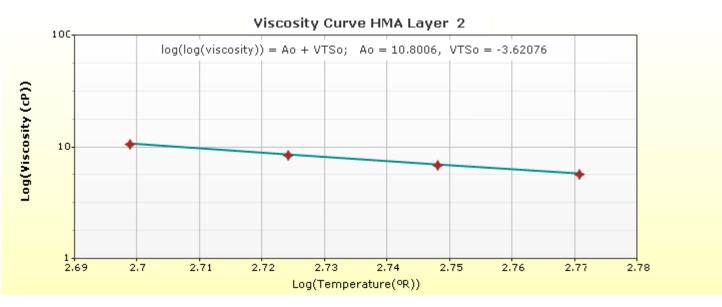


HMA Layer 1: Layer 1 Flexible: R2 Level 1 SX(100) PG 64-22

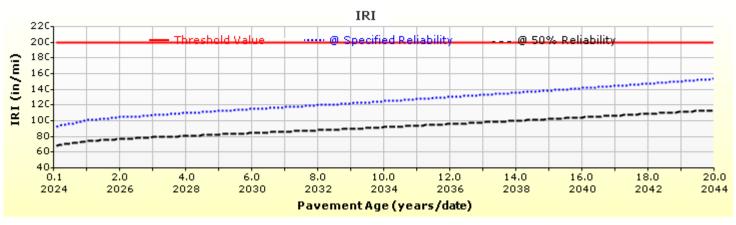
log(Reduced Time(sec))

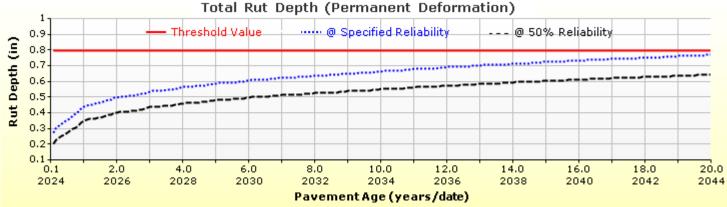


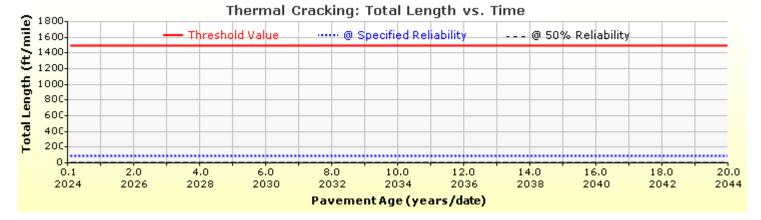




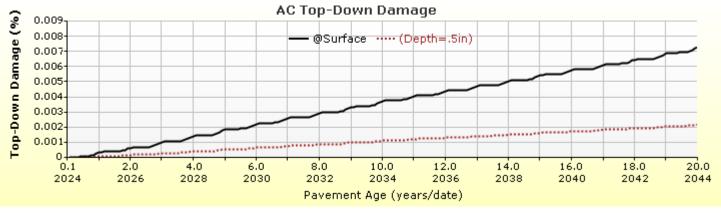
HMA Layer 2: Layer 2 Flexible: R4 Level 1 S(100) PG 64-22

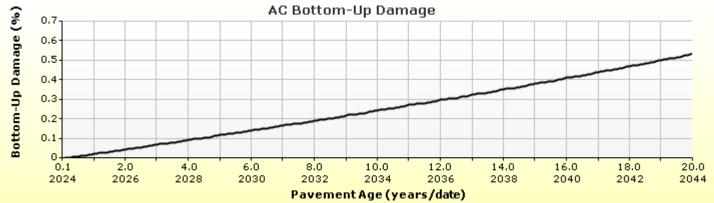


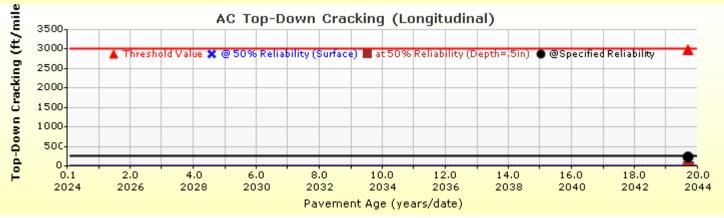


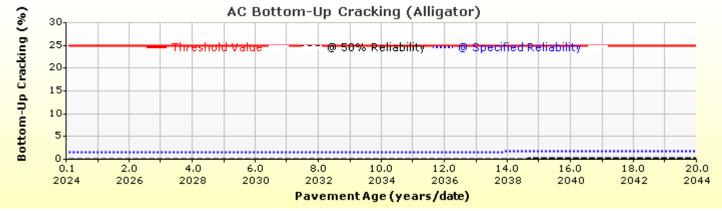


Analysis Output Charts

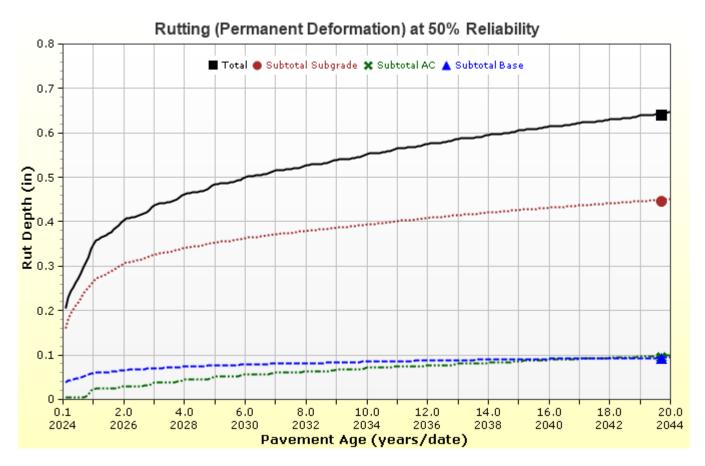




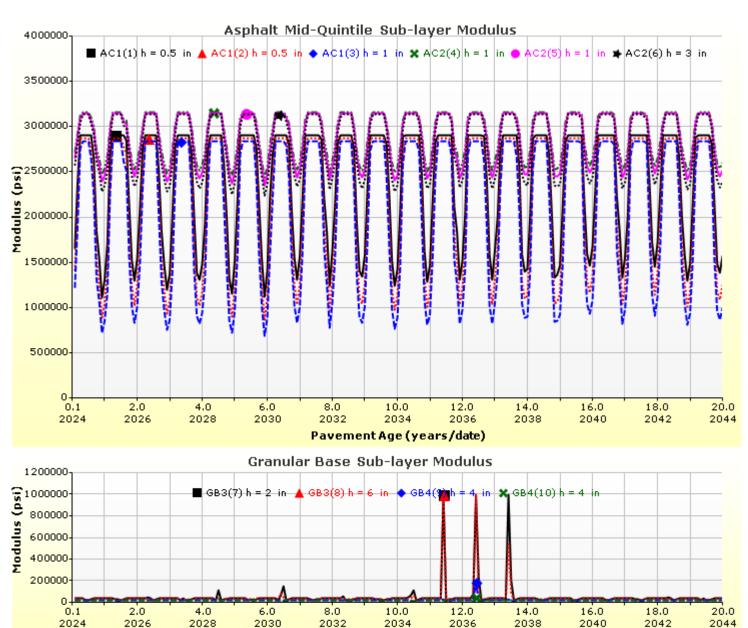


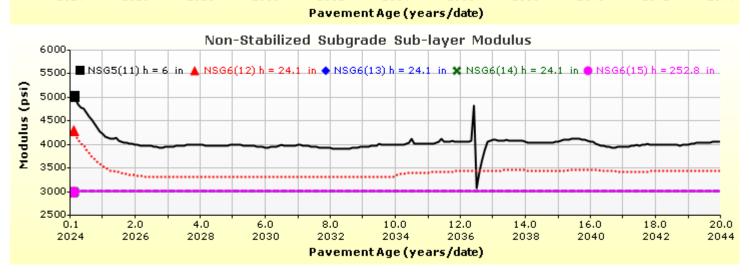


File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\G Road HMA (64-22) Design.dgpx



File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\G Road HMA (64-22) Design.dgpx




Created^{by:} on: 8/5/2016 12:00 AM

File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\G Road HMA (64-22) Design.dgpx

File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\G Road HMA (64-22) Design.dgpx

Layer Information

Layer 1 Flexible: R2 Level 1 SX(100) PG 64-22

Asphalt				
Thickness (in)	2.0			
Unit weight (pcf)	145.0			
Poisson's ratio	Is Calculated?	True		
	Ratio	-		
	Parameter A	-1.63		
	Parameter B	3.84E-06		

Asphalt Dynamic Modulus (Input Level: 1)

T (°F)	0.5 Hz	1 Hz	10 Hz	25 Hz
14	2333549	2642179	2861449	2927779
40	1309490	1791270	2219829	2365949
70	379514	695090	1127310	1318450
100	87238	174824	349546	452545
130	29326	49265	92795	122034

Asphalt Binder

Temperature (°F)	Binder Gstar (Pa)	Phase angle (deg)
147.2	1857	81.6
158	889	83.1
168.8	451	85

General Info

Name	Value
Reference temperature (°F)	70
Effective binder content (%)	11.2
Air voids (%)	5.1
Thermal conductivity (BTU/hr-ft-°F)	0.67
Heat capacity (BTU/lb-°F)	0.23

Identifiers

Field	Value
Display name/identifier	R2 Level 1 SX(100) PG 64-22
Description of object	Mix ID # FS1938
Author	CDOT
Date Created	4/3/2013 12:00:00 AM
Approver	CDOT
Date approved	4/3/2013 12:00:00 AM
State	Colorado
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	SX
User defined field 2	
User defined field 3	
Revision Number	2

Report generated on: 5/24/2023 5:33 PM

Version: 2.3.1+66

Created^{by:} on: 8/5/2016 12:00 AM

Approved by: on: 8/5/2016 12:00 AM

Page 16 of 23

Layer 2 Flexible : R4 Level 1 S(100) PG 64-22

Asphalt		
Thickness (in)	5.0	
Unit weight (pcf)	150.7	
Poisson's ratio	Is Calculated?	True
	Ratio	-
	Parameter A	-1.63
	Parameter B	3.84E-06

Asphalt Dynamic Modulus (Input Level: 1)

T (°F)	0.5 Hz	1 Hz	10 Hz	25 Hz
14	3066800	3098200	3172300	3192100
40	2806000	2874100	3039900	3085600
70	2266800	2396000	2735700	2835600
100	1522600	1696200	2219300	2393200
130	820200	975200	1545400	1773100

Asphalt Binder

Temperature (°F)	Binder Gstar (Pa)	Phase angle (deg)
168.8	451	85
147.2	1857	81.6
158	889	83.1

General Info

Name	Value
Reference temperature (°F)	70
Effective binder content (%)	10.59
Air voids (%)	6.34
Thermal conductivity (BTU/hr-ft-°F)	0.67
Heat capacity (BTU/lb-°F)	0.23

Identifiers

Field	Value
Display name/identifier	R4 Level 1 S(100) PG 64-22
Description of object	Mix ID # FSA 0931-031
Author	CDOT
Date Created	5/3/2016 12:00:00 AM
Approver	CDOT - MP
Date approved	5/3/2016 12:00:00 AM
State	Colorado
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	S
User defined field 2	
User defined field 3	
Revision Number	0

Report generated on: 5/24/2023 5:33 PM

Version: 2.3.1+66

Created^{by:} on: 8/5/2016 12:00 AM

Approved by: on: 8/5/2016 12:00 AM

Page 17 of 23

Layer 3 Non-stabilized Base : Crushed gravel

Unbound	
Layer thickness (in)	8.0
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus	(Innut		. 31
INIUUUIUS	IIIDUL	LC A C I	

Analysis Type: Modify input values by temperature/moisture	
Method:	Resilient Modulus (psi)

Resilient Modulus (psi) 25000.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	Crushed gravel
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	42

Sieve

Liquid Limit	6.0
Plasticity Index	1.0
Is layer compacted?	True

	Is User Defined?	Value
Maximum dry unit weight (pcf)	False	127.7
Saturated hydraulic conductivity (ft/hr)	False	5.054e-02
Specific gravity of solids	False	2.7
Water Content (%)	False	7.4

User-defined Soil Water Characteristic Curve (SWCC)		
Is User Defined? False		
af	7.2555	
bf	1.3328	
cf	0.8242	
hr 117.4000		

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	8.7
#100	
#80	12.9
#60	
#50	
#40	20.0
#30	
#20	
#16	
#10	33.8
#8	
#4	44.7
3/8-in.	57.2
1/2-in.	63.1
3/4-in.	72.7
1-in.	78.8
1 1/2-in.	85.8
2-in.	91.6
2 1/2-in.	
3-in.	
3 1/2-in.	97.6

Report generated on: 5/24/2023 5:33 PM

Version: 2.3.1+66 Created by: on: 8/5/2016 12:00 AM

File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\G Road HMA (64-22) Design.dgpx

Layer 4 Non-stabilized Base : CDOT Class 2 ABC

Unbound	
Layer thickness (in)	8.0
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus (Input Level: 3)

Analysis Type: Modify input values by temperature/moisture	
Method:	Resilient Modulus (psi)

Resilient Modulus (psi) 12000.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	CDOT Class 2 ABC
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve

Liquid Limit	6.0
Plasticity Index	1.0
Is layer compacted?	True

	Is User Defined?	Value
, , ,	False	127.7
Saturated hydraulic conductivity (ft/hr)	False	5.054e-02
Specific gravity of solids	False	2.7
Water Content (%)	False	7.4

User-defined Soil Water Characteristic Curve (SWCC)	
Is User Defined? False	
af	7.2555
bf	1.3328
	0.8242
hr	117.4000

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	8.7
#100	
#80	12.9
#60	
#50	
#40	20.0
#30	
#20	
#16	
#10	33.8
#8	
#4	44.7
3/8-in.	57.2
1/2-in.	63.1
3/4-in.	72.7
1-in.	78.8
1 1/2-in.	85.8
2-in.	91.6
2 1/2-in.	
3-in.	
3 1/2-in.	97.6

Report generated on: 5/24/2023 5:33 PM

Version: 2.3.1+66 Created by: on: 8/5/2016 12:00 AM

Layer 5 Subgrade: A-4

Unbound	
Layer thickness (in)	6.0
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus (Input Level: 3)

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi) 6482.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	A-4
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve

Liquid Limit	21.0
Plasticity Index	5.0
Is layer compacted?	True

	Is User Defined?	Value
Maximum dry unit weight (pcf)	False	119
Saturated hydraulic conductivity (ft/hr)	False	7.589e-06
Specific gravity of solids	False	2.7
Water Content (%)	False	11.8

User-defined Soil Water Characteristic Curve (SWCC)	
Is User Defined? False	
af	68.8377
bf	0.9983
cf	0.4757
hr	500.0000

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	60.6
#100	
#80	73.9
#60	
#50	
#40	82.7
#30	
#20	
#16	
#10	89.9
#8	
#4	93.0
3/8-in.	95.6
1/2-in.	96.7
3/4-in.	98.0
1-in.	98.7
1 1/2-in.	99.4
2-in.	99.6
2 1/2-in.	
3-in.	
3 1/2-in.	99.8

Report generated on: 5/24/2023 5:33 PM

Version: 2.3.1+66 Created by: on: 8/5/2016 12:00 AM

Layer 6 Subgrade : A-4

Unbound	
Layer thickness (in)	Semi-infinite
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus (Input Level: 3)

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi) 6482.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	A-4
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve

Liquid Limit	21.0
Plasticity Index	5.0
Is layer compacted?	True

	Is User Defined?	Value
, , ,	False	119
Saturated hydraulic conductivity (ft/hr)	False	7.589e-06
Specific gravity of solids	False	2.7
Water Content (%)	False	11.8

User-defined Soil Water Characteristic Curve (SWCC)					
Is User Defined? False					
f 68.8377					
of 0.9983					
cf 0.4757					
hr 500.0000					

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	60.6
#100	
#80	73.9
#60	
#50	
#40	82.7
#30	
#20	
#16	
#10	89.9
#8	
#4	93.0
3/8-in.	95.6
1/2-in.	96.7
3/4-in.	98.0
1-in.	98.7
1 1/2-in.	99.4
2-in.	99.6
2 1/2-in.	
3-in.	
3 1/2-in.	99.8

Report generated on: 5/24/2023 5:33 PM

Version: 2.3.1+66 Created by: on: 8/5/2016 12:00 AM

Calibration Coefficients

AC Fatigue				
$N_{f} = 0.00432 * C * \beta_{f1} k_{1} \left(\frac{1}{\varepsilon_{1}}\right)^{k_{2}\beta_{f2}} \left(\frac{1}{E}\right)^{k_{3}\beta_{f3}}$	k1: 0.007566			
$N_f = 0.00432 * C * \beta_{f1} k_1 \left(\frac{1}{c}\right)^{-1.75} \left(\frac{1}{c}\right)^{-1.75}$	k2: 3.9492			
(E ₁)	k3: 1.281			
1.0 - 100	Bf1: 1			
$M = 4.84 \left(\frac{V_b}{V_a + V_b} - 0.69 \right)$	Bf2: 1			
Va 1 1 b	Bf3: 1			

AC Rutting

$$\begin{split} &\frac{\varepsilon_p}{\varepsilon_r} = k_z \beta_{r1} 10^{k_1} T^{k_2 \beta_{r2}} N^{k_3 B_{r3}} \\ &k_z = (C_1 + C_2 * depth) * 0.328196^{depth} \\ &C_1 = -0.1039 * H_\alpha^2 + 2.4868 * H_\alpha - 17.342 \\ &C_2 = 0.0172 * H_\alpha^2 - 1.7331 * H_\alpha + 27.428 \end{split}$$

 $\varepsilon_p = plastic strain(in/in)$ $\varepsilon_r = resilient strain(in/in)$ T = layer temperature(°F)N = number of load repetitions

 $H_{aa} = total AC thickness(in)$

ac .	· /	
AC Rutting Standard Deviation	0.24 * Pow(RUT,0.8026) + 0.001	
AC Layer	K1:-3.35412 K2:1.5606 K3:0.4791	Br1:1 Br2:1 Br3:1

Thermal Fracture

$$C_f = \text{doo} * N(\frac{\log C/h_{ac}}{\sigma}) \\ & \sum_{k = \text{refression coefficient determined through field calibration} \\ & \sum_{k = \text{refression coefficient determined through field calibration} \\ & \sum_{k = \text{refression coefficient determined through field calibration} \\ & \sum_{k = \text{refression coefficient determined through field calibration} \\ & \sum_{k = \text{refression coefficient determined through field calibration} \\ & \sum_{k = \text{refression coefficient determined through field calibration} \\ & \sum_{k = \text{refression coefficient determined through field calibration} \\ & \sum_{k = \text{refression coefficient determined through field calibration} \\ & \sum_{k = \text{refression coefficient determined through field calibration} \\ & \sum_{k = \text{refression coefficient determined through field calibration} \\ & \sum_{k = \text{refression coefficient determined through field calibration} \\ & \sum_{k = \text{refression coefficient determined through field calibration} \\ & \sum_{k = \text{refression coefficient determined through field calibration} \\ & \sum_{k = \text{refression coefficient determined through field calibration} \\ & \sum_{k = \text{refression coefficient determined through field calibration} \\ & \sum_{k = \text{refression coefficient determined through field calibration} \\ & \sum_{k = \text{refression coefficient determined through field calibration} \\ & \sum_{k = \text{refression coefficient determined through field calibration} \\ & \sum_{k = \text{refression coefficient determined through field calibration} \\ & \sum_{k = \text{refression coefficient determined through field calibration} \\ & \sum_{k = \text{refression coefficient} determined through field calibration} \\ & \sum_{k = \text{refression coefficient} determined through field calibration} \\ & \sum_{k = \text{refression coefficient} determined through field calibration} \\ & \sum_{k = \text{refression coefficient} determined through field calibration} \\ & \sum_{k = \text{refression coefficient} determined through field calibration} \\ & \sum_{k = \text{refression coefficient} determined through field calibration} \\ & \sum_{k = \text{refression coefficient} determined through field calibration} \\ &$$

CSM Fatigue

Report generated on: 5/24/2023 5:33 PM

Version: 2.3.1 + 66

Created by: on: 8/5/2016 12:00 AM

Subgrade Rutting				
$\delta_a(N) = \beta_{s_1} k_1 \varepsilon_v h\left(\frac{\varepsilon_0}{\varepsilon_r}\right) \left e^{-\left(\frac{\rho}{N}\right)^{\beta}} \right \qquad \begin{array}{c} N \\ \varepsilon_v \\ \varepsilon_0, \end{array}$		$\delta_a = permanent deformation for the layer N = number \ of \ repetitions \varepsilon_v = average \ veritcal \ strain(in/in) \varepsilon_0, \beta, \rho = material \ properties \varepsilon_r = resilient \ strain(in/in)$		
Granular			Fine	
k1: 2.03	Bs1: 1		k1: 1.35	Bs1: 1
		Standard Deviation (BASERUT) 0.1235 * Pow(SUBRUT,0.5012) + 0.001		

AC Cracking						
AC Top Down Cracking				AC Bottom Up Cracking		
$FC_{top} = \left(\frac{C_4}{1 + e^{\left(C_1 - C_2 * log_{10}(Damage)\right)}}\right) * 10.56$		$FC = \left(\frac{6000}{1 + e^{\left(c_{1} * c'_{1} + c_{2} * c'_{2} log_{10}(D*100)\right)}}\right) * \left(\frac{1}{60}\right)$ $C'_{2} = -2.40874 - 39.748 * (1 + h_{ac})^{-2.856}$ $C'_{1} = -2 * C'_{2}$				
c1: 7	c2: 3.5	c3: 0	c4: 1000	c1: 1	c2: 1	c3: 6000
AC Cracking Top Standard Deviation		AC Cracking Bottom Standard Deviation				
200 + 2300/(1+exp(1.072-2.1654*LOG10 (TOP+0.0001)))		1.13 + 13/(1+exp(7.57-15.5*LOG10 (BOTTOM+0.0001)))				

CSM Cracking		IRI Flexible Pavements					
FC_{ctb}	$= C_1 +$	$\frac{C}{1+e^{C_3-C}}$	1 2 ' ₄ (Damage)	C1 - Rutt C2 - Fati	ing gue Crack	C3 - Tran C4 - Site l	sverse Crack Factors
C1: 0	C2: 75	C3: 5	C4: 3	C1: 40	C2: 0.4	C3: 0.008	C4: 0.015
CSM Standard Deviation							
CTB*1				1			

Report generated on: 5/24/2023 5:33 PM

Version: 2.3.1+66 Created by: on: 8/5/2016 12:00 AM

File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\G Road HMA (64-22) 30-year Design.d

Design Inputs

Design Life: 30 years Base construction: May, 2024 Climate Data 39.134, -108.538

Sources (Lat/Lon) Design Type: **FLEXIBLE** Pavement construction: July, 2024

> Traffic opening: September, 2024

Design Structure

Layer type	Material Type	Thickness (in)
Flexible	R2 Level 1 SX(100) PG 64-22	2.0
Flexible	R4 Level 1 S(100) PG 64- 22	6.0
NonStabilized	Crushed gravel	8.0
NonStabilized	CDOT Class 2 ABC	8.0
Subgrade	A-4	6.0
Subgrade	A-4	Semi-infinite

Volumetric at Construction:		
Effective binder content (%)	11.2	
Air voids (%)	5.1	

Traffic

Age (year)	Heavy Trucks (cumulative)
2024 (initial)	890
2039 (15 years)	3,372,970
2054 (30 years)	7,912,540

Design Outputs

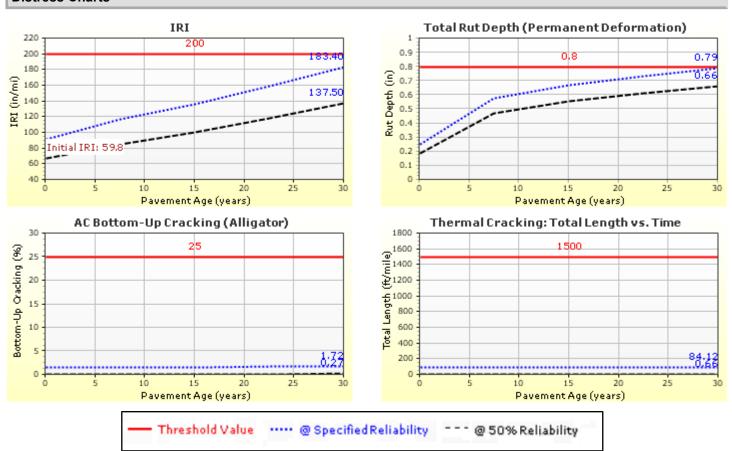
Distress Prediction Summary

Distress Type		Distress @ Specified Reliability		Reliability (%)	
· ·	Target	Predicted	Target	Achieved	Satisfied?
Terminal IRI (in/mile)	200.00	183.40	90.00	95.95	Pass
Permanent deformation - total pavement (in)	0.80	0.79	90.00	91.78	Pass
AC bottom-up fatigue cracking (% lane area)	25.00	1.72	90.00	100.00	Pass
AC thermal cracking (ft/mile)	1500.00	84.12	90.00	100.00	Pass
AC top-down fatigue cracking (ft/mile)	3000.00	259.35	90.00	100.00	Pass
Permanent deformation - AC only (in)	0.65	0.19	90.00	100.00	Pass

Report generated on: 8/31/2023 4:54 PM

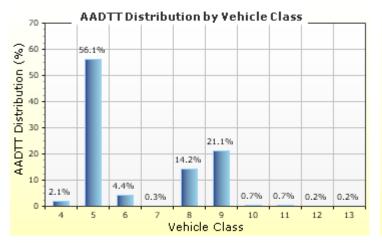
Version: 2.3.1+66

Created^{by:} on: 8/5/2016 12:00 AM


Approved by: on: 8/5/2016 12:00 AM

Page 1 of 23

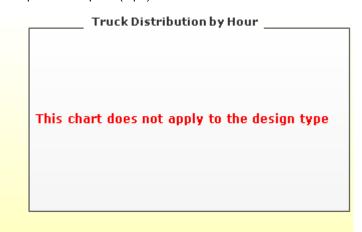
Distress Charts

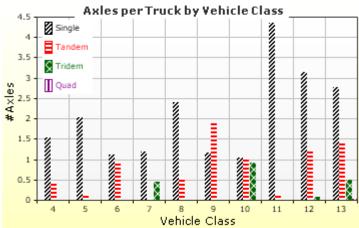

File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\G Road HMA (64-22) 30-year Design.dc

Traffic Inputs

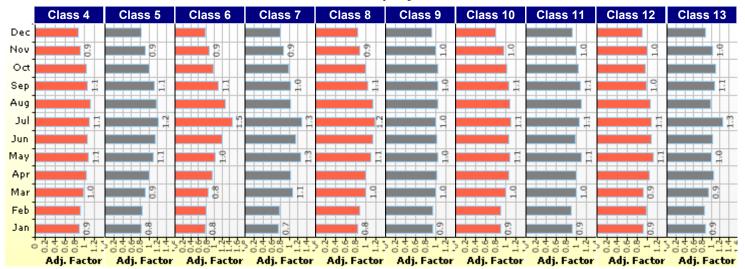
Graphical Representation of Traffic Inputs

Initial two-way AADTT: 890


Number of lanes in design direction: 1


Percent of trucks in design direction (%): 60.0

Percent of trucks in design lane (%): 100.0


Operational speed (mph) 35.0

Traffic Volume Monthly Adjustment Factors

File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\G Road HMA (64-22) 30-year Design.dg

Tabular Representation of Traffic Inputs

Volume Monthly Adjustment Factors

Level 3: Default MAF

Month	Vehicle Class									
WOILLI	4	5	6	7	8	9	10	11	12	13
January	0.9	0.8	0.8	0.7	0.8	0.9	0.9	0.9	0.9	0.9
February	0.9	0.8	0.8	0.8	0.9	0.9	0.9	0.9	1.0	0.8
March	1.0	0.9	0.8	1.1	1.0	1.0	1.0	1.0	0.9	0.9
April	1.0	1.0	0.9	1.0	1.0	1.0	1.1	1.0	1.0	1.1
May	1.1	1.1	1.0	1.3	1.1	1.0	1.1	1.1	1.1	1.0
June	1.1	1.1	1.2	1.1	1.1	1.0	1.1	1.0	1.1	1.0
July	1.1	1.2	1.5	1.3	1.2	1.0	1.1	1.1	1.1	1.3
August	1.1	1.2	1.3	1.0	1.1	1.0	1.1	1.1	1.1	1.0
September	1.1	1.1	1.1	1.0	1.1	1.0	1.1	1.1	1.0	1.1
October	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.9	1.1
November	0.9	0.9	0.9	0.9	0.9	1.0	1.0	1.0	1.0	1.0
December	0.9	0.8	0.8	0.8	0.8	0.9	0.8	0.9	0.9	0.9

Distributions by Vehicle Class

Truck Distribution by Hour does not apply

Vehicle Class	AADTT Distribution (%)	Growth Factor		
	(Level 3) `´	Rate (%)	Function	
Class 4	2.1%	2%	Compound	
Class 5	56.1%	2%	Compound	
Class 6	4.4%	2%	Compound	
Class 7	0.3%	2%	Compound	
Class 8	14.2%	2%	Compound	
Class 9	21.1%	2%	Compound	
Class 10	0.7%	2%	Compound	
Class 11	0.7%	2%	Compound	
Class 12	0.2%	2%	Compound	
Class 13	0.2%	2%	Compound	

Axle Configuration

Traffic Wander	
Mean wheel location (in)	18.0
Traffic wander standard deviation (in)	10.0
Design lane width (ft)	12.0

Axle Configuration			
Average axle width (ft)	8.5		
Dual tire spacing (in)	12.0		
Tire pressure (psi)	120.0		

Wheelbase does not apply

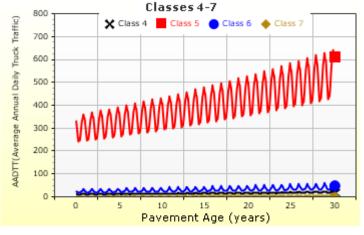
Number of Axles per Truck

Vehicle Class	Single Axle	Tandem Axle	Tridem Axle	Quad Axle
Class 4	1.53	0.45	0	0
Class 5	2.02	0.16	0.02	0
Class 6	1.12	0.93	0	0
Class 7	1.19	0.07	0.45	0.02
Class 8	2.41	0.56	0.02	0
Class 9	1.16	1.88	0.01	0
Class 10	1.05	1.01	0.93	0.02
Class 11	4.35	0.13	0	0
Class 12	3.15	1.22	0.09	0
Class 13	2.77	1.4	0.51	0.04

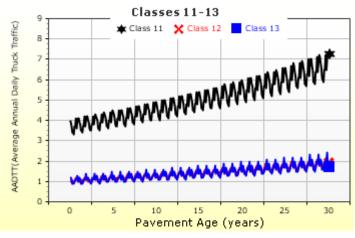
Average Axle Spacing			
Tandem axle spacing (in)	51.6		
Tridem axle spacing (in)	49.2		
Quad axle spacing (in)	49.2		

Report generated on: 8/31/2023 4:54 PM

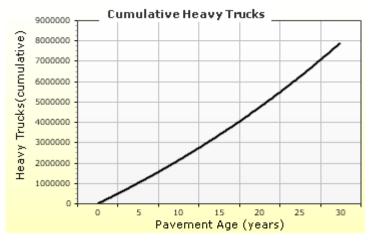
Version: 2.3.1+66


Created by: on: 8/5/2016 12:00 AM

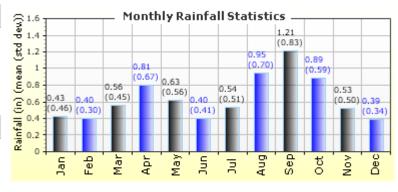



File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\G Road HMA (64-22) 30-year Design.or

AADTT (Average Annual Daily Truck Traffic) Growth

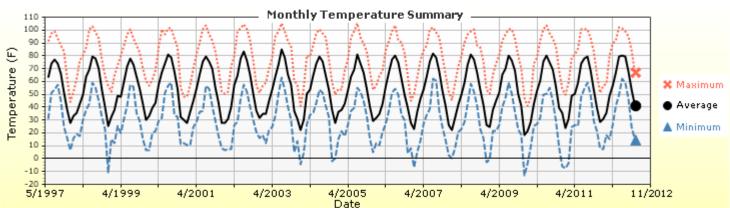

* Traffic cap is not enforced

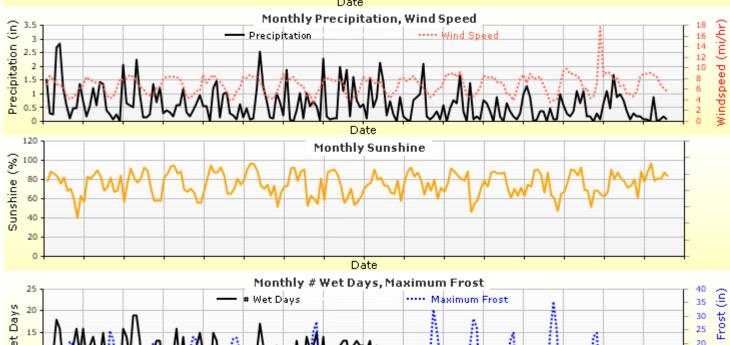


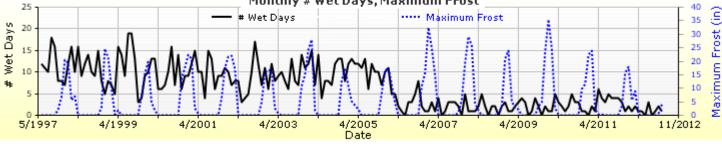

Climate Inputs

Climate Data Sources:

Climate Station Cities: Location (lat lon elevation(ft)) **GRAND JUNCTION, CO** 39.13400 -108.53800 4839

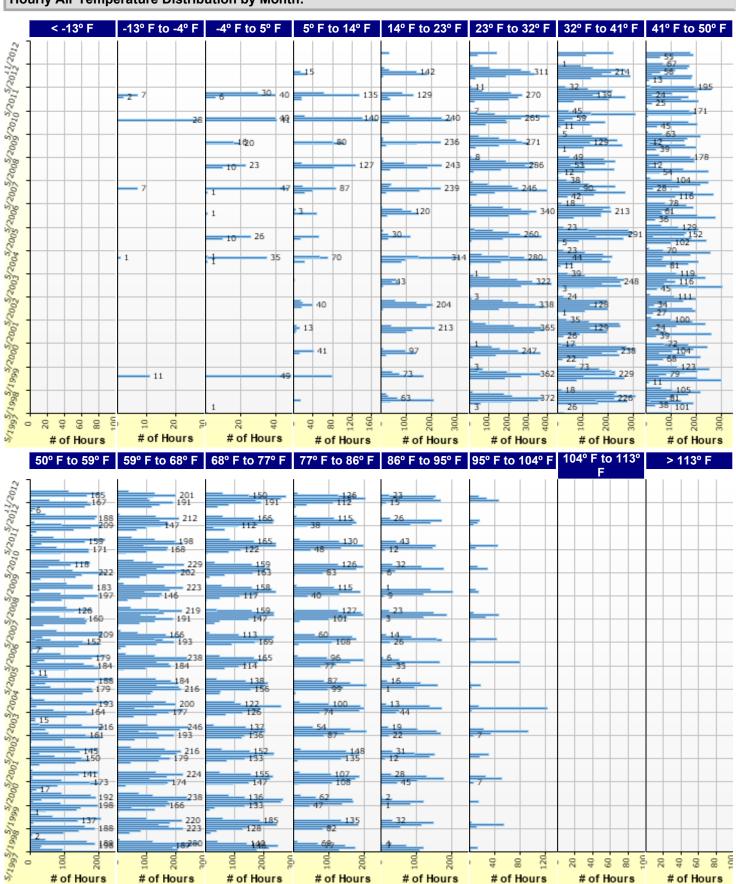

Mean annual air temperature (°F) 53.55 Mean annual precipitation (in) 7.76 Freezing index (°F - days) 398.73 Average annual number of freeze/thaw cycles: 111.77




Water table depth (ft)

4.00

Monthly Climate Summary:



Hourly Air Temperature Distribution by Month:

Design Properties

HMA Design Properties

Use Multilayer Rutting Model	False
Using G* based model (not nationally calibrated)	False
Is NCHRP 1-37A HMA Rutting Model Coefficients	True
Endurance Limit	-
Use Reflective Cracking	True

Structure - ICM Properties	
AC surface shortwave absorptivity	0.85

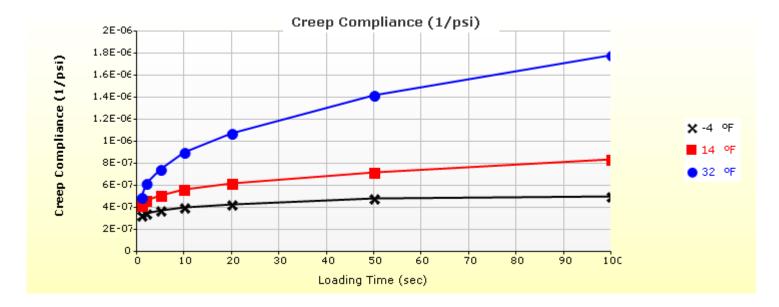
Layer Name	Layer Type	Interface Friction
Layer 1 Flexible : R2 Level 1 SX (100) PG 64-22	Flexible (1)	1.00
Layer 2 Flexible : R4 Level 1 S (100) PG 64-22	Flexible (1)	1.00
Layer 3 Non-stabilized Base : Crushed gravel	Non-stabilized Base (4)	1.00
Layer 4 Non-stabilized Base : CDOT Class 2 ABC	Non-stabilized Base (4)	1.00
Layer 5 Subgrade : A-4	Subgrade (5)	1.00
Layer 6 Subgrade : A-4	Subgrade (5)	-

Report generated on: 8/31/2023 4:54 PM

Version: 2.3.1+66 Created by: on: 8/5/2016 12:00 AM

Approved by: on: 8/5/2016 12:00 AM

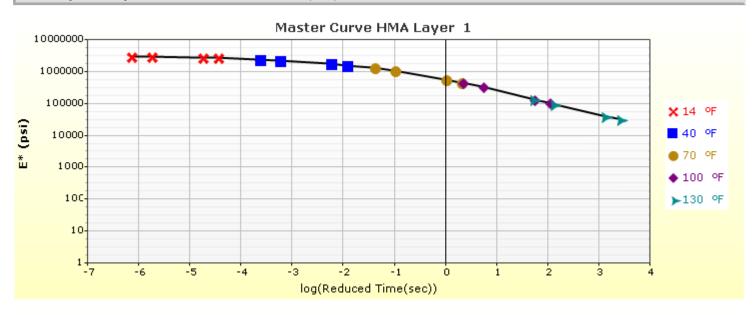
Page 8 of 23

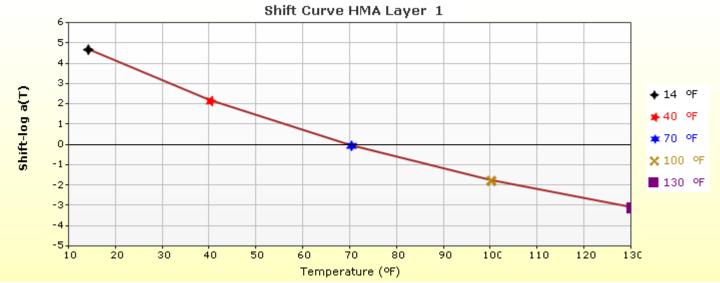


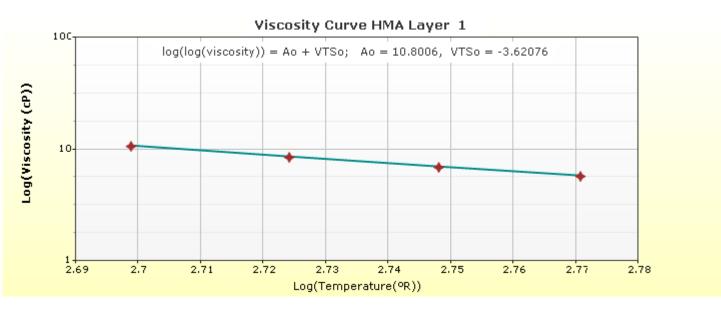
Thermal Cracking (Input Level: 1)

Indirect tensile strength at 14 °F (psi)	451.00	
Thermal Contraction		
Is thermal contraction calculated?	True	
Mix coefficient of thermal contraction (in/in/°F)	-	
Aggregate coefficient of thermal contraction (in/in/°F)	5.0e-006	
Voids in Mineral Aggregate (%)	16.3	

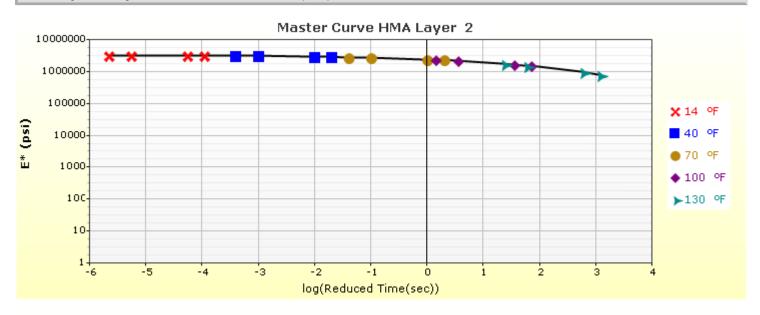
	Creep Compliance (1/psi)		
Loading time (sec)	-4 °F	14 °F	32 °F
1	3.34e-007	4.19e-007	4.99e-007
2	3.53e-007	4.64e-007	6.19e-007
5	3.79e-007	5.15e-007	7.49e-007
10	4.05e-007	5.70e-007	9.08e-007
20	4.31e-007	6.26e-007	1.08e-006
50	4.87e-007	7.27e-007	1.43e-006
100	5.05e-007	8.41e-007	1.79e-006



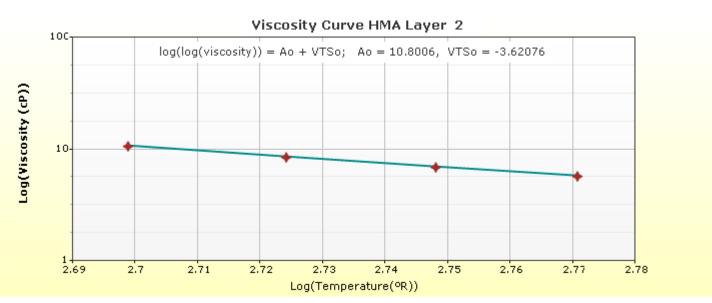

Created^{by:} on: 8/5/2016 12:00 AM



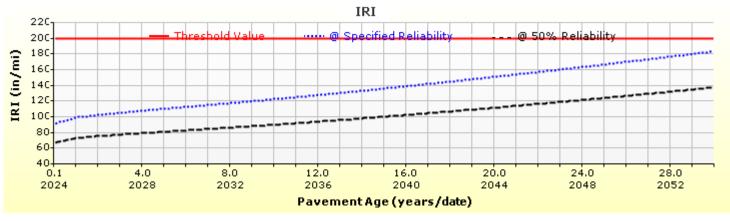
HMA Layer 1: Layer 1 Flexible: R2 Level 1 SX(100) PG 64-22

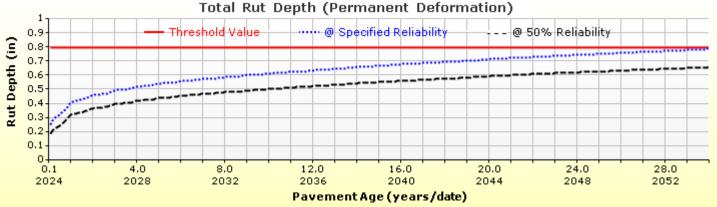


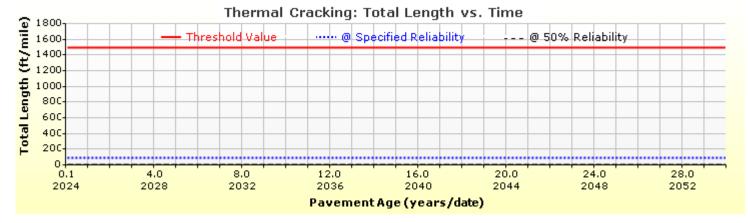
Created^{by:} on: 8/5/2016 12:00 AM



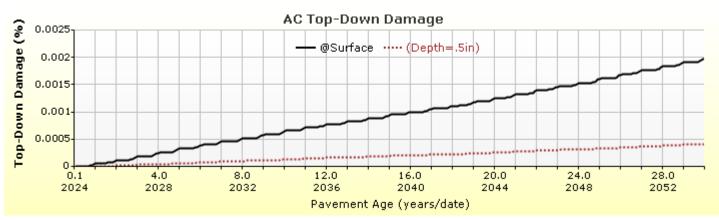
HMA Layer 2: Layer 2 Flexible: R4 Level 1 S(100) PG 64-22

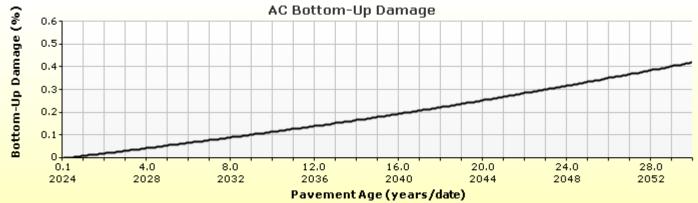


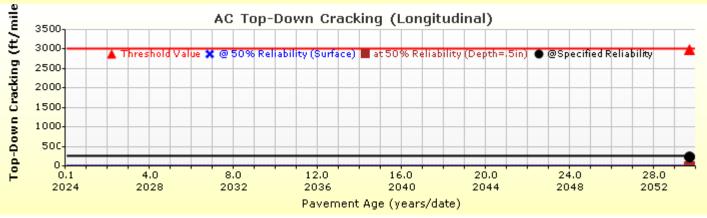

Created by: on: 8/5/2016 12:00 AM

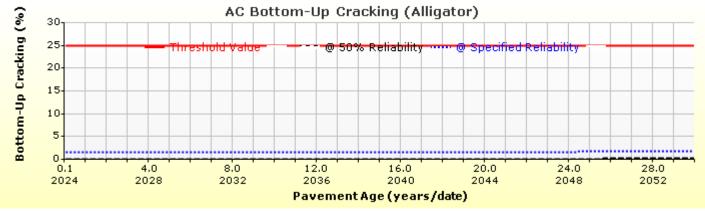


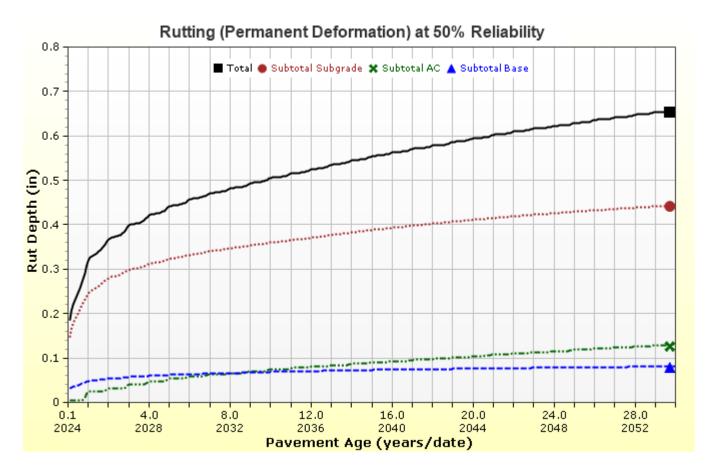
Analysis Output Charts

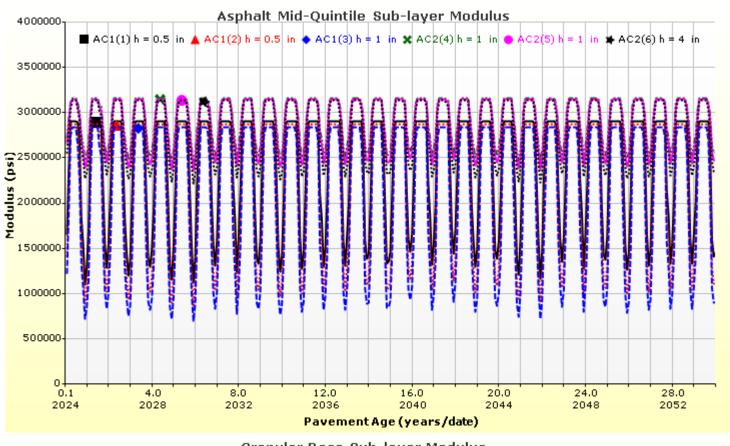


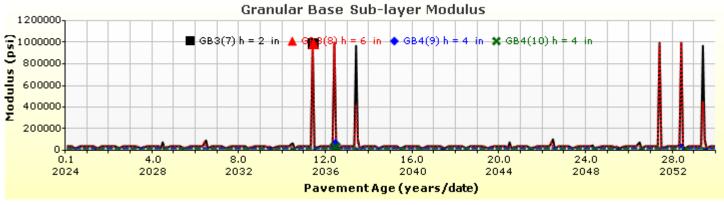


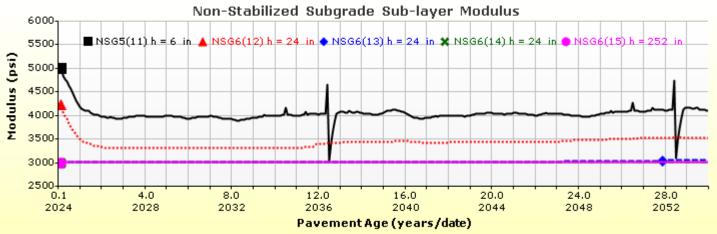









Created^{by:} on: 8/5/2016 12:00 AM



G Road HMA (64-22) 30-year Design

Layer Information

Layer 1 Flexible: R2 Level 1 SX(100) PG 64-22

Asphalt			
Thickness (in)	2.0		
Unit weight (pcf)	145.0	145.0	
Poisson's ratio	ls Calculated?	True	
	Ratio	-	
	Parameter A	-1.63	
	Parameter B	3.84E-06	

Asphalt Dynamic Modulus (Input Level: 1)

T (°F)	0.5 Hz	1 Hz	10 Hz	25 Hz
14	2333549	2642179	2861449	2927779
40	1309490	1791270	2219829	2365949
70	379514	695090	1127310	1318450
100	87238	174824	349546	452545
130	29326	49265	92795	122034

Asphalt Binder

Temperature (°F)	Binder Gstar (Pa)	Phase angle (deg)
147.2	1857	81.6
158	889	83.1
168.8	451	85

General Info

Name	Value
Reference temperature (°F)	70
Effective binder content (%)	11.2
Air voids (%)	5.1
Thermal conductivity (BTU/hr-ft-°F)	0.67
Heat capacity (BTU/lb-°F)	0.23

Identifiers

Field	Value
Display name/identifier	R2 Level 1 SX(100) PG 64-22
Description of object	Mix ID # FS1938
Author	CDOT
Date Created	4/3/2013 12:00:00 AM
Approver	CDOT
Date approved	4/3/2013 12:00:00 AM
State	Colorado
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	sx
User defined field 2	
User defined field 3	
Revision Number	2

Report generated on: 8/31/2023 4:54 PM

Version: 2.3.1+66 Created^{by:} on: 8/5/2016 12:00 AM

Layer 2 Flexible : R4 Level 1 S(100) PG 64-22

Asphalt		
Thickness (in)	6.0	
Unit weight (pcf)	150.7	
Poisson's ratio	Is Calculated?	True
	Ratio	-
	Parameter A	-1.63
	Parameter B	3.84E-06

Asphalt Dynamic Modulus (Input Level: 1)

T (°F)	0.5 Hz	1 Hz	10 Hz	25 Hz
14	3066800	3098200	3172300	3192100
40	2806000	2874100	3039900	3085600
70	2266800	2396000	2735700	2835600
100	1522600	1696200	2219300	2393200
130	820200	975200	1545400	1773100

Asphalt Binder

Temperature (°F)	Binder Gstar (Pa)	Phase angle (deg)
168.8	451	85
147.2	1857	81.6
158	889	83.1

General Info

Name	Value
Reference temperature (°F)	70
Effective binder content (%)	10.59
Air voids (%)	6.34
Thermal conductivity (BTU/hr-ft-°F)	0.67
Heat capacity (BTU/lb-°F)	0.23

Identifiers

Field	Value
Display name/identifier	R4 Level 1 S(100) PG 64-22
Description of object	Mix ID # FSA 0931-031
Author	CDOT
Date Created	5/3/2016 12:00:00 AM
Approver	CDOT - MP
Date approved	5/3/2016 12:00:00 AM
State	Colorado
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	S
User defined field 2	
User defined field 3	
Revision Number	0

Report generated on: 8/31/2023 4:54 PM

Version: 2.3.1+66

Created^{by:} on: 8/5/2016 12:00 AM

Layer 3 Non-stabilized Base : Crushed gravel

Unbound	
Layer thickness (in)	8.0
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus	(Input I	Level: 3)
		,

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi)
25000.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	Crushed gravel
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	42

Sieve	
Liquid Limit	6.0
Plasticity Index	1.0

True

Is layer compacted?

	Is User Defined?	Value
, , ,	False	127.7
Saturated hydraulic conductivity (ft/hr)	False	5.054e-02
Specific gravity of solids	False	2.7
Water Content (%)	False	7.4

User-defined Soil Water Characteristic Curve (SWCC)		
Is User Defined?	False	
af	7.2555	
bf	1.3328	
cf	0.8242	
hr	117.4000	

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	8.7
#100	
#80	12.9
#60	
#50	
#40	20.0
#30	
#20	
#16	
#10	33.8
#8	
#4	44.7
3/8-in.	57.2
1/2-in.	63.1
3/4-in.	72.7
1-in.	78.8
1 1/2-in.	85.8
2-in.	91.6
2 1/2-in.	
3-in.	
3 1/2-in.	97.6

Report generated on: 8/31/2023 4:54 PM

Version: 2.3.1+66 Created^{by:} on: 8/5/2016 12:00 AM

Layer 4 Non-stabilized Base : CDOT Class 2 ABC

Unbound	
Layer thickness (in)	8.0
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi) 12000.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	CDOT Class 2 ABC
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve

Liquid Limit	6.0
Plasticity Index	1.0
Is layer compacted?	True

	Is User Defined?	Value
Maximum dry unit weight (pcf)	False	127.7
Saturated hydraulic conductivity (ft/hr)	False	5.054e-02
Specific gravity of solids	False	2.7
Water Content (%)	False	7.4

User-defined Soil Water Characteristic Curve (SWCC)		
Is User Defined? False		
af	7.2555	
bf	1.3328	
cf	0.8242	
hr	117.4000	

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	8.7
#100	
#80	12.9
#60	
#50	
#40	20.0
#30	
#20	
#16	
#10	33.8
#8	
#4	44.7
3/8-in.	57.2
1/2-in.	63.1
3/4-in.	72.7
1-in.	78.8
1 1/2-in.	85.8
2-in.	91.6
2 1/2-in.	
3-in.	
3 1/2-in.	97.6

Report generated on: 8/31/2023 4:54 PM

Version: 2.3.1+66

Created by: on: 8/5/2016 12:00 AM

Layer 5 Subgrade: A-4

Unbound	
Layer thickness (in)	6.0
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus (Input Level: 3)

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi) 6482.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	A-4
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve

Liquid Limit	21.0
Plasticity Index	5.0
Is layer compacted?	True

	Is User Defined?	Value
, , ,	False	119
Saturated hydraulic conductivity (ft/hr)	False	7.589e-06
Specific gravity of solids	False	2.7
Water Content (%)	False	11.8

User-defined Soil Water Characteristic Curve (SWCC)		
Is User Defined? False		
af	68.8377	
bf	0.9983	
cf	0.4757	
hr 500.0000		

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	60.6
#100	
#80	73.9
#60	
#50	
#40	82.7
#30	
#20	
#16	
#10	89.9
#8	
#4	93.0
3/8-in.	95.6
1/2-in.	96.7
3/4-in.	98.0
1-in.	98.7
1 1/2-in.	99.4
2-in.	99.6
2 1/2-in.	
3-in.	
3 1/2-in.	99.8

Report generated on: 8/31/2023 4:54 PM

Version: 2.3.1+66

Created by: on: 8/5/2016 12:00 AM

Layer 6 Subgrade: A-4

Unbound	
Layer thickness (in)	Semi-infinite
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus (Input Level: 3)

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi) 6482.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	A-4
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve

Liquid Limit	21.0
Plasticity Index	5.0
Is layer compacted?	True

	Is User Defined?	Value
Maximum dry unit weight (pcf)	False	119
Saturated hydraulic conductivity (ft/hr)	False	7.589e-06
Specific gravity of solids	False	2.7
Water Content (%)	False	11.8

User-defined Soil Water Characteristic Curve (SWCC)		
Is User Defined?	False	
af	68.8377	
bf	0.9983	
cf	0.4757	
hr	500.0000	

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	60.6
#100	
#80	73.9
#60	
#50	
#40	82.7
#30	
#20	
#16	
#10	89.9
#8	
#4	93.0
3/8-in.	95.6
1/2-in.	96.7
3/4-in.	98.0
1-in.	98.7
1 1/2-in.	99.4
2-in.	99.6
2 1/2-in.	
3-in.	
3 1/2-in.	99.8

Report generated on: 8/31/2023 4:54 PM

Version: 2.3.1+66 Created by: on: 8/5/2016 12:00 AM

Calibration Coefficients

AC Fatigue	
$N_f = 0.00432 * C * \beta_{f1} k_1 \left(\frac{1}{\varepsilon_1}\right)^{k_2 \beta_{f2}} \left(\frac{1}{E}\right)^{k_3 \beta_{f3}}$	k1: 0.007566
$N_f = 0.00432 * C * \beta_{f1} k_1 \left(\frac{1}{c}\right)$	k2: 3.9492
	k3: 1.281
$C=10^{M}$	Bf1: 1
$M = 4.84 \left(\frac{V_b}{V_a + V_b} - 0.69 \right)$	Bf2: 1
Ya 1 1 b	Bf3: 1

AC Rutting

$$\begin{split} &\frac{\varepsilon_p}{\varepsilon_r} = k_z \beta_{r1} 10^{k_1} T^{k_2 \beta_{r2}} N^{k_3 B_{r3}} \\ &k_z = (C_1 + C_2 * depth) * 0.328196^{depth} \\ &C_1 = -0.1039 * H_\alpha^2 + 2.4868 * H_\alpha - 17.342 \\ &C_2 = 0.0172 * H_\alpha^2 - 1.7331 * H_\alpha + 27.428 \end{split}$$

 $\varepsilon_p = plastic strain(^{in}/_{in})$ $\varepsilon_r = resilient strain(^{in}/_{in})$ $T = layer temperature(^{\circ}F)$ N = number of load repetitions

Where:

 $H_{ac} = total\ AC\ thickness(in)$

ac .	· /	
AC Rutting Standard Deviation	0.24 * Pow(RUT,0.8026) + 0.001	
AC Layer	K1:-3.35412 K2:1.5606 K3:0.4791	Br1:1 Br2:1 Br3:1

Thermal Fracture

$$C_f = \text{400} * N(\frac{\log C/h_{ac}}{\sigma}) \\ \Delta C = (k*\beta t)^{n+1} * A*\Delta K^n \\ A = 10^{(4.389-2.52*log(E*\sigma_m*n))} \\ \text{Level 1 K: 1.5} \\ \text{Level 2 Standard Deviation: 0.3972 * THERMAL + 55.462} \\ \text{Level 3 K: 1.5} \\ \text{Level 3 Standard Deviation: 0.65 ficient determined through field calibration} \\ N(f) = \text{standard normal distribution evaluated at()} \\ n(f) = \text{standard deviation of the log of the depth of cracks in the payments} \\ n(f) = \text{standard normal distribution evaluated at()} \\ n(f) = \text{standard deviation of the log of the depth of cracks in the payments} \\ n(f) = \text{standard deviation of the log of the depth of cracks in the payments} \\ n(f) = \text{standard deviation of the log of the depth of cracks in the payments} \\ n(f) = \text{standard deviation of the log of the depth of cracks in the payments} \\ n(f) = \text{standard deviation of the log of the depth of cracks in the payments} \\ n(f) = \text{standard deviation of the log of the depth of cracks in the payments} \\ n(f) = \text{standard deviation of the log of the depth of cracks in the payments} \\ n(f) = \text{standard deviation of the log of the depth of cracks in the payments} \\ n(f) = \text{standard deviation of the log of the depth of cracks in the payments} \\ n(f) = \text{standard deviation of the log of the depth of cracks in the payments} \\ n(f) = \text{standard deviation of the log of the depth of cracks in the payments} \\ n(f) = \text{standard deviation of the log of the depth of cracks in the payments} \\ n(f) = \text{standard deviation of the log of the depth of cracks in the payments} \\ n(f) = \text{standard deviation of the log of the depth of cracks in the payments} \\ n(f) = \text{standard deviation of the log of the depth of crack depth of crac$$

CSM Fatigue

$$N_f = 10^{\left(rac{k_1 eta_{c1} \left(rac{\sigma_S}{M_r}
ight)}{k_2 eta_{c2}}
ight)} egin{array}{c} N_f = number\ of\ repetitions\ to\ fatigue\ cracking\ \sigma_s = Tensile\ stress(psi)\ M_r = modulus\ of\ rupture(psi) \ \end{array}$$

Report generated on: 8/31/2023 4:54 PM

Version: 2.3.1+66

Created^{by:} on: 8/5/2016 12:00 AM .

Subgrade Rutt	ing		
$\delta_a(N) = \beta_{s_s}$	$_{_{1}}k_{1}\varepsilon_{v}h\left(\frac{\varepsilon_{0}}{\varepsilon_{r}}\right)\left e^{-\left(\frac{\rho}{N}\right)^{\beta}}\right $	$\delta_a = permanent \ deformation \ for the lay \ N = number \ of repetitions \ \varepsilon_v = average \ veritcal \ strain(in/in) \ \varepsilon_0, \beta, \rho = material \ properties \ \varepsilon_r = resilient \ strain(in/in)$	ver
Granular		Fine	
k1: 2.03	Bs1: 1	k1: 1.35 Bs1: 1	
	tion (BASERUT) ASERUT,0.6711) + 0.0	Standard Deviation (BASERUT) 0.1235 * Pow(SUBRUT,0.5012) + 0	.001

AC Cracking						
AC Top Dow	n Cracking			AC Bottom Up C	racking	
$FC_{top} = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$	$1 + e^{\left(C_1 - C_2 * i \right)}$	24 og ₁₀ (Damage	(i)) * 10.56		6000 $c_{1*}c'_{1}+c_{2*}c'_{2}log_{10}(D*)$ 74-39.748*(1+)	
c1: 7	c2: 3.5	c3: 0	c4: 1000	c1: 1	c2: 1	c3: 6000
AC Cracking Top Standard Deviation			AC Cracking Bottom Standard Deviation			
200 + 2300 (TOP+0.000	/(1+exp(1.07 01)))	'2-2.1654*L0	OG10	1.13 + 13/(1+ex ₁ (BOTTOM+0.00		G10

CSM Cracking				IRI Flexible Pavements			
FC_{ctb}	$= C_1 +$	$\frac{C}{1+e^{C_3-C}}$	1 2 (4(Damage)	C1 - Rutt C2 - Fati	ing gue Crack	C3 - Tran C4 - Site l	sverse Crack Factors
C1: 0	C2: 75	C3: 5	C4: 3	C1: 40	C2: 0.4	C3: 0.008	C4: 0.015
CSM Stand	ard Deviation						_
CTB*1				1			

Report generated on: 8/31/2023 4:54 PM

Version: 2.3.1+66

Created^{by:} on: 8/5/2016 12:00 AM

Approved by: on: 8/5/2016 12:00 AM

Page 23 of 23

APPENDIX E

27 1/2 ROAD

20 AND 30-YEAR DESIGN LIFE FOR FLEXIBLE PAVEMENT M-E DESIGN OUTPUT SHEETS

Design Life: 20 years Base construction: May, 2024 Climate Data 39.134, -108.538

Sources (Lat/Lon) Design Type: **FLEXIBLE** Pavement construction: July, 2024

> Traffic opening: September, 2024

Design Structure

Layer type	Material Type	Thickness (in)
Flexible	R2 Level 1 SX(100) PG 64-22	2.0
Flexible	R4 Level 1 S(100) PG 64- 22	7.0
NonStabilized	Crushed gravel	8.0
NonStabilized	CDOT Class 2 ABC	8.0
Subgrade	A-4	6.0
Subgrade	A-4	Semi-infinite

Volumetric at Construction:				
Effective binder content (%)	11.2			
Air voids (%)	5.1			

Traffic

Age (year)	Heavy Trucks (cumulative)
2024 (initial)	1,820
2034 (10 years)	4,367,330
2044 (20 years)	9,691,080

Design Outputs

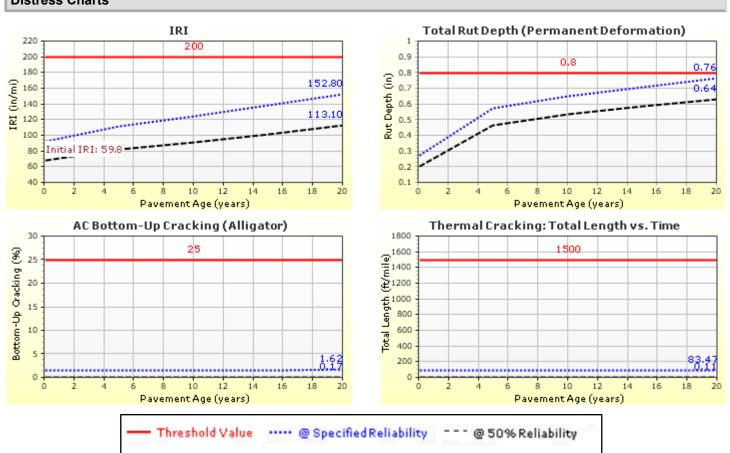
Distress Prediction Summary

Distress Type		Distress @ Specified Reliability		Reliability (%)		
	Target	Predicted	Target	Achieved	Satisfied?	
Terminal IRI (in/mile)	200.00	152.75	90.00	99.75	Pass	
Permanent deformation - total pavement (in)	0.80	0.76	90.00	94.99	Pass	
AC bottom-up fatigue cracking (% lane area)	25.00	1.62	90.00	100.00	Pass	
AC thermal cracking (ft/mile)	1500.00	83.47	90.00	100.00	Pass	
AC top-down fatigue cracking (ft/mile)	3000.00	257.09	90.00	100.00	Pass	
Permanent deformation - AC only (in)	0.65	0.22	90.00	100.00	Pass	

Report generated on: 5/24/2023 5:31 PM

Version: 2.3.1+66

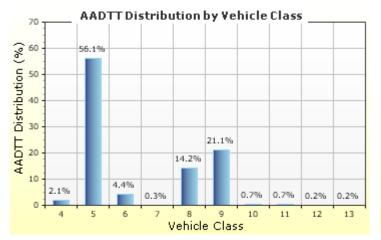
Created^{by:} on: 8/5/2016 12:00 AM


Approved by: on: 8/5/2016 12:00 AM

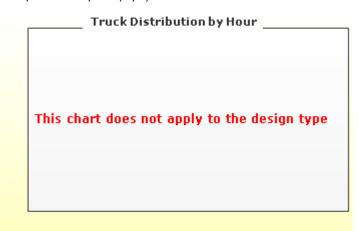
Page 1 of 23

Distress Charts

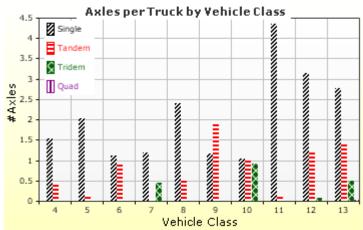
Created by: on: 8/5/2016 12:00 AM

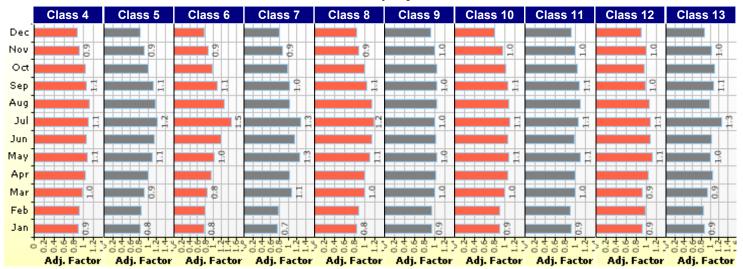


Traffic Inputs


Graphical Representation of Traffic Inputs

Initial two-way AADTT: 1,820


Number of lanes in design direction: 1


Percent of trucks in design direction (%): 60.0
Percent of trucks in design lane (%): 100.0
Operational speed (mph) 35.0

Traffic Volume Monthly Adjustment Factors

File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\27.5 Road HMA (64-22) Design.dgpx

Tabular Representation of Traffic Inputs

Volume Monthly Adjustment Factors

Level 3: Default MAF

Month	Vehicle Class									
WOILLI	4	5	6	7	8	9	10	11	12	13
January	0.9	0.8	0.8	0.7	0.8	0.9	0.9	0.9	0.9	0.9
February	0.9	0.8	0.8	0.8	0.9	0.9	0.9	0.9	1.0	0.8
March	1.0	0.9	0.8	1.1	1.0	1.0	1.0	1.0	0.9	0.9
April	1.0	1.0	0.9	1.0	1.0	1.0	1.1	1.0	1.0	1.1
May	1.1	1.1	1.0	1.3	1.1	1.0	1.1	1.1	1.1	1.0
June	1.1	1.1	1.2	1.1	1.1	1.0	1.1	1.0	1.1	1.0
July	1.1	1.2	1.5	1.3	1.2	1.0	1.1	1.1	1.1	1.3
August	1.1	1.2	1.3	1.0	1.1	1.0	1.1	1.1	1.1	1.0
September	1.1	1.1	1.1	1.0	1.1	1.0	1.1	1.1	1.0	1.1
October	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.9	1.1
November	0.9	0.9	0.9	0.9	0.9	1.0	1.0	1.0	1.0	1.0
December	0.9	0.8	0.8	0.8	0.8	0.9	0.8	0.9	0.9	0.9

Distributions by Vehicle Class

Truck Distribution by Hour does not apply

Vehicle Class	AADTT Distribution (%)	Growth Factor		
	(Level 3) `´	Rate (%)	Function	
Class 4	2.1%	2%	Compound	
Class 5	56.1%	2%	Compound	
Class 6	4.4%	2%	Compound	
Class 7	0.3%	2%	Compound	
Class 8	14.2%	2%	Compound	
Class 9	21.1%	2%	Compound	
Class 10	0.7%	2%	Compound	
Class 11	0.7%	2%	Compound	
Class 12	0.2%	2%	Compound	
Class 13	0.2%	2%	Compound	

Axle Configuration

Traffic Wander	
Mean wheel location (in)	18.0
Traffic wander standard deviation (in)	10.0
Design lane width (ft)	12.0

Axle Configuration	1
Average axle width (ft)	8.5
Dual tire spacing (in)	12.0
Tire pressure (psi)	120.0

Wheelbase does not apply

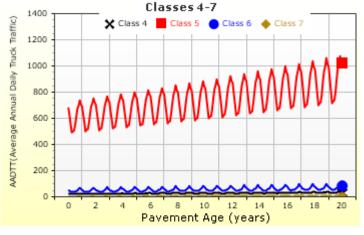
Number of Axles per Truck

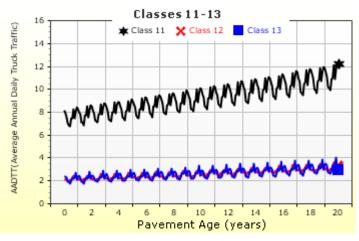
Vehicle Class	Single Axle	Tandem Axle	Tridem Axle	Quad Axle
Class 4	1.53	0.45	0	0
Class 5	2.02	0.16	0.02	0
Class 6	1.12	0.93	0	0
Class 7	1.19	0.07	0.45	0.02
Class 8	2.41	0.56	0.02	0
Class 9	1.16	1.88	0.01	0
Class 10	1.05	1.01	0.93	0.02
Class 11	4.35	0.13	0	0
Class 12	3.15	1.22	0.09	0
Class 13	2.77	1.4	0.51	0.04

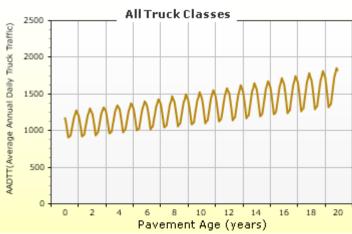
Average Axle Spacing				
Tandem axle spacing (in)	51.6			
Tridem axle spacing (in)	49.2			
Quad axle spacing (in)	49.2			

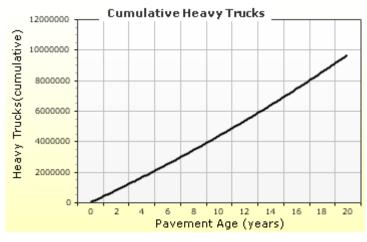
Report generated on: 5/24/2023 5:31 PM

Version: 2.3.1+66

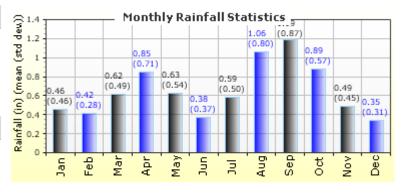

Created^{by:} on: 8/5/2016 12:00 AM


File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\27.5 Road HMA (64-22) Design.dgpx


AADTT (Average Annual Daily Truck Traffic) Growth

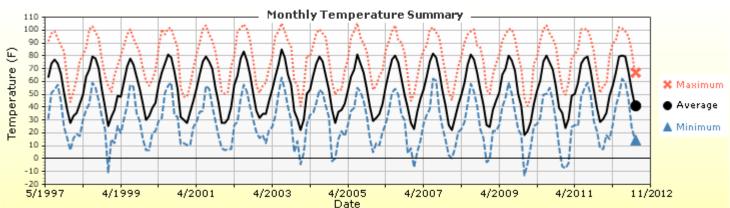

* Traffic cap is not enforced

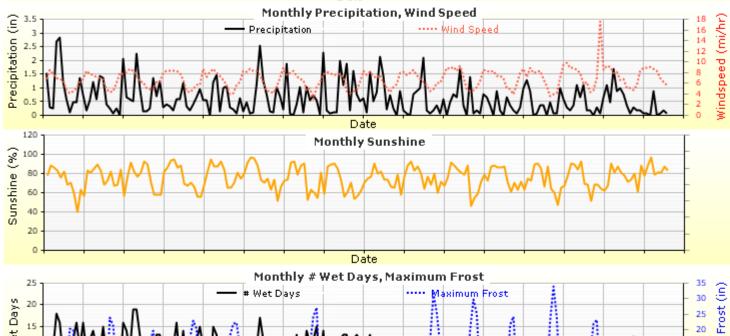


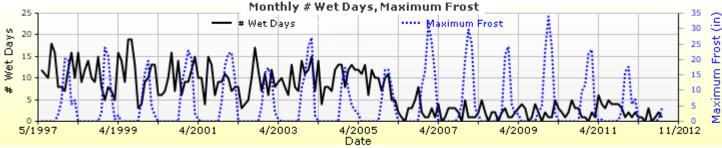

Climate Inputs

Climate Data Sources:

Climate Station Cities: Location (lat lon elevation(ft)) **GRAND JUNCTION, CO** 39.13400 -108.53800 4839

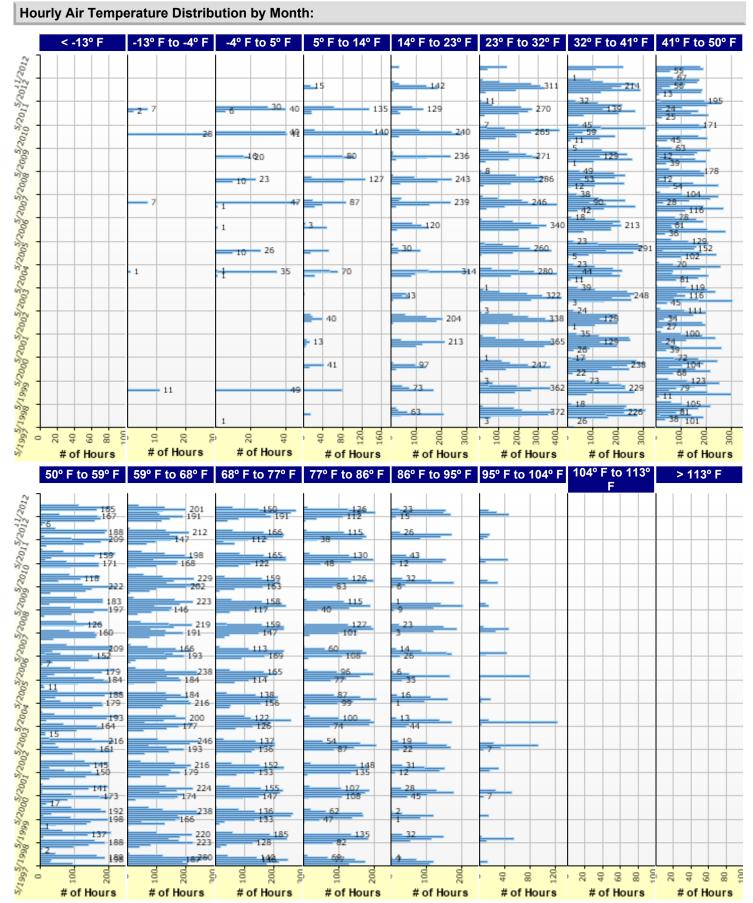

Mean annual air temperature (°F) 53.75 Mean annual precipitation (in) 7.96 Freezing index (°F - days) 360.58 Average annual number of freeze/thaw cycles: 111.77




Water table depth (ft)

4.00

Monthly Climate Summary:



Created^{by:} on: 8/5/2016 12:00 AM

Design Properties

HMA Design Properties

Use Multilayer Rutting Model	False
Using G* based model (not nationally calibrated)	False
Is NCHRP 1-37A HMA Rutting Model Coefficients	True
Endurance Limit	-
Use Reflective Cracking	True

Structure - ICM Properties	
AC surface shortwave absorptivity	0.85

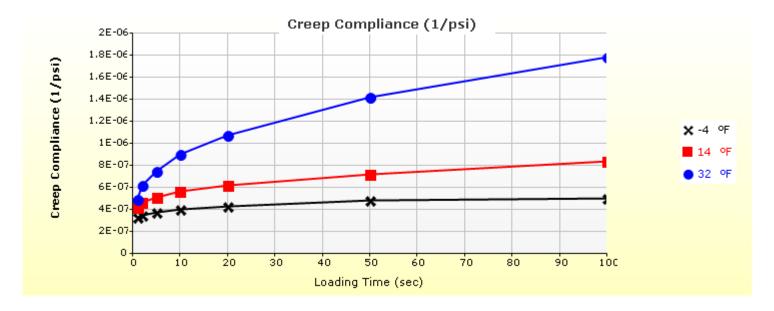
Layer Name	Layer Type	Interface Friction
Layer 1 Flexible : R2 Level 1 SX (100) PG 64-22	Flexible (1)	1.00
Layer 2 Flexible : R4 Level 1 S (100) PG 64-22	Flexible (1)	1.00
Layer 3 Non-stabilized Base : Crushed gravel	Non-stabilized Base (4)	1.00
Layer 4 Non-stabilized Base : CDOT Class 2 ABC	Non-stabilized Base (4)	1.00
Layer 5 Subgrade : A-4	Subgrade (5)	1.00
Layer 6 Subgrade : A-4	Subgrade (5)	-

Report generated on: 5/24/2023 5:31 PM

Version: 2.3.1+66 Created by: on: 8/5/2016 12:00 AM

Approved by: on: 8/5/2016 12:00 AM

Page 8 of 23



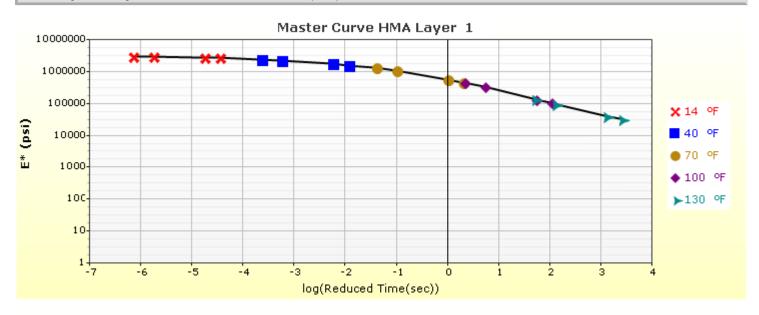
Thermal Cracking (Input Level: 1)

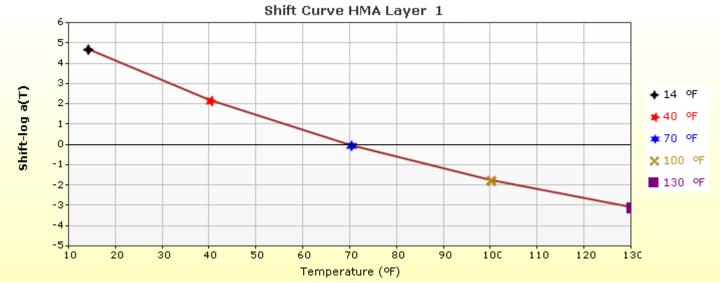
Indirect tensile strength at 14 °F (psi)	451.00
Thermal Contraction	
Is thermal contraction calculated?	True
Mix coefficient of thermal contraction (in/in/ºF)	-
Aggregate coefficient of thermal contraction (in/in/°F)	5.0e-006
Voids in Mineral Aggregate (%)	16.3

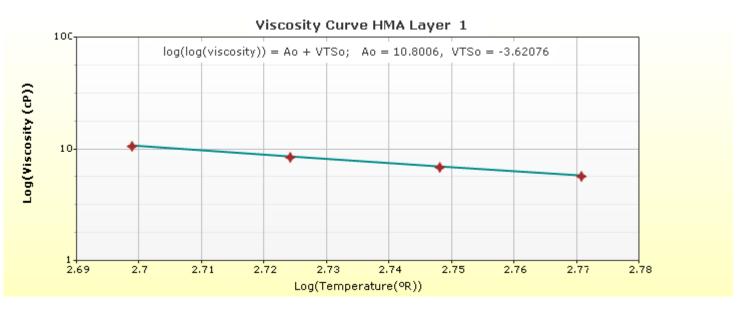
	Creep Compliance (1/psi)			
Loading time (sec)	-4 °F 14 °F 32 °F			
1	3.34e-007	4.19e-007	4.99e-007	
2	3.53e-007	4.64e-007	6.19e-007	
5	3.79e-007	5.15e-007	7.49e-007	
10	4.05e-007	5.70e-007	9.08e-007	
20	4.31e-007	6.26e-007	1.08e-006	
50	4.87e-007	7.27e-007	1.43e-006	
100	5.05e-007	8.41e-007	1.79e-006	

Report generated on: 5/24/2023 5:31 PM

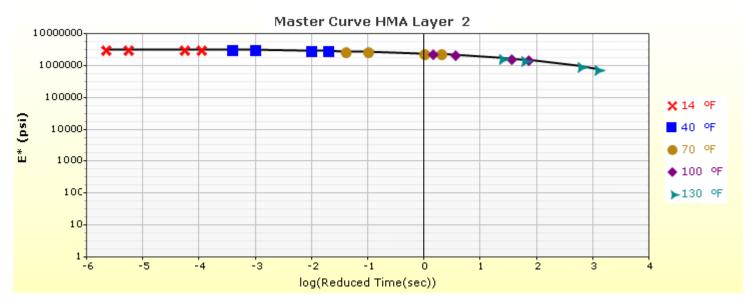
Version: 2.3.1+66 Created^{by:} on: 8/5/2016 12:00 AM

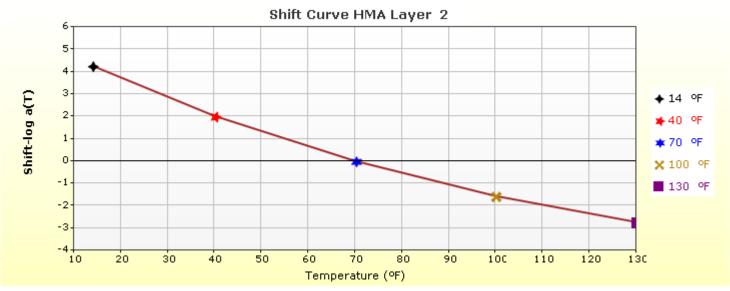

Approved by: on: 8/5/2016 12:00 AM

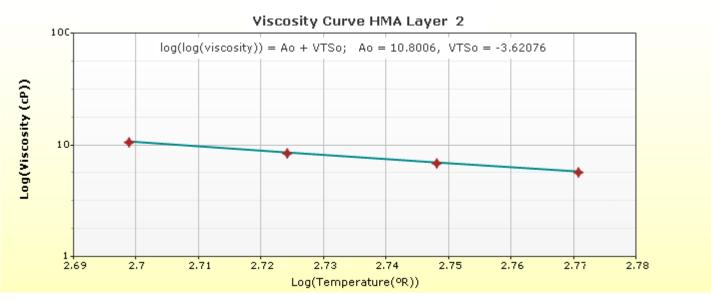

Page 9 of 23



HMA Layer 1: Layer 1 Flexible: R2 Level 1 SX(100) PG 64-22

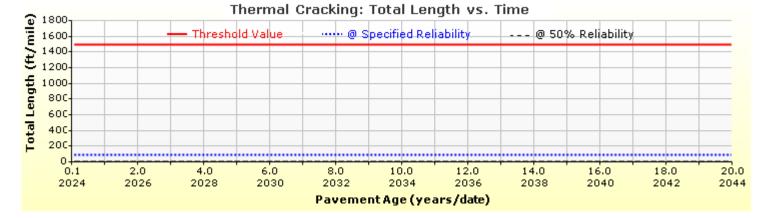




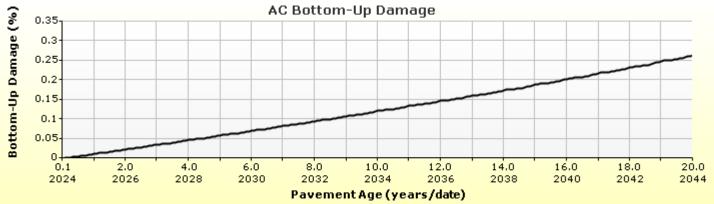


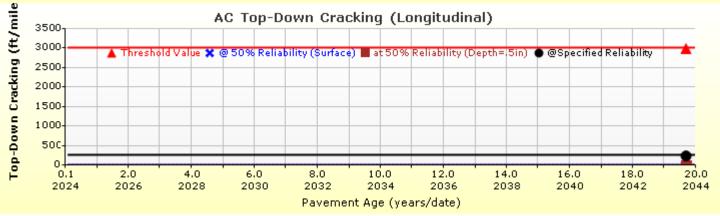


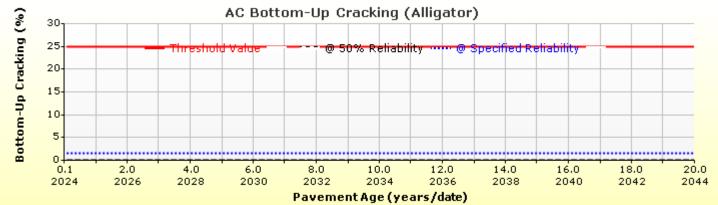




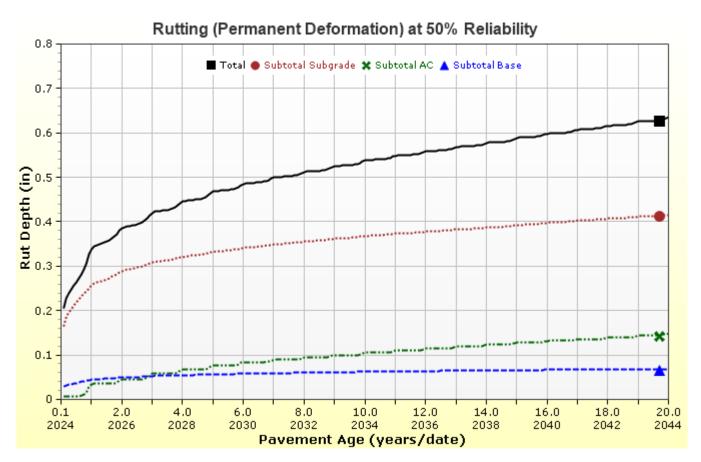
Analysis Output Charts


Created by: on: 8/5/2016 12:00 AM

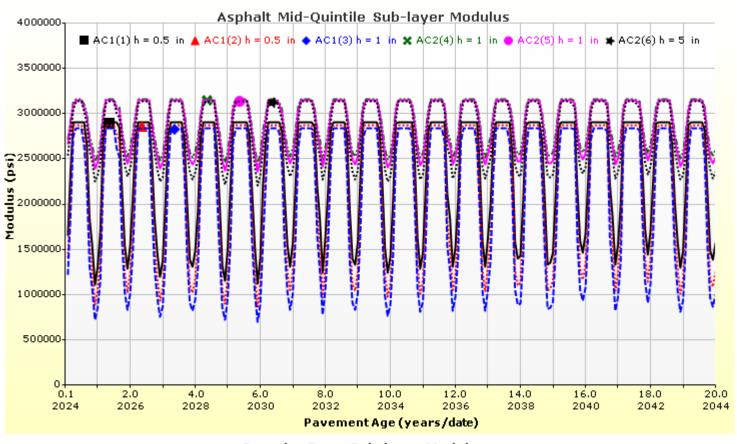


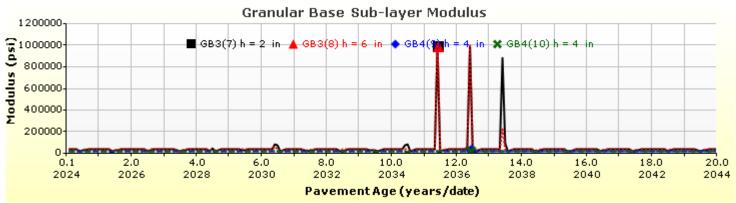


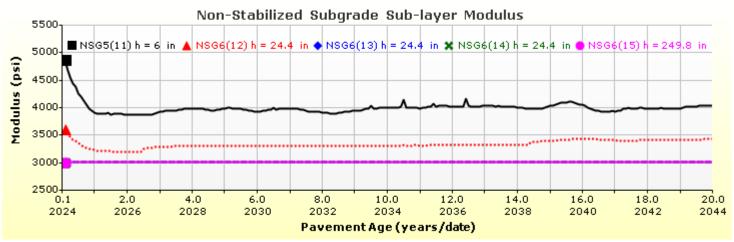
File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\27.5 Road HMA (64-22) Design.dgpx



File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\27.5 Road HMA (64-22) Design.dgpx




Created^{by:} on: 8/5/2016 12:00 AM



File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\27.5 Road HMA (64-22) Design.dgpx

File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\27.5 Road HMA (64-22) Design.dgpx

Layer Information

Layer 1 Flexible: R2 Level 1 SX(100) PG 64-22

Asphalt				
Thickness (in)	2.0			
Unit weight (pcf)	145.0	145.0		
Poisson's ratio	Is Calculated? True			
	Ratio	-		
	Parameter A	-1.63		
	Parameter B	3.84E-06		

Asphalt Dynamic Modulus (Input Level: 1)

T (°F)	0.5 Hz	1 Hz	10 Hz	25 Hz
14	2333549	2642179	2861449	2927779
40	1309490	1791270	2219829	2365949
70	379514	695090	1127310	1318450
100	87238	174824	349546	452545
130	29326	49265	92795	122034

Asphalt Binder

Temperature (°F)	Binder Gstar (Pa)	Phase angle (deg)
147.2	1857	81.6
158	889	83.1
168.8	451	85

General Info

Name	Value
Reference temperature (°F)	70
Effective binder content (%)	11.2
Air voids (%)	5.1
Thermal conductivity (BTU/hr-ft-°F)	0.67
Heat capacity (BTU/lb-ºF)	0.23

Identifiers

Field	Value
Display name/identifier	R2 Level 1 SX(100) PG 64-22
Description of object	Mix ID # FS1938
Author	CDOT
Date Created	4/3/2013 12:00:00 AM
Approver	CDOT
Date approved	4/3/2013 12:00:00 AM
State	Colorado
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	sx
User defined field 2	
User defined field 3	
Revision Number	2

Report generated on: 5/24/2023 5:31 PM

Version: 2.3.1+66

Created^{by:} on: 8/5/2016 12:00 AM

Layer 2 Flexible : R4 Level 1 S(100) PG 64-22

Asphalt			
Thickness (in)	7.0		
Unit weight (pcf)	150.7		
Poisson's ratio	Is Calculated? True		
	Ratio	-	
	Parameter A	-1.63	
	Parameter B	3.84E-06	

Asphalt Dynamic Modulus (Input Level: 1)

T (°F)	0.5 Hz	1 Hz	10 Hz	25 Hz
14	3066800	3098200	3172300	3192100
40	2806000	2874100	3039900	3085600
70	2266800	2396000	2735700	2835600
100	1522600	1696200	2219300	2393200
130	820200	975200	1545400	1773100

Asphalt Binder

Temperature (°F)	Binder Gstar (Pa)	Phase angle (deg)
168.8	451	85
147.2	1857	81.6
158	889	83.1

General Info

Name	Value
Reference temperature (°F)	70
Effective binder content (%)	10.59
Air voids (%)	6.34
Thermal conductivity (BTU/hr-ft-ºF)	0.67
Heat capacity (BTU/lb-ºF)	0.23

Identifiers

Field	Value
Display name/identifier	R4 Level 1 S(100) PG 64-22
Description of object	Mix ID # FSA 0931-031
Author	CDOT
Date Created	5/3/2016 12:00:00 AM
Approver	CDOT - MP
Date approved	5/3/2016 12:00:00 AM
State	Colorado
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	S
User defined field 2	
User defined field 3	
Revision Number	0

Report generated on: 5/24/2023 5:31 PM

Version: 2.3.1+66

Created^{by:} on: 8/5/2016 12:00 AM

Approved by: on: 8/5/2016 12:00 AM

Page 17 of 23

Layer 3 Non-stabilized Base : Crushed gravel

Unbound	
Layer thickness (in)	8.0
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus (Input	Level: 3	١
modulus (mpat	ECTOI. O	,

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi)	
25000.0	

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	Crushed gravel
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	_
User defined field 2	
User defined field 3	
Revision Number	42

Sieve	
Liquid Limit	6.0
Plasticity Index	1.0

True

Is layer compacted?

	Is User Defined?	Value
Maximum dry unit weight (pcf)	False	127.7
Saturated hydraulic conductivity (ft/hr)	False	5.054e-02
Specific gravity of solids	False	2.7
Water Content (%)	False	7.4

User-defined Soil Water Characteristic Curve (SWCC)		
Is User Defined?		
af	7.2555	
bf 1.3328		
cf 0.8242		
hr 117.4000		

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	8.7
#100	
#80	12.9
#60	
#50	
#40	20.0
#30	
#20	
#16	
#10	33.8
#8	
#4	44.7
3/8-in.	57.2
1/2-in.	63.1
3/4-in.	72.7
1-in.	78.8
1 1/2-in.	85.8
2-in.	91.6
2 1/2-in.	
3-in.	
3 1/2-in.	97.6

Report generated on: 5/24/2023 5:31 PM

Version: 2.3.1+66

Created by: on: 8/5/2016 12:00 AM

Approved by: on: 8/5/2016 12:00 AM

Page 18 of 23

Layer 4 Non-stabilized Base : CDOT Class 2 ABC

Unbound	
Layer thickness (in)	8.0
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus ((Input	Level: 3	١
Modulus	IIIPUL	LCVCI. O	,

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi) 12000.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	CDOT Class 2 ABC
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve

Liquid Limit	6.0
Plasticity Index	1.0
Is layer compacted?	True

	Is User Defined?	Value
, , ,	False	127.7
Saturated hydraulic conductivity (ft/hr)	False	5.054e-02
Specific gravity of solids	False	2.7
Water Content (%)	False	7.4

User-defined Soil Water Characteristic Curve (SWCC)	
Is User Defined?	False
af	7.2555
bf	1.3328
	0.8242
hr	117.4000

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	8.7
#100	
#80	12.9
#60	
#50	
#40	20.0
#30	
#20	
#16	
#10	33.8
#8	
#4	44.7
3/8-in.	57.2
1/2-in.	63.1
3/4-in.	72.7
1-in.	78.8
1 1/2-in.	85.8
2-in.	91.6
2 1/2-in.	
3-in.	
3 1/2-in.	97.6

Report generated on: 5/24/2023 5:31 PM

Version: 2.3.1+66

Created by: on: 8/5/2016 12:00 AM

Layer 5 Subgrade: A-4

Unbound	
Layer thickness (in)	6.0
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus (Input Level: 3)

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi) 6482.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	A-4
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve

Liquid Limit	21.0
Plasticity Index	5.0
Is layer compacted?	True

	Is User Defined?	Value
Maximum dry unit weight (pcf)	False	119
Saturated hydraulic conductivity (ft/hr)	False	7.589e-06
Specific gravity of solids	False	2.7
Water Content (%)	False	11.8

User-defined Soil Water Characteristic Curve (SWCC)			
Is User Defined? False			
af	68.8377		
bf	0.9983		
cf	0.4757		
hr 500.0000			

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	60.6
#100	
#80	73.9
#60	
#50	
#40	82.7
#30	
#20	
#16	
#10	89.9
#8	
#4	93.0
3/8-in.	95.6
1/2-in.	96.7
3/4-in.	98.0
1-in.	98.7
1 1/2-in.	99.4
2-in.	99.6
2 1/2-in.	
3-in.	
3 1/2-in.	99.8

Report generated on: 5/24/2023 5:31 PM

Version: 2.3.1+66

Created by: on: 8/5/2016 12:00 AM

Layer 6 Subgrade : A-4

Unbound	
Layer thickness (in)	Semi-infinite
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus (Input Level: 3)

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi) 6482.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	A-4
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve

Liquid Limit	21.0
Plasticity Index	5.0
Is layer compacted?	True

	Is User Defined?	Value
Maximum dry unit weight (pcf)	False	119
Saturated hydraulic conductivity (ft/hr)	False	7.589e-06
Specific gravity of solids	False	2.7
Water Content (%)	False	11.8

User-defined Soil Water Characteristic Curve (SWCC)			
Is User Defined?	False		
af 68.8377			
bf 0.9983			
cf 0.4757			
hr	500.0000		

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	60.6
#100	
#80	73.9
#60	
#50	
#40	82.7
#30	
#20	
#16	
#10	89.9
#8	
#4	93.0
3/8-in.	95.6
1/2-in.	96.7
3/4-in.	98.0
1-in.	98.7
1 1/2-in.	99.4
2-in.	99.6
2 1/2-in.	
3-in.	
3 1/2-in.	99.8

Report generated on: 5/24/2023 5:31 PM

Version: 2.3.1+66 Created by: on: 8/5/2016 12:00 AM

File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\27.5 Road HMA (64-22) Design.dg

Calibration Coefficients

AC Fatigue	
$N_f = 0.00432 * C * \beta_{f1} k_1 \left(\frac{1}{\varepsilon_1}\right)^{k_2 \beta_{f2}} \left(\frac{1}{E}\right)^{k_3 \beta_{f3}}$	k1: 0.007566
$N_f = 0.00432 * C * \beta_{f1} k_1 \left(\frac{1}{c}\right)$	k2: 3.9492
	k3: 1.281
	Bf1: 1
$M = 4.84 \left(\frac{V_b}{V_a + V_b} - 0.69 \right)$	Bf2: 1
Va I Vb	Bf3: 1

AC Rutting

$$\begin{split} \frac{\varepsilon_p}{\varepsilon_r} &= k_z \beta_{r1} 10^{k_1} T^{k_2 \beta_{r2}} N^{k_3 B_{r3}} \\ k_z &= (C_1 + C_2 * depth) * 0.328196^{depth} \\ C_1 &= -0.1039 * H_\alpha^2 + 2.4868 * H_\alpha - 17.342 \\ C_2 &= 0.0172 * H_\alpha^2 - 1.7331 * H_\alpha + 27.428 \end{split}$$

 $\varepsilon_p = plastic strain(in/in)$ $\varepsilon_r = resilient strain(in/in)$ $T = layer temperature(^{\circ}F)$ N = number of load repetitions

 $H_{aa} = total AC thickness(in)$

uc	· /	
AC Rutting Standard Deviation	0.24 * Pow(RUT,0.8026) + 0.001	
AC Layer	K1:-3.35412 K2:1.5606 K3:0.4791	Br1:1 Br2:1 Br3:1

Thermal Fracture

$$C_f = \text{400} * N \left(\frac{\log C/h_{ac}}{\sigma}\right) \\ & \begin{pmatrix} C_f = \text{observed amount of thermal cracking}(ft/500ft) \\ k = \text{refression coefficient determined through field calibration} \\ N() = \text{standard normal distribution evaluated at}() \\ \sigma = \text{standard deviation of the log of the depth of cracks in the payments} \\ C = \text{crack depth}(in) \\ \Delta C = (k * \beta t)^{n+1} * A * \Delta K^n \\ A = 10^{(4.389-2.52*log(E*\sigma_m*n))} \\ A = 10^{(4.389-$$

CSM Fatigue

$$N_f = 10$$
 $N_f = number\ of\ repetitions\ to\ fatigue\ cracking os = Tensile\ stress(psi) os = modulus\ of\ rupture(psi)$

Report generated on: 5/24/2023 5:31 PM

Version: 2.3.1 + 66 Created^{by:} on: 8/5/2016 12:00 AM

Subgrade Rutting			
$\delta_a(N) = \beta_{s_1} k_1 \varepsilon_v h$	$\left \left(\frac{\varepsilon_0}{\varepsilon_r} \right) \right e^{-\left(\frac{\rho}{N} \right)^{\beta}} \right \qquad \begin{array}{c} N \\ \varepsilon_1 \\ \varepsilon_2 \end{array}$	a = permanent deformati $a = number of repetitionsa = average veritcal strain a = permanent of a = $	n(in/in) es
Granular Fine			
k1: 2.03	Bs1: 1	k1: 1.35	Bs1: 1
Standard Deviation (BA 0.1477 * Pow(BASERU		Standard Deviation (BA 0.1235 * Pow(SUBRUT	

AC Cracking							
AC Top Down Cracking				AC Bottom Up Cracking			
$FC_{top} = \left(\frac{C_4}{1 + e^{(c_1 - c_2 * log_{10}(Damage))}}\right) * 10.56$			$FC = \left(\frac{6000}{1 + e^{\left(C_{1} * C_{1}' + C_{2} * C_{2}' log_{10}(D * 100)\right)}}\right) * \left(\frac{1}{60}\right)$ $C'_{2} = -2.40874 - 39.748 * (1 + h_{ac})^{-2.856}$ $C'_{1} = -2 * C'_{2}$				
c1: 7	c2: 3.5	c3: 0	c4: 1000	c1: 1	c2: 1	c3: 6000	
AC Cracking Top Standard Deviation			AC Cracking Bottom Standard Deviation				
200 + 2300/(1+exp(1.072-2.1654*LOG10 (TOP+0.0001)))		1.13 + 13/(1+exp(7.57-15.5*LOG10 (BOTTOM+0.0001)))					

CSM Cracking		IRI Flexible Pavements					
$FC_{ctb} = C_1 + rac{C_2}{1 + e^{C_3 - C_4(Damage)}}$		C1 - Rutting C3 - Tran C2 - Fatigue Crack C4 - Site I		sverse Crack Factors			
C1: 0	C2: 75	C3: 5	C4: 3	C1: 40	C2: 0.4	C3: 0.008	C4: 0.015
CSM Standard Deviation							
CTB*1				1			

Report generated on: 5/24/2023 5:31 PM

Version: 2.3.1+66 Created by: on: 8/5/2016 12:00 AM

27.5 Road HMA (64-22) 30-year Design

ile Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\27.5 Road HMA (64-22) 30-year Design.dg

Design Inputs

Design Life: 30 years Base construction: May, 2024 Climate Data 39.134, -108.538

Sources (Lat/Lon) Design Type: **FLEXIBLE** Pavement construction: July, 2024

> Traffic opening: September, 2024

Design Structure

Layer type	Material Type	Thickness (in)
Flexible	R2 Level 1 SX(100) PG 64-22	2.0
Flexible	R4 Level 1 S(100) PG 64- 22	8.0
NonStabilized	Crushed gravel	8.0
NonStabilized	CDOT Class 2 ABC	8.0
Subgrade	A-4	6.0
Subgrade	A-4	Semi-infinite

Volumetric at Construction:		
Effective binder content (%)	11.2	
Air voids (%)	5.1	

Traffic

Age (year)	Heavy Trucks (cumulative)
2024 (initial)	1,820
2039 (15 years)	6,897,530
2054 (30 years)	16,180,700

Design Outputs

Distress Prediction Summary

Distress Type		Distress @ Specified Reliability		Reliability (%)	
•	Target	Predicted	Target	Achieved	Satisfied?
Terminal IRI (in/mile)	200.00	183.37	90.00	95.96	Pass
Permanent deformation - total pavement (in)	0.80	0.79	90.00	90.91	Pass
AC bottom-up fatigue cracking (% lane area)	25.00	1.61	90.00	100.00	Pass
AC thermal cracking (ft/mile)	1500.00	83.85	90.00	100.00	Pass
AC top-down fatigue cracking (ft/mile)	3000.00	259.00	90.00	100.00	Pass
Permanent deformation - AC only (in)	0.65	0.26	90.00	100.00	Pass

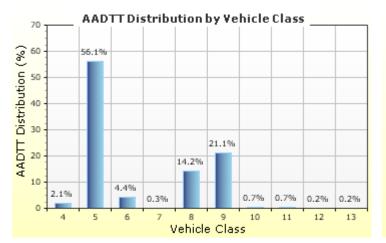
Report generated on: 8/31/2023 4:51 PM

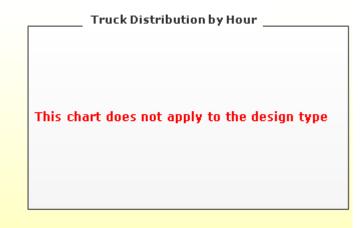
Version: 2.3.1+66


Created^{by:} on: 8/5/2016 12:00 AM

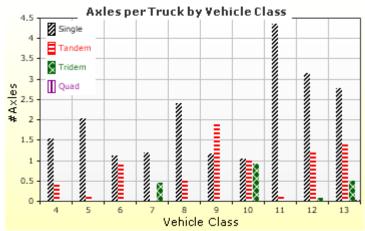
27.5 Road HMA (64-22) 30-year Design

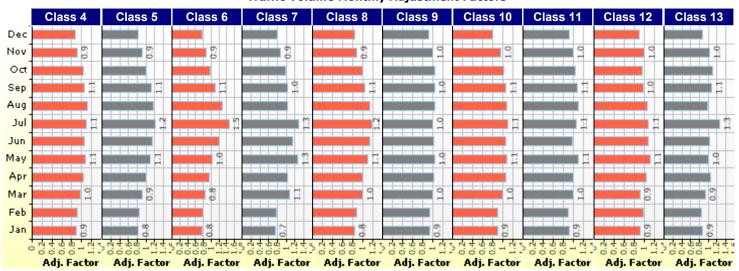
Distress Charts


27.5 Road HMA (64-22) 30-year Design


Traffic Inputs

Graphical Representation of Traffic Inputs


1.820 Initial two-way AADTT: Number of lanes in design direction: 1


Percent of trucks in design direction (%): 60.0 Percent of trucks in design lane (%): 100.0 Operational speed (mph) 35.0

Traffic Volume Monthly Adjustment Factors

27.5 Road HMA (64-22) 30-year Design

File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\27.5 Road HMA (64-22) 30-year Design.de

Tabular Representation of Traffic Inputs

Volume Monthly Adjustment Factors

Level 3: Default MAF

Month	Vehicle Class									
WOITH	4	5	6	7	8	9	10	11	12	13
January	0.9	0.8	0.8	0.7	0.8	0.9	0.9	0.9	0.9	0.9
February	0.9	0.8	0.8	0.8	0.9	0.9	0.9	0.9	1.0	0.8
March	1.0	0.9	0.8	1.1	1.0	1.0	1.0	1.0	0.9	0.9
April	1.0	1.0	0.9	1.0	1.0	1.0	1.1	1.0	1.0	1.1
May	1.1	1.1	1.0	1.3	1.1	1.0	1.1	1.1	1.1	1.0
June	1.1	1.1	1.2	1.1	1.1	1.0	1.1	1.0	1.1	1.0
July	1.1	1.2	1.5	1.3	1.2	1.0	1.1	1.1	1.1	1.3
August	1.1	1.2	1.3	1.0	1.1	1.0	1.1	1.1	1.1	1.0
September	1.1	1.1	1.1	1.0	1.1	1.0	1.1	1.1	1.0	1.1
October	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.9	1.1
November	0.9	0.9	0.9	0.9	0.9	1.0	1.0	1.0	1.0	1.0
December	0.9	0.8	0.8	0.8	0.8	0.9	0.8	0.9	0.9	0.9

Distributions by Vehicle Class

Truck Distribution by Hour does not apply

Vehicle Class	AADTT Distribution (%)	Growth Factor		
	(Level 3) `	Rate (%)	Function	
Class 4	2.1%	2%	Compound	
Class 5	56.1%	2%	Compound	
Class 6	4.4%	2%	Compound	
Class 7	0.3%	2%	Compound	
Class 8	14.2%	2%	Compound	
Class 9	21.1%	2%	Compound	
Class 10	0.7%	2%	Compound	
Class 11	0.7%	2%	Compound	
Class 12	0.2%	2%	Compound	
Class 13	0.2%	2%	Compound	

Axle Configuration

Traffic Wander			
Mean wheel location (in)	18.0		
Traffic wander standard deviation (in)	10.0		
Design lane width (ft)	12.0		

49.2

Average Axle Spacing		
Tandem axle spacing (in)	51.6	
Tridem axle spacing (in)	49.2	
Quad axle spacing	40.2	

Axle Configuration		
Average axle width (ft)	8.5	
Dual tire spacing (in)	12.0	
Tire pressure (psi)	120.0	

Wheelbase does not apply

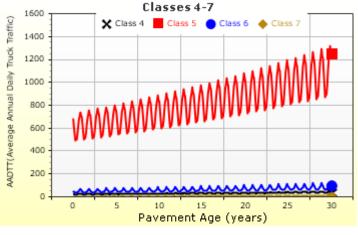
Number of Axles per Truck

Vehicle Class	Single Axle	Tandem Axle	Tridem Axle	Quad Axle
Class 4	1.53	0.45	0	0
Class 5	2.02	0.16	0.02	0
Class 6	1.12	0.93	0	0
Class 7	1.19	0.07	0.45	0.02
Class 8	2.41	0.56	0.02	0
Class 9	1.16	1.88	0.01	0
Class 10	1.05	1.01	0.93	0.02
Class 11	4.35	0.13	0	0
Class 12	3.15	1.22	0.09	0
Class 13	2.77	1.4	0.51	0.04

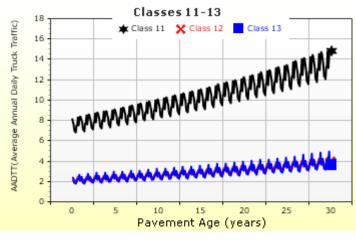
Report generated on: 8/31/2023 4:51 PM

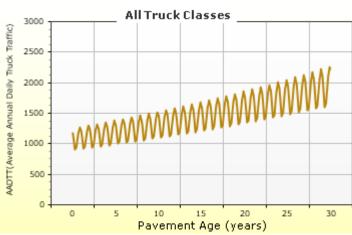
(in)

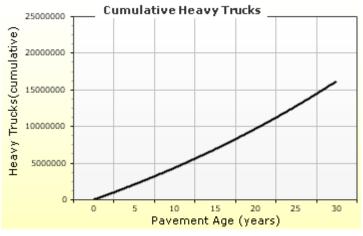
Version: 2.3.1+66 Created by: on: 8/5/2016 12:00 AM


Approved by: on: 8/5/2016 12:00 AM

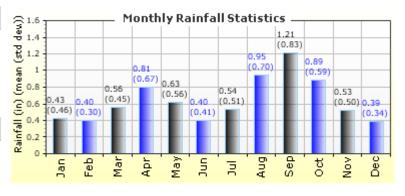
Page 4 of 23




AADTT (Average Annual Daily Truck Traffic) Growth


* Traffic cap is not enforced

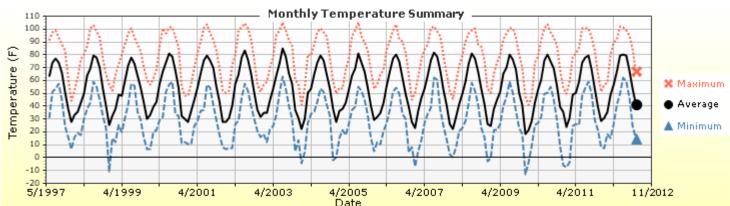
27.5 Road HMA (64-22) 30-year Design

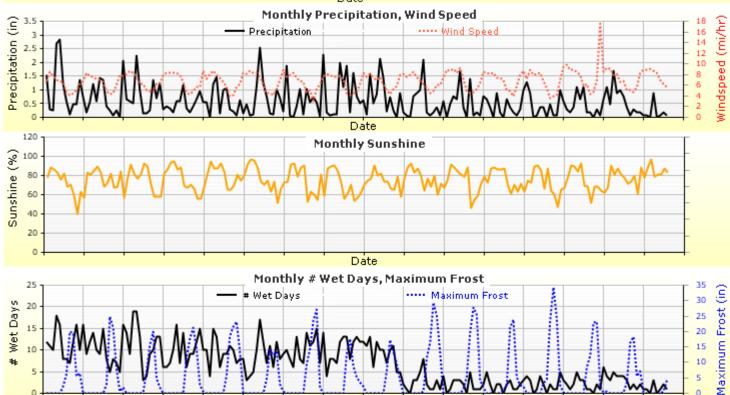

Climate Inputs

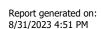
Climate Data Sources:

Climate Station Cities: Location (lat lon elevation(ft)) **GRAND JUNCTION, CO** 39.13400 -108.53800 4839

Annual Statistics:


Mean annual air temperature (°F) 53.55 Mean annual precipitation (in) 7.76 Freezing index (°F - days) 398.73 Average annual number of freeze/thaw cycles: 111.77




Water table depth (ft)

4.00

Monthly Climate Summary:

5/1997

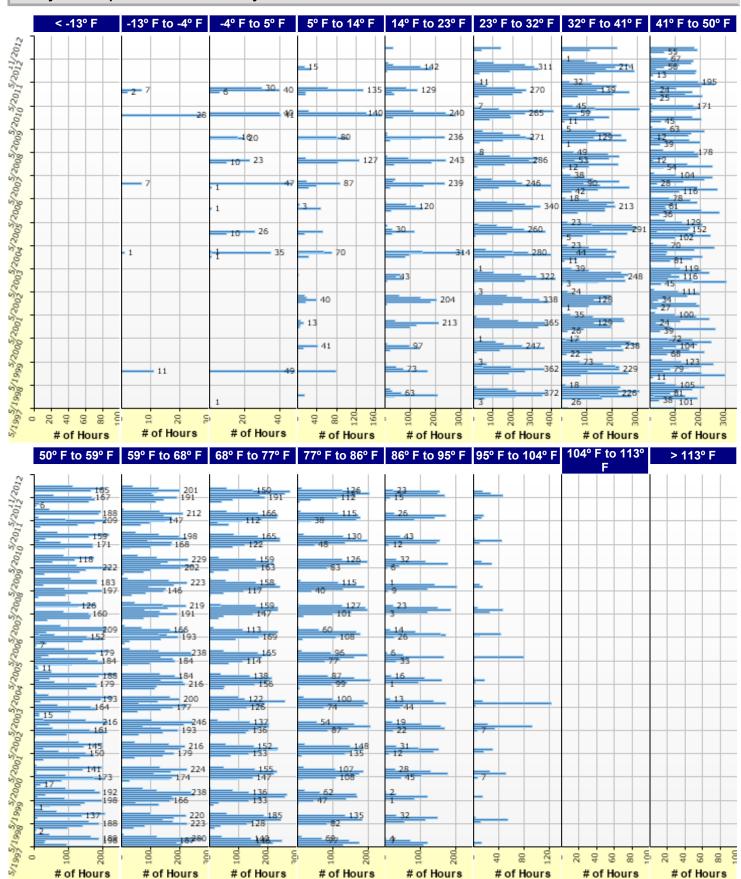
4/2001

Created^{by:} on: 8/5/2016 12:00 AM

4/2003

4/2005

4/2007


Approved by: on: 8/5/2016 12:00 AM

11/2012

Hourly Air Temperature Distribution by Month:

HMA Design Properties

Design Properties

Use Multilayer Rutting Model	False
Using G* based model (not nationally calibrated)	False
Is NCHRP 1-37A HMA Rutting Model Coefficients	True
Endurance Limit	-
Use Reflective Cracking	True

Structure - ICM Properties	
AC surface shortwave absorptivity	0.85

Layer Name	Layer Type	Interface Friction
Layer 1 Flexible : R2 Level 1 SX (100) PG 64-22	Flexible (1)	1.00
Layer 2 Flexible : R4 Level 1 S (100) PG 64-22	Flexible (1)	1.00
Layer 3 Non-stabilized Base : Crushed gravel	Non-stabilized Base (4)	1.00
Layer 4 Non-stabilized Base : CDOT Class 2 ABC	Non-stabilized Base (4)	1.00
Layer 5 Subgrade : A-4	Subgrade (5)	1.00
Layer 6 Subgrade : A-4	Subgrade (5)	-

Report generated on: 8/31/2023 4:51 PM

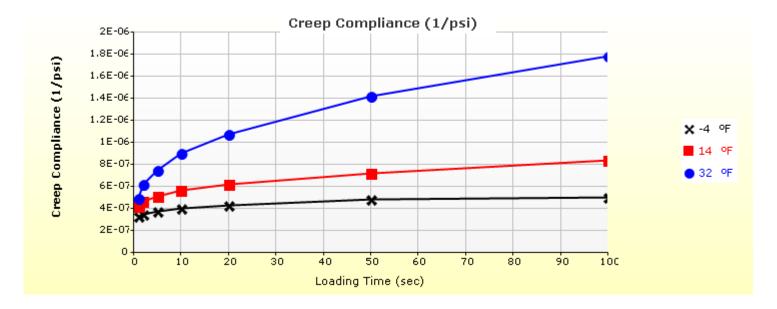
Version: 2.3.1+66

Created by: on: 8/5/2016 12:00 AM

Annr

Approved by: on: 8/5/2016 12:00 AM

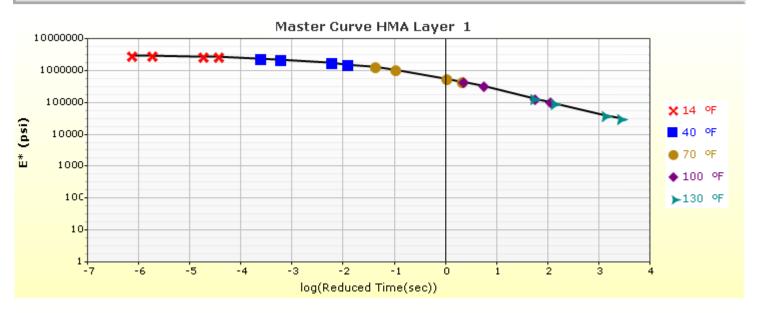
Page 8 of 23

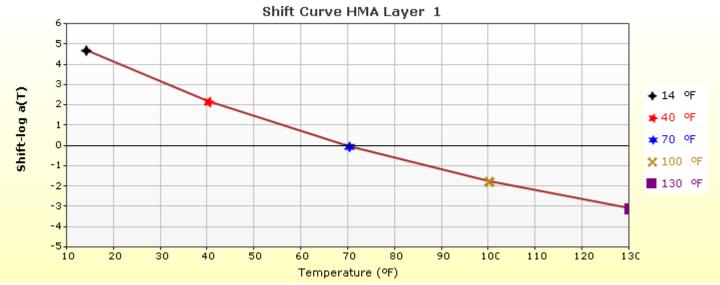

27.5 Road HMA (64-22) 30-year Design

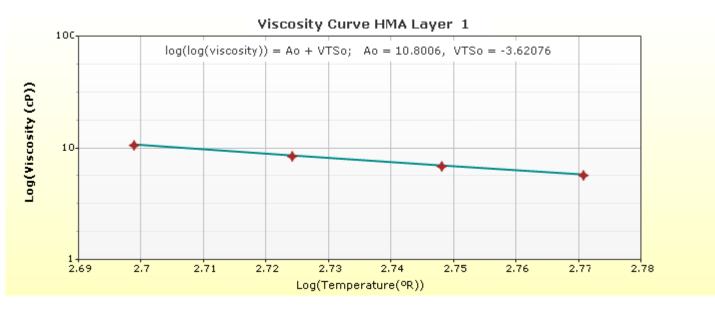
Thermal Cracking (Input Level: 1)

Indirect tensile strength at 14 °F (psi)	451.00
Thermal Contraction	
Is thermal contraction calculated?	True
Mix coefficient of thermal contraction (in/in/ºF)	-
Aggregate coefficient of thermal contraction (in/in/°F)	5.0e-006
Voids in Mineral Aggregate (%)	16.3

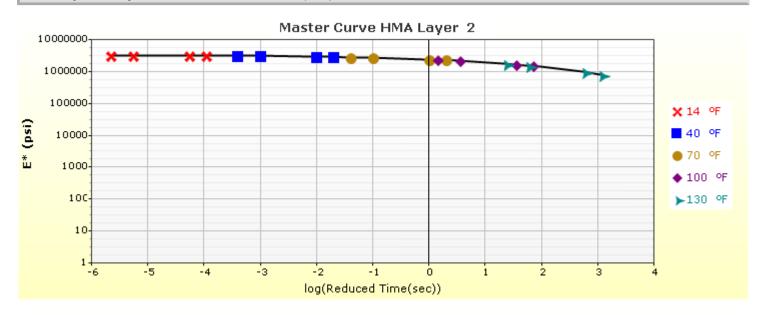
	Creep Compliance (1/psi)			
Loading time (sec)	-4 °F	14 °F	32 °F	
1	3.34e-007	4.19e-007	4.99e-007	
2	3.53e-007	4.64e-007	6.19e-007	
5	3.79e-007	5.15e-007	7.49e-007	
10	4.05e-007	5.70e-007	9.08e-007	
20	4.31e-007	6.26e-007	1.08e-006	
50	4.87e-007	7.27e-007	1.43e-006	
100	5.05e-007	8.41e-007	1.79e-006	

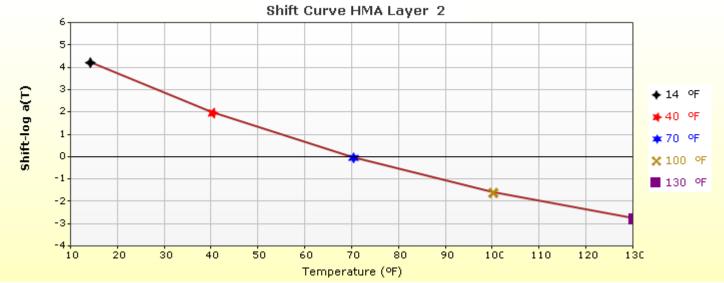

Report generated on: 8/31/2023 4:51 PM

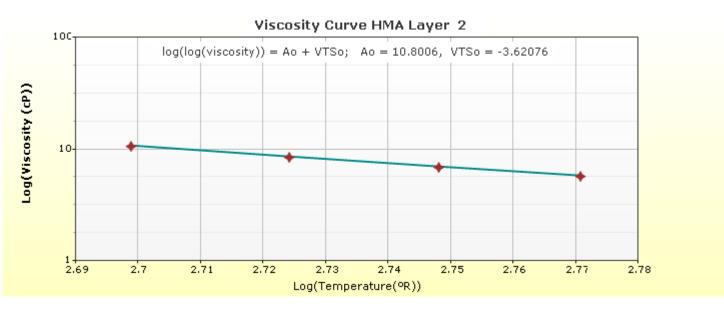

Version: 2.3.1+66 Created^{by:} on: 8/5/2016 12:00 AM



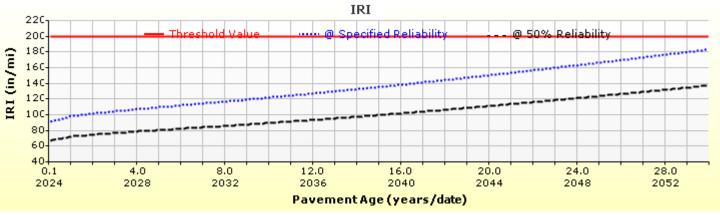
HMA Layer 1: Layer 1 Flexible: R2 Level 1 SX(100) PG 64-22

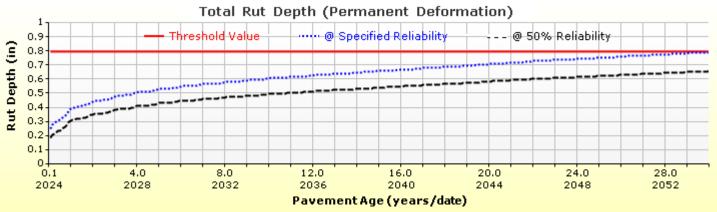


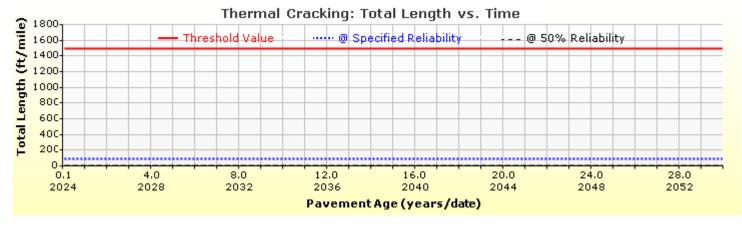




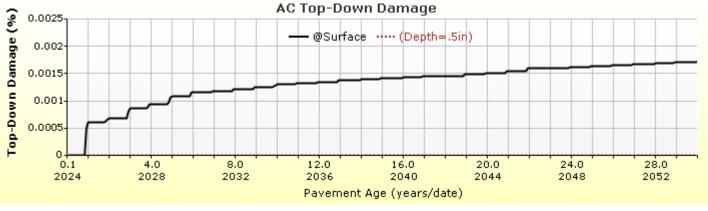
HMA Layer 2: Layer 2 Flexible: R4 Level 1 S(100) PG 64-22

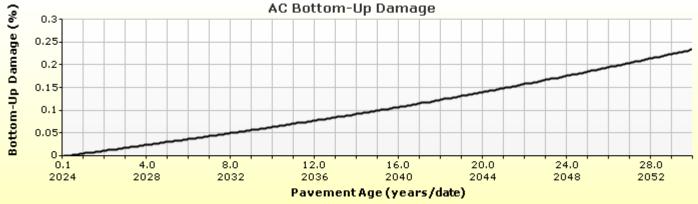

Created by: on: 8/5/2016 12:00 AM

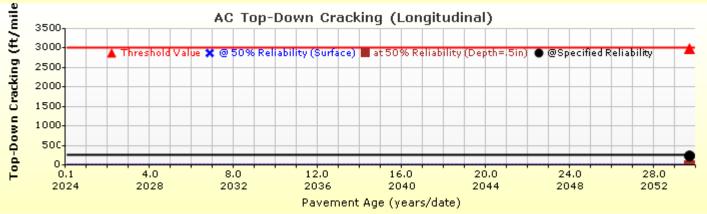


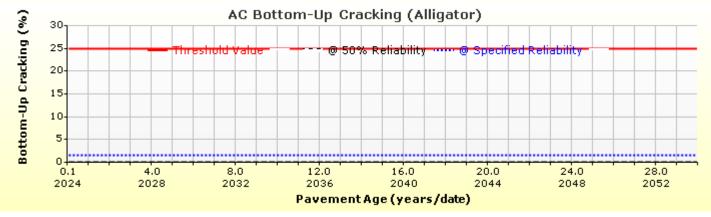

27.5 Road HMA (64-22) 30-year Design

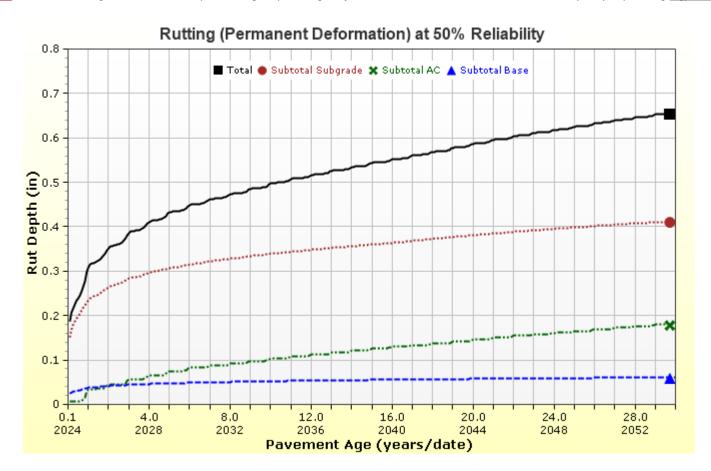
Analysis Output Charts

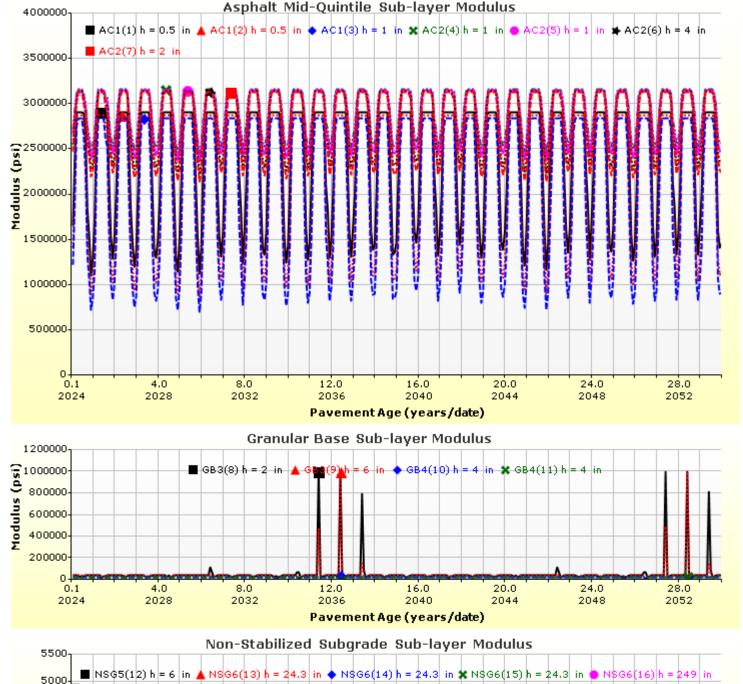


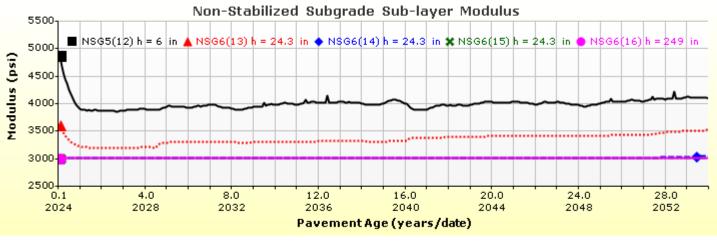












Layer Information

Layer 1 Flexible: R2 Level 1 SX(100) PG 64-22

Asphalt				
Thickness (in)	2.0			
Unit weight (pcf)	145.0			
Poisson's ratio	Is Calculated?	True		
	Ratio	-		
	Parameter A	-1.63		
	Parameter B	3.84E-06		

Asphalt Dynamic Modulus (Input Level: 1)

T (°F)	0.5 Hz	1 Hz	10 Hz	25 Hz
14	2333549	2642179	2861449	2927779
40	1309490	1791270	2219829	2365949
70	379514	695090	1127310	1318450
100	87238	174824	349546	452545
130	29326	49265	92795	122034

Asphalt Binder

Temperature (°F)	Binder Gstar (Pa)	Phase angle (deg)
147.2	1857	81.6
158	889	83.1
168.8	451	85

General Info

Name	Value
Reference temperature (°F)	70
Effective binder content (%)	11.2
Air voids (%)	5.1
Thermal conductivity (BTU/hr-ft-°F)	0.67
Heat capacity (BTU/lb-°F)	0.23

Identifiers

Field	Value
Display name/identifier	R2 Level 1 SX(100) PG 64-22
Description of object	Mix ID # FS1938
Author	CDOT
Date Created	4/3/2013 12:00:00 AM
Approver	CDOT
Date approved	4/3/2013 12:00:00 AM
State	Colorado
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	sx
User defined field 2	
User defined field 3	
Revision Number	2

Report generated on: 8/31/2023 4:51 PM

Version: 2.3.1+66

Created^{by:} on: 8/5/2016 12:00 AM

Layer 2 Flexible : R4 Level 1 S(100) PG 64-22

Asphalt			
Thickness (in)	8.0		
Unit weight (pcf)	150.7	150.7	
Poisson's ratio	Is Calculated?	True	
	Ratio	-	
	Parameter A	-1.63	
	Parameter B	3.84E-06	

Asphalt Dynamic Modulus (Input Level: 1)

T (°F)	0.5 Hz	1 Hz	10 Hz	25 Hz
14	3066800	3098200	3172300	3192100
40	2806000	2874100	3039900	3085600
70	2266800	2396000	2735700	2835600
100	1522600	1696200	2219300	2393200
130	820200	975200	1545400	1773100

Asphalt Binder

Temperature (°F)	Binder Gstar (Pa)	Phase angle (deg)
168.8	451	85
147.2	1857	81.6
158	889	83.1

General Info

Name	Value
Reference temperature (°F)	70
Effective binder content (%)	10.59
Air voids (%)	6.34
Thermal conductivity (BTU/hr-ft-ºF)	0.67
Heat capacity (BTU/lb-ºF)	0.23

Identifiers

Field	Value
Display name/identifier	R4 Level 1 S(100) PG 64-22
Description of object	Mix ID # FSA 0931-031
Author	CDOT
Date Created	5/3/2016 12:00:00 AM
Approver	CDOT - MP
Date approved	5/3/2016 12:00:00 AM
State	Colorado
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	S
User defined field 2	
User defined field 3	
Revision Number	0

Report generated on: 8/31/2023 4:51 PM

Version: 2.3.1+66

Created by: on: 8/5/2016 12:00 AM

.

Layer 3 Non-stabilized Base : Crushed gravel

Unbound	
Layer thickness (in)	8.0
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus	(Innut	امیرم ا	31
woulus (IIIDUL	Levei.	J)

Analysis Type: Modify input values by temperature/moisture	
Method:	Resilient Modulus (psi)

Resilient Modulus (psi) 25000.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	Crushed gravel
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	42

Sieve

Liquid Limit	6.0
Plasticity Index	1.0
Is layer compacted?	True

	Is User Defined?	Value
, , ,	False	127.7
Saturated hydraulic conductivity (ft/hr)	False	5.054e-02
Specific gravity of solids	False	2.7
Water Content (%)	False	7.4

User-defined Soil Water Characteristic Curve (SWCC)		
Is User Defined?	False	
af	7.2555	
bf	1.3328	
cf 0.8242		
hr 117.4000		

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	8.7
#100	
#80	12.9
#60	
#50	
#40	20.0
#30	
#20	
#16	
#10	33.8
#8	
#4	44.7
3/8-in.	57.2
1/2-in.	63.1
3/4-in.	72.7
1-in.	78.8
1 1/2-in.	85.8
2-in.	91.6
2 1/2-in.	
3-in.	
3 1/2-in.	97.6

Report generated on: 8/31/2023 4:51 PM

Version: 2.3.1+66

Created by: on: 8/5/2016 12:00 AM

Layer 4 Non-stabilized Base : CDOT Class 2 ABC

Unbound	
Layer thickness (in)	8.0
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus ((Input	Level: 3	١
Modulus	IIIPUL	LCVCI. O	,

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi) 12000.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	CDOT Class 2 ABC
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve

Liquid Limit	6.0
Plasticity Index	1.0
Is layer compacted?	True

	Is User Defined?	Value
Maximum dry unit weight (pcf)	False	127.7
Saturated hydraulic conductivity (ft/hr)	False	5.054e-02
Specific gravity of solids	False	2.7
Water Content (%)	False	7.4

User-defined Soil Water Characteristic Curve (SWCC)		
Is User Defined? False		
af	7.2555	
bf	1.3328	
cf	0.8242	
hr	117.4000	

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	8.7
#100	
#80	12.9
#60	
#50	
#40	20.0
#30	
#20	
#16	
#10	33.8
#8	
#4	44.7
3/8-in.	57.2
1/2-in.	63.1
3/4-in.	72.7
1-in.	78.8
1 1/2-in.	85.8
2-in.	91.6
2 1/2-in.	
3-in.	
3 1/2-in.	97.6

Report generated on: 8/31/2023 4:51 PM

Version: 2.3.1+66

Created^{by:} on: 8/5/2016 12:00 AM

Approved by: on: 8/5/2016 12:00 AM

Page 19 of 23

Layer 5 Subgrade: A-4

Unbound	
Layer thickness (in)	6.0
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus (Input Level: 3)

Analysis Type: Modify input values by temperature/moisture	
Method:	Resilient Modulus (psi)

Resilient Modulus (psi) 6482.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	A-4
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve

Liquid Limit	21.0
Plasticity Index	5.0
Is layer compacted?	True

	Is User Defined?	Value
, , ,	False	119
Saturated hydraulic conductivity (ft/hr)	False	7.589e-06
Specific gravity of solids	False	2.7
Water Content (%)	False	11.8

User-defined Soil Water Characteristic Curve (SWCC)		
Is User Defined? False		
af	68.8377	
bf	0.9983	
cf 0.4757		
hr 500.0000		

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	60.6
#100	
#80	73.9
#60	
#50	
#40	82.7
#30	
#20	
#16	
#10	89.9
#8	
#4	93.0
3/8-in.	95.6
1/2-in.	96.7
3/4-in.	98.0
1-in.	98.7
1 1/2-in.	99.4
2-in.	99.6
2 1/2-in.	
3-in.	
3 1/2-in.	99.8

Report generated on: 8/31/2023 4:51 PM

Version: 2.3.1+66

Created by: on: 8/5/2016 12:00 AM

Layer 6 Subgrade : A-4

Unbound	
Layer thickness (in)	Semi-infinite
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus (Input Level: 3)	

Analysis Type: Modify input values by temperature/moisture			
Method:	Resilient Modulus (psi)		

Resilient Modulus (psi)	
6482.0	

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	A-4
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve

Liquid Limit	21.0
Plasticity Index	5.0
Is layer compacted?	True

	Is User Defined?	Value
, , ,	False	119
Saturated hydraulic conductivity (ft/hr)	False	7.589e-06
Specific gravity of solids	False	2.7
Water Content (%)	False	11.8

User-defined Soil Water Characteristic Curve (SWCC)			
Is User Defined? False			
af	68.8377		
bf	0.9983		
cf	0.4757		
hr	500.0000		

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	60.6
#100	
#80	73.9
#60	
#50	
#40	82.7
#30	
#20	
#16	
#10	89.9
#8	
#4	93.0
3/8-in.	95.6
1/2-in.	96.7
3/4-in.	98.0
1-in.	98.7
1 1/2-in.	99.4
2-in.	99.6
2 1/2-in.	
3-in.	
3 1/2-in.	99.8

Report generated on: 8/31/2023 4:51 PM

Version: 2.3.1+66 Created by: on: 8/5/2016 12:00 AM

Calibration Coefficients

AC Fatigue			
$N_{f} = 0.00432 * C * \beta_{f1} k_{1} \left(\frac{1}{\varepsilon_{1}}\right)^{k_{2}\beta_{f2}} \left(\frac{1}{E}\right)^{k_{3}\beta_{f3}}$	k1: 0.007566		
$N_f = 0.00432 * C * \beta_{f1} k_1 \left(\frac{1}{c}\right)$ $\left(\frac{1}{c}\right)$	k2: 3.9492		
(c ₁)	k3: 1.281		
$C = 10^{10}$	Bf1: 1		
$M = 4.84 \left(\frac{V_b}{V_a + V_b} - 0.69 \right)$	Bf2: 1		
, va 1 vb	Bf3: 1		

AC Rutting

$$\begin{split} \frac{\varepsilon_p}{\varepsilon_r} &= k_z \beta_{r1} 10^{k_1} T^{k_2 \beta_{r2}} N^{k_3 B_{r3}} \\ k_z &= (C_1 + C_2 * depth) * 0.328196^{depth} \\ C_1 &= -0.1039 * H_\alpha^2 + 2.4868 * H_\alpha - 17.342 \\ C_2 &= 0.0172 * H_\alpha^2 - 1.7331 * H_\alpha + 27.428 \end{split}$$

 $\varepsilon_p = plastic strain(in/in)$ $\varepsilon_r = resilient strain(in/in)$ $T = layer temperature(^{\circ}F)$ N = number of load repetitions

 $H_{aa} = total AC thickness(in)$

ac .	· /		
AC Rutting Standard Deviation	0.24 * Pow(RUT,0.8026) + 0.001		
AC Layer	K1:-3.35412 K2:1.5606 K3:0.4791	Br1:1 Br2:1 Br3:1	

Thermal Fracture

$$C_f = \text{400} * N(\frac{\log C/h_{ac}}{\sigma}) \\ \Delta C = (k*\beta t)^{n+1} * A*\Delta K^n \\ A = 10^{(4.389-2.52*log(E*\sigma_m*n))} \\ \text{Level 1 K: 1.5} \\ \text{Level 2 Standard Deviation: 0.3972 * THERMAL + 55.462} \\ \text{Level 3 K: 1.5} \\ \text{Level 3 Standard Deviation: 0.65 ficient determined through field calibration} \\ N(f) = \text{standard normal distribution evaluated at()} \\ n(f) = \text{standard deviation of the log of the depth of cracks in the payments} \\ n(f) = \text{standard normal distribution evaluated at()} \\ n(f) = \text{standard deviation of the log of the depth of cracks in the payments} \\ n(f) = \text{standard deviation of the log of the depth of cracks in the payments} \\ n(f) = \text{standard deviation of the log of the depth of cracks in the payments} \\ n(f) = \text{standard deviation of the log of the depth of cracks in the payments} \\ n(f) = \text{standard deviation of the log of the depth of cracks in the payments} \\ n(f) = \text{standard deviation of the log of the depth of cracks in the payments} \\ n(f) = \text{standard deviation of the log of the depth of cracks in the payments} \\ n(f) = \text{standard deviation of the log of the depth of cracks in the payments} \\ n(f) = \text{standard deviation of the log of the depth of cracks in the payments} \\ n(f) = \text{standard leviation} \\ n(f) = \text{standard deviation of the log of the depth of cracks in the payments} \\ n(f) = \text{standard leviation} \\ n(f) = \text{standard leviation of the log of the depth of cracks in the payments} \\ n(f) = \text{standard leviation of the log of the depth of cracks in the payments} \\ n(f) = \text{standard leviation} \\ n(f) = \text{standard leviation of the log of the depth of cracks in the payments} \\ n(f) = \text{standard leviation} \\ n(f) = \text{stan$$

CSM Fatigue

$$N_f = 10$$

$$\begin{pmatrix} k_1 \beta_{c1} \left(\frac{\sigma_s}{M_r} \right) & N_f = number \ of \ repetitions \ to \ fatigue \ cracking \ \sigma_s = Tensile \ stress(psi) \ M_r = modulus \ of \ rupture(psi)$$
k1: 1 | k2: 1 | Bc1: 0.75 | Bc2:1.1

Report generated on: 8/31/2023 4:51 PM

Version: 2.3.1 + 66

Created^{by:} on: 8/5/2016 12:00 AM

Approved by: on: 8/5/2016 12:00 AM

Page 22 of 23

Subgrade Rut	ting						
$\delta_a(N) = \beta_{s_1} k_1 \varepsilon_v h\left(\frac{\varepsilon_0}{\varepsilon_r}\right) \left e^{-\left(\frac{\rho}{N}\right)^{\beta}} \right \qquad \begin{array}{c} N \\ \varepsilon_v \\ \varepsilon_0, \end{array}$		$\delta_a = permanent deformation for the layer N = number of repetitions \epsilon_v = average veritcal strain(in/in) \epsilon_0, \beta, \rho = material properties \epsilon_r = resilient strain(in/in)$					
Granular			Fine				
k1: 2.03	В	s1: 1		k1: 1.35		Bs1: 1	
		Standard Deviation (BASERUT) 0.1235 * Pow(SUBRUT, 0.5012) + 0.001					

AC Cracking						
AC Top Down Cracking				AC Bottom Up C	racking	
$FC_{top} = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$	$1 + e^{(C_1 - C_2 * i)}$	24 og ₁₀ (Damage	(i)) * 10.56		6000 $c_{1*}c'_{1}+c_{2*}c'_{2}log_{10}(D*)$ 74-39.748*(1+)	
c1: 7	c2: 3.5	c3: 0	c4: 1000	c1: 1	c2: 1	c3: 6000
AC Cracking Top Standard Deviation		AC Cracking Bottom Standard Deviation				
200 + 2300/(1+exp(1.072-2.1654*LOG10 (TOP+0.0001)))			1.13 + 13/(1+exp(7.57-15.5*LOG10 (BOTTOM+0.0001)))			

CSM Cracking			IRI Flexible Pavements				
FC_{ctb}	$= C_1 +$	$\frac{C}{1+e^{C_3-C}}$	1 2 (4(Damage)	C1 - Rutt C2 - Fati	ing gue Crack	C3 - Tran C4 - Site l	sverse Crack Factors
C1: 0	C2: 75	C3: 5	C4: 3	C1: 40	C2: 0.4	C3: 0.008	C4: 0.015
CSM Stand	ard Deviation						_
CTB*1				1			

Report generated on: 8/31/2023 4:51 PM

Version: 2.3.1+66 Created by: on: 8/5/2016 12:00 AM

APPENDIX F

HORIZON DRIVE 20 AND 30-YEAR DESIGN LIFE FOR FLEXIBLE PAVEMENT M-E DESIGN OUTPUT SHEETS

File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive HMA (64-22) Design.dgr

Design Inputs

Design Life: 20 years Base construction: May, 2024 Climate Data 39.134, -108.538

Sources (Lat/Lon) Design Type: **FLEXIBLE** Pavement construction: July, 2024

> Traffic opening: September, 2024

Design Structure

Layer type	Material Type	Thickness (in)
Flexible	R2 Level 1 SX(100) PG 64-22	2.0
Flexible	R4 Level 1 S(100) PG 64- 22	7.5
NonStabilized	Crushed gravel	8.0
NonStabilized	CDOT Class 2 ABC	8.0
Subgrade	A-4	6.0
Subgrade	A-4	Semi-infinite

Volumetric at Construction:		
Effective binder content (%)	11.2	
Air voids (%)	5.1	

Traffic

Age (year)	Heavy Trucks (cumulative)
2024 (initial)	3,640
2034 (10 years)	6,550,990
2044 (20 years)	14,536,600

Design Outputs

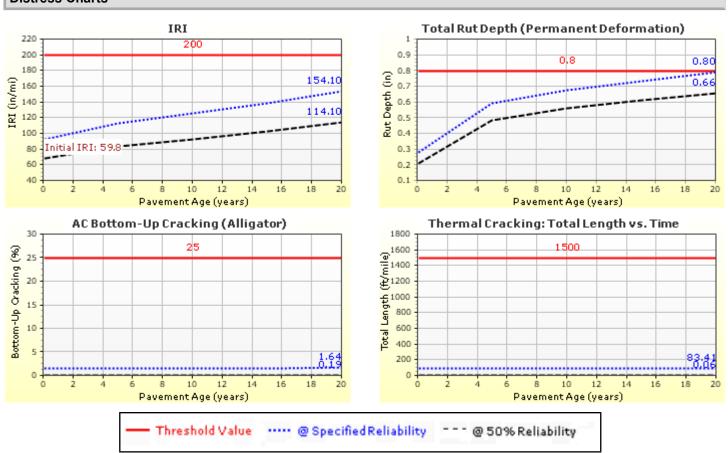
Distress Prediction Summary

Distress Type		Specified bility	Reliab	ility (%)	Criterion
	Target	Predicted	Target	Achieved	Satisfied?
Terminal IRI (in/mile)	200.00	154.08	90.00	99.71	Pass
Permanent deformation - total pavement (in)	0.80	0.79	90.00	90.88	Pass
AC bottom-up fatigue cracking (% lane area)	25.00	1.64	90.00	100.00	Pass
AC thermal cracking (ft/mile)	1500.00	83.41	90.00	100.00	Pass
AC top-down fatigue cracking (ft/mile)	3000.00	257.45	90.00	100.00	Pass
Permanent deformation - AC only (in)	0.65	0.25	90.00	100.00	Pass

Report generated on: 5/24/2023 5:35 PM

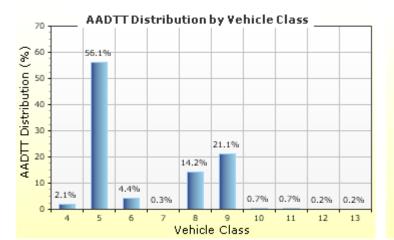
Version: 2.3.1+66

Created^{by:} on: 8/5/2016 12:00 AM

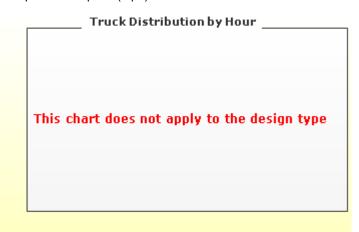

Approved by: on: 8/5/2016 12:00 AM

Page 1 of 23

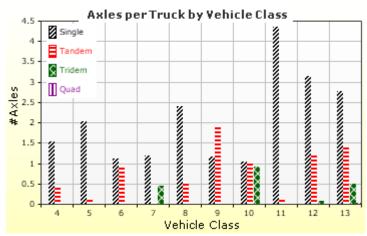
Distress Charts

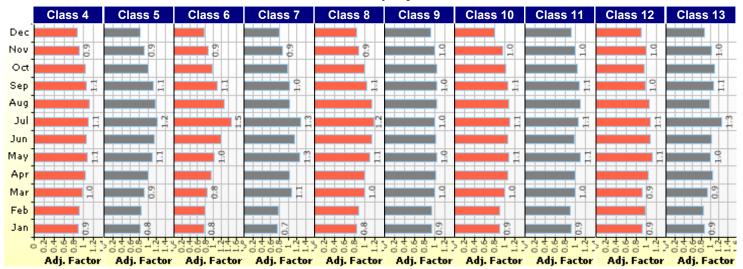

File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizon and G Road Roundabout\Horizon Drive HMA (64-22) Design.d

Traffic Inputs


Graphical Representation of Traffic Inputs

Initial two-way AADTT: 3,640


Number of lanes in design direction: 2


Percent of trucks in design direction (%): 50.0
Percent of trucks in design lane (%): 90.0
Operational speed (mph) 35.0

Traffic Volume Monthly Adjustment Factors

File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive HMA (64-22) Design.dgr

Tabular Representation of Traffic Inputs

Volume Monthly Adjustment Factors

Level 3: Default MAF

Month					Vehicle	Class				
WOILLI	4	5	6	7	8	9	10	11	12	13
January	0.9	0.8	0.8	0.7	0.8	0.9	0.9	0.9	0.9	0.9
February	0.9	0.8	0.8	0.8	0.9	0.9	0.9	0.9	1.0	0.8
March	1.0	0.9	0.8	1.1	1.0	1.0	1.0	1.0	0.9	0.9
April	1.0	1.0	0.9	1.0	1.0	1.0	1.1	1.0	1.0	1.1
May	1.1	1.1	1.0	1.3	1.1	1.0	1.1	1.1	1.1	1.0
June	1.1	1.1	1.2	1.1	1.1	1.0	1.1	1.0	1.1	1.0
July	1.1	1.2	1.5	1.3	1.2	1.0	1.1	1.1	1.1	1.3
August	1.1	1.2	1.3	1.0	1.1	1.0	1.1	1.1	1.1	1.0
September	1.1	1.1	1.1	1.0	1.1	1.0	1.1	1.1	1.0	1.1
October	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.9	1.1
November	0.9	0.9	0.9	0.9	0.9	1.0	1.0	1.0	1.0	1.0
December	0.9	0.8	0.8	0.8	0.8	0.9	0.8	0.9	0.9	0.9

Distributions by Vehicle Class

Truck Distribution by Hour does not apply

Vehicle Class	AADTT Distribution (%)	Growt	h Factor
	(Level 3) `	Rate (%)	Function
Class 4	2.1%	2%	Compound
Class 5	56.1%	2%	Compound
Class 6	4.4%	2%	Compound
Class 7	0.3%	2%	Compound
Class 8	14.2%	2%	Compound
Class 9	21.1%	2%	Compound
Class 10	0.7%	2%	Compound
Class 11	0.7%	2%	Compound
Class 12	0.2%	2%	Compound
Class 13	0.2%	2%	Compound

Axle Configuration

Traffic Wander				
Mean wheel location (in)	18.0			
Traffic wander standard deviation (in)	10.0			
Design lane width (ft)	12.0			

Wheelbase	does	not	apply

Axle Configuration				
Average axle width (ft)	8.5			
Dual tire spacing (in)	12.0			
Tire pressure (psi)	120.0			

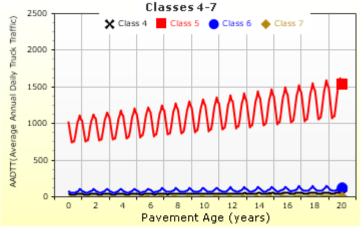
Number of Axles per Truck

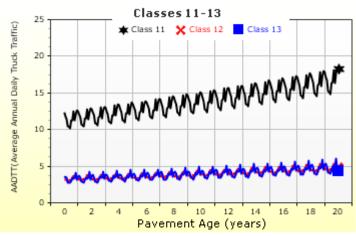
Vehicle Class	Single Axle	Tandem Axle	Tridem Axle	Quad Axle
Class 4	1.53	0.45	0	0
Class 5	2.02	0.16	0.02	0
Class 6	1.12	0.93	0	0
Class 7	1.19	0.07	0.45	0.02
Class 8	2.41	0.56	0.02	0
Class 9	1.16	1.88	0.01	0
Class 10	1.05	1.01	0.93	0.02
Class 11	4.35	0.13	0	0
Class 12	3.15	1.22	0.09	0
Class 13	2.77	1.4	0.51	0.04

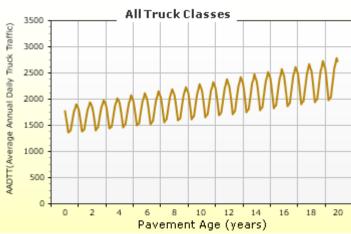
Average Axle Spacing Tandem axle 51.6 spacing (in) Tridem axle 49.2 spacing (in) Quad axle spacing 49.2 (in)

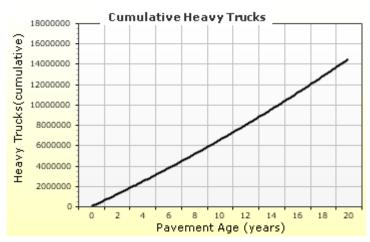
Report generated on: 5/24/2023 5:35 PM

Version: 2.3.1+66


Created by: on: 8/5/2016 12:00 AM


File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive HMA (64-22) Design.d


AADTT (Average Annual Daily Truck Traffic) Growth

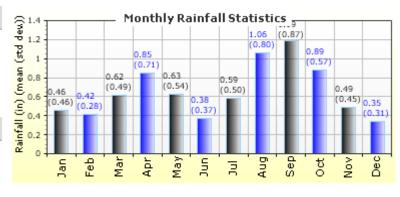

* Traffic cap is not enforced

File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive HMA (64-22) Design.de

Climate Inputs

Climate Data Sources:

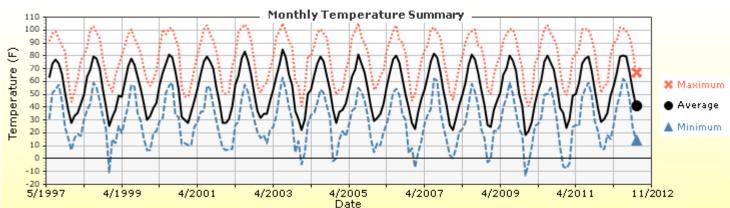
Climate Station Cities: Location (lat lon elevation(ft))
GRAND JUNCTION, CO 39.13400 -108.53800 4839

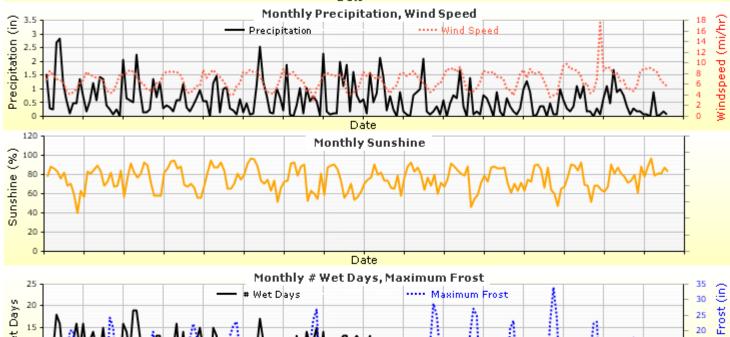


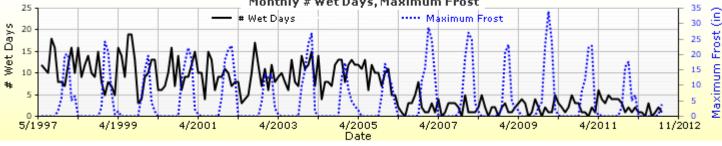
Mean annual air temperature (°F) 53.75

Mean annual precipitation (in) 7.96

Freezing index (°F - days) 360.58

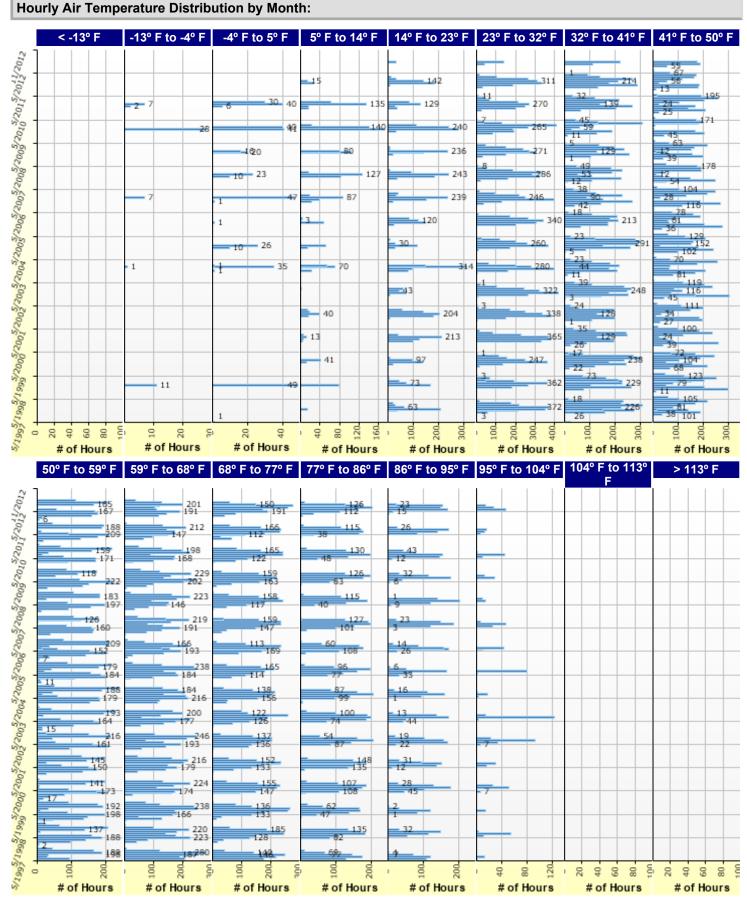

Average annual number of freeze/thaw cycles: 111.77




Water table depth (ft)

4.00

Monthly Climate Summary:



Horizon Drive HMA (64-22) Design

File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive HMA (64-22) Design.dgp

Design Properties

HMA Design Properties

Use Multilayer Rutting Model	False
Using G* based model (not nationally calibrated)	False
Is NCHRP 1-37A HMA Rutting Model Coefficients	True
Endurance Limit	-
Use Reflective Cracking	True

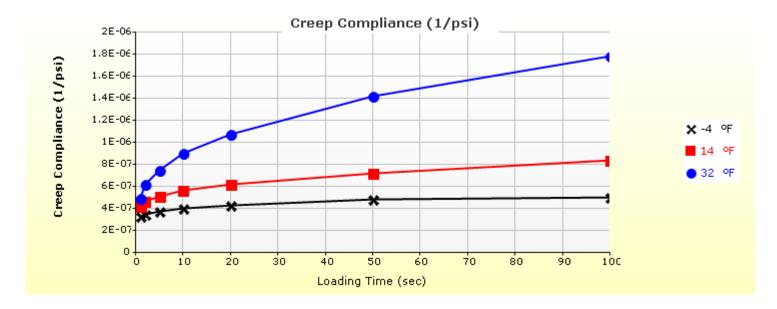
Structure - ICM Properties	
AC surface shortwave absorptivity	0.85

Layer Name	Layer Type	Interface Friction
Layer 1 Flexible : R2 Level 1 SX (100) PG 64-22	Flexible (1)	1.00
Layer 2 Flexible : R4 Level 1 S (100) PG 64-22	Flexible (1)	1.00
Layer 3 Non-stabilized Base : Crushed gravel	Non-stabilized Base (4)	1.00
Layer 4 Non-stabilized Base : CDOT Class 2 ABC	Non-stabilized Base (4)	1.00
Layer 5 Subgrade : A-4	Subgrade (5)	1.00
Layer 6 Subgrade : A-4	Subgrade (5)	-

Report generated on: 5/24/2023 5:35 PM

Version: 2.3.1+66

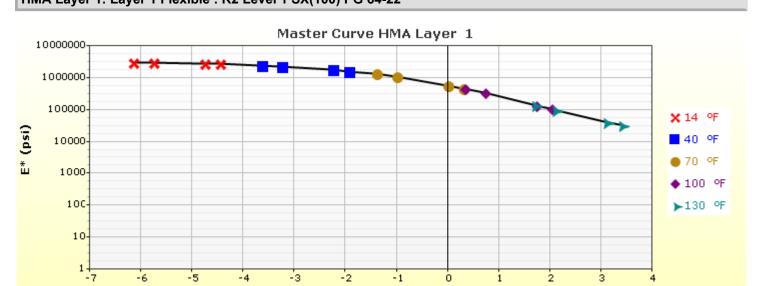
Created by: on: 8/5/2016 12:00 AM


Horizon Drive HMA (64-22) Design File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizon and G Road Roundabout\Horizon Drive HMA (64-22) Design.dgp.

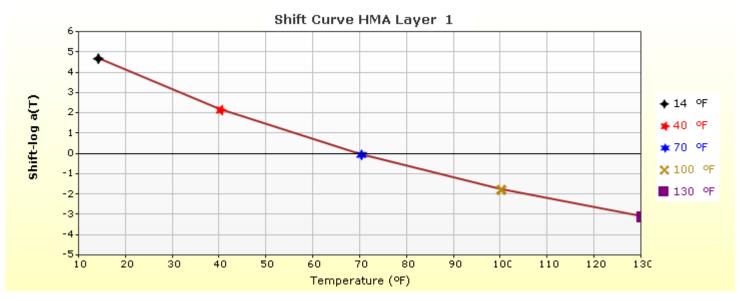
Thermal Cracking (Input Level: 1)

Indirect tensile strength at 14 °F (psi)	451.00	
Thermal Contraction		
Is thermal contraction calculated?	True	
Mix coefficient of thermal contraction (in/in/°F)	-	
Aggregate coefficient of thermal contraction (in/in/°F)	5.0e-006	
Voids in Mineral Aggregate (%)	16.3	

	Creep Compliance (1/psi)		
Loading time (sec)	-4 °F	14 °F	32 °F
1	3.34e-007	4.19e-007	4.99e-007
2	3.53e-007	4.64e-007	6.19e-007
5	3.79e-007	5.15e-007	7.49e-007
10	4.05e-007	5.70e-007	9.08e-007
20	4.31e-007	6.26e-007	1.08e-006
50	4.87e-007	7.27e-007	1.43e-006
100	5.05e-007	8.41e-007	1.79e-006



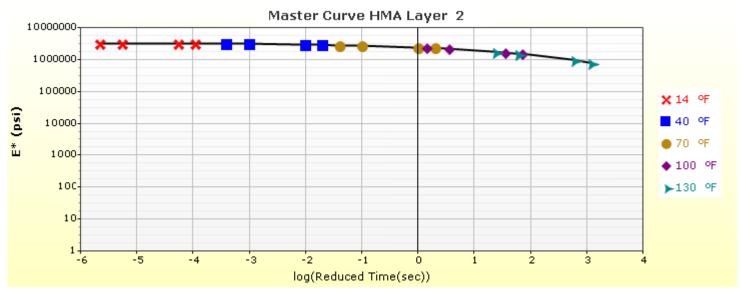
Created^{by:} on: 8/5/2016 12:00 AM

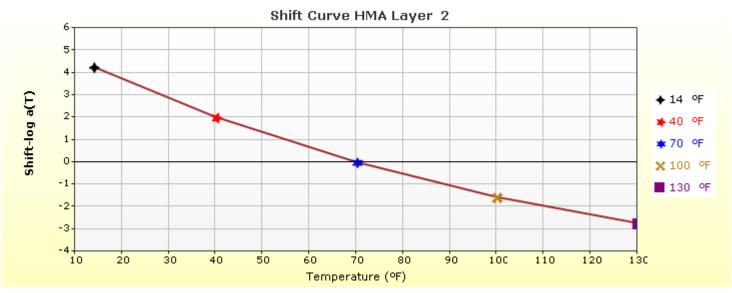


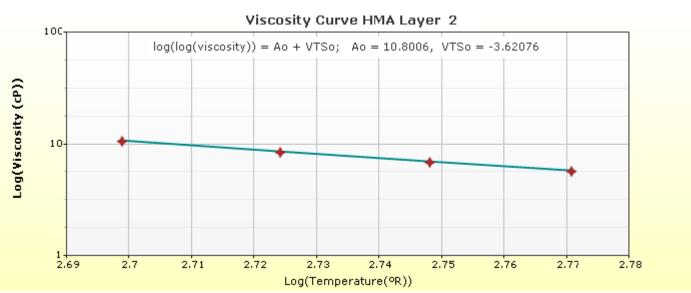


HMA Layer 1: Layer 1 Flexible: R2 Level 1 SX(100) PG 64-22

log(Reduced Time(sec))

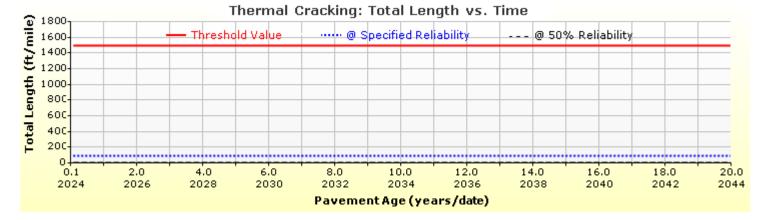








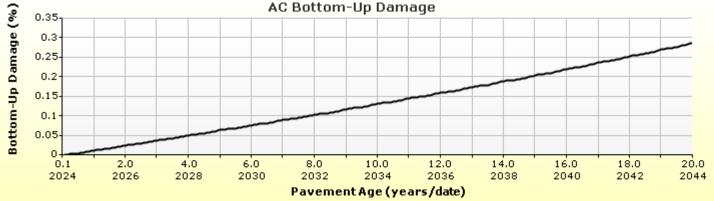


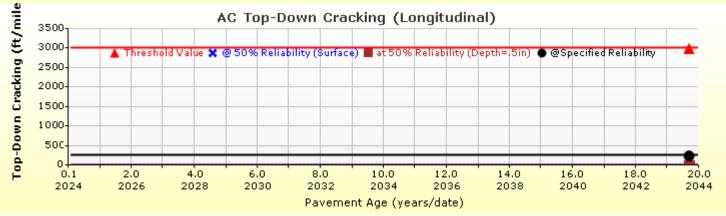


File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive HMA (64-22) Design.dgp

Analysis Output Charts

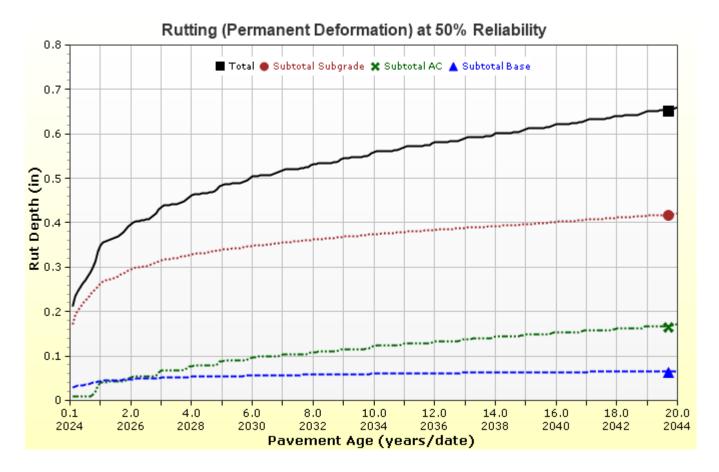



Created by: on: 8/5/2016 12:00 AM

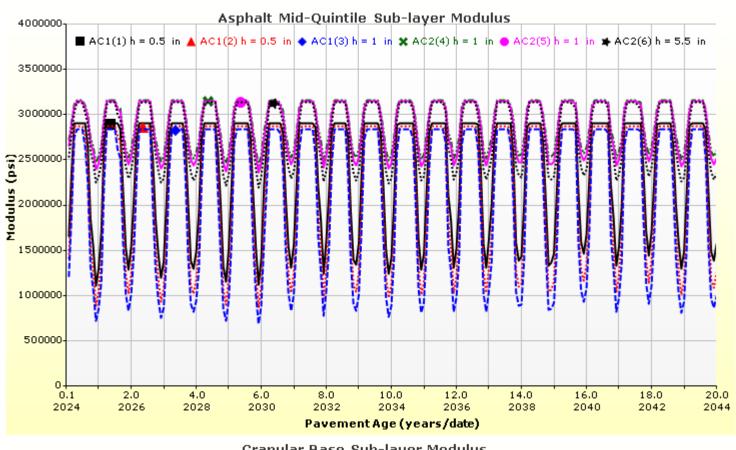


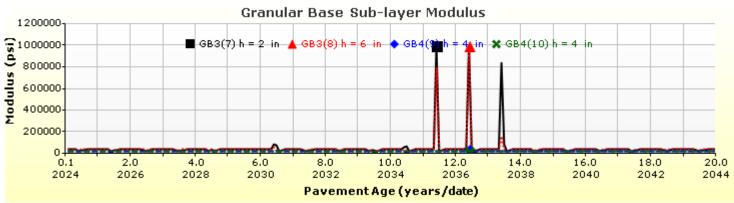


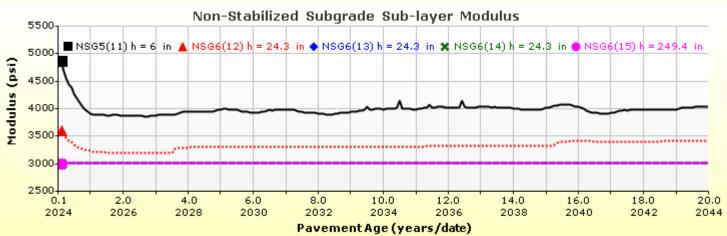
File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive HMA (64-22) Design.dgp



Horizon Drive HMA (64-22) Design File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizon and G Road Roundabout\Horizon Drive HMA (64-22) Design.dgp.




Created^{by:} on: 8/5/2016 12:00 AM



File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive HMA (64-22) Design.de

Layer Information

Layer 1 Flexible: R2 Level 1 SX(100) PG 64-22

Asphalt			
Thickness (in)	2.0		
Unit weight (pcf)	145.0	145.0	
Poisson's ratio	ls Calculated?	True	
	Ratio	-	
	Parameter A	-1.63	
	Parameter B	3.84E-06	

Asphalt Dynamic Modulus (Input Level: 1)

T (°F)	0.5 Hz	1 Hz	10 Hz	25 Hz
14	2333549	2642179	2861449	2927779
40	1309490	1791270	2219829	2365949
70	379514	695090	1127310	1318450
100	87238	174824	349546	452545
130	29326	49265	92795	122034

Asphalt Binder

Temperature (°F)	Binder Gstar (Pa)	Phase angle (deg)
147.2	1857	81.6
158	889	83.1
168.8	451	85

General Info

Name	Value
Reference temperature (°F)	70
Effective binder content (%)	11.2
Air voids (%)	5.1
Thermal conductivity (BTU/hr-ft-°F)	0.67
Heat capacity (BTU/lb-ºF)	0.23

Identifiers

Field	Value
Display name/identifier	R2 Level 1 SX(100) PG 64-22
Description of object	Mix ID # FS1938
Author	CDOT
Date Created	4/3/2013 12:00:00 AM
Approver	CDOT
Date approved	4/3/2013 12:00:00 AM
State	Colorado
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	sx
User defined field 2	
User defined field 3	
Revision Number	2

Report generated on: 5/24/2023 5:35 PM

Version: 2.3.1+66

Created^{by:} on: 8/5/2016 12:00 AM

Approved by: on: 8/5/2016 12:00 AM

Page 16 of 23

Layer 2 Flexible : R4 Level 1 S(100) PG 64-22

Asphalt		
Thickness (in)	7.5	
Unit weight (pcf)	150.7	
Poisson's ratio	Is Calculated?	True
	Ratio	-
	Parameter A	-1.63
	Parameter B	3.84E-06

Asphalt Dynamic Modulus (Input Level: 1)

T (°F)	0.5 Hz	1 Hz	10 Hz	25 Hz
14	3066800	3098200	3172300	3192100
40	2806000	2874100	3039900	3085600
70	2266800	2396000	2735700	2835600
100	1522600	1696200	2219300	2393200
130	820200	975200	1545400	1773100

Asphalt Binder

Temperature (°F)	Binder Gstar (Pa)	Phase angle (deg)
168.8	451	85
147.2	1857	81.6
158	889	83.1

General Info

Name	Value
Reference temperature (°F)	70
Effective binder content (%)	10.59
Air voids (%)	6.34
Thermal conductivity (BTU/hr-ft-ºF)	0.67
Heat capacity (BTU/lb-ºF)	0.23

Identifiers

Field	Value
Display name/identifier	R4 Level 1 S(100) PG 64-22
Description of object	Mix ID # FSA 0931-031
Author	CDOT
Date Created	5/3/2016 12:00:00 AM
Approver	CDOT - MP
Date approved	5/3/2016 12:00:00 AM
State	Colorado
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	S
User defined field 2	
User defined field 3	
Revision Number	0

Report generated on: 5/24/2023 5:35 PM

Version: 2.3.1+66 Created^{by:} on: 8/5/2016 12:00 AM

Layer 3 Non-stabilized Base : Crushed gravel

Unbound	
Layer thickness (in)	8.0
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus	(Input I	Level: 3)
		,

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi)	
[2	25000.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	Crushed gravel
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	42

Sieve

Liquid Limit	6.0
Plasticity Index	1.0
Is layer compacted?	True

	Is User Defined?	Value
]	False	127.7
Saturated hydraulic conductivity (ft/hr)	False	5.054e-02
Specific gravity of solids	False	2.7
Water Content (%)	False	7.4

User-defined Soil Water Characteristic Curve (SWCC)	
Is User Defined?	False
af	7.2555
bf	1.3328
cf	0.8242
hr	117.4000

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	8.7
#100	
#80	12.9
#60	
#50	
#40	20.0
#30	
#20	
#16	
#10	33.8
#8	
#4	44.7
3/8-in.	57.2
1/2-in.	63.1
3/4-in.	72.7
1-in.	78.8
1 1/2-in.	85.8
2-in.	91.6
2 1/2-in.	
3-in.	
3 1/2-in.	97.6

Report generated on: 5/24/2023 5:35 PM

Version: 2.3.1+66

Created by: on: 8/5/2016 12:00 AM

Approved by: on: 8/5/2016 12:00 AM

Page 18 of 23

Layer 4 Non-stabilized Base : CDOT Class 2 ABC

Unbound	
Layer thickness (in)	8.0
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus (Input Level: 3)

Analysis Type:	Modify input values by temperature/moisture
Method: Resilient Modulus (psi)	

Resilient Modulus (psi) 12000.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	CDOT Class 2 ABC
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve

Liquid Limit	6.0
Plasticity Index	1.0
Is layer compacted?	True

	Is User Defined?	Value
Maximum dry unit weight (pcf)	False	127.7
Saturated hydraulic conductivity (ft/hr)	False	5.054e-02
Specific gravity of solids	False	2.7
Water Content (%)	False	7.4

User-defined Soil Water Characteristic Curve (SWCC)	
Is User Defined?	False
af	7.2555
bf	1.3328
cf	0.8242
hr	117.4000

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	8.7
#100	
#80	12.9
#60	
#50	
#40	20.0
#30	
#20	
#16	
#10	33.8
#8	
#4	44.7
3/8-in.	57.2
1/2-in.	63.1
3/4-in.	72.7
1-in.	78.8
1 1/2-in.	85.8
2-in.	91.6
2 1/2-in.	
3-in.	
3 1/2-in.	97.6

Report generated on: 5/24/2023 5:35 PM

Version: 2.3.1+66

Created by: on: 8/5/2016 12:00 AM

Layer 5 Subgrade: A-4

Unbound	
Layer thickness (in)	6.0
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus (Input Level: 3)

Analysis Type:	Modify input values by temperature/moisture	
Method:	Resilient Modulus (psi)	

Resilient Modulus (psi)	
6482.0	

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	A-4
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve

Liquid Limit	21.0
Plasticity Index	5.0
Is layer compacted?	True

	Is User Defined?	Value
]	False	119
Saturated hydraulic conductivity (ft/hr)	False	7.589e-06
Specific gravity of solids	False	2.7
Water Content (%)	False	11.8

User-defined Soil Water Characteristic Curve (SWCC)		
Is User Defined? False		
af	68.8377	
bf	0.9983	
cf	0.4757	
hr	500.0000	

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	60.6
#100	
#80	73.9
#60	
#50	
#40	82.7
#30	
#20	
#16	
#10	89.9
#8	
#4	93.0
3/8-in.	95.6
1/2-in.	96.7
3/4-in.	98.0
1-in.	98.7
1 1/2-in.	99.4
2-in.	99.6
2 1/2-in.	
3-in.	
3 1/2-in.	99.8

Report generated on: 5/24/2023 5:35 PM

Version: 2.3.1+66

Created by: on: 8/5/2016 12:00 AM

Layer 6 Subgrade : A-4

Unbound	
Layer thickness (in)	Semi-infinite
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus (Input Level: 3)

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi) 6482.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	A-4
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve

Liquid Limit	21.0
Plasticity Index	5.0
Is layer compacted?	True

	Is User Defined?	Value
, , ,	False	119
Saturated hydraulic conductivity (ft/hr)	False	7.589e-06
Specific gravity of solids	False	2.7
Water Content (%)	False	11.8

User-defined Soil Water Characteristic Curve (SWCC)				
Is User Defined? False				
af	68.8377			
bf	0.9983			
cf	0.4757			
hr	500.0000			

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	60.6
#100	
#80	73.9
#60	
#50	
#40	82.7
#30	
#20	
#16	
#10	89.9
#8	
#4	93.0
3/8-in.	95.6
1/2-in.	96.7
3/4-in.	98.0
1-in.	98.7
1 1/2-in.	99.4
2-in.	99.6
2 1/2-in.	
3-in.	
3 1/2-in.	99.8

Report generated on: 5/24/2023 5:35 PM

Version: 2.3.1+66

Created by: on: 8/5/2016 12:00 AM

Horizon Drive HMA (64-22) Design

File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive HMA (64-22) Design.d

Calibration Coefficients

AC Fatigue			
$N_f = 0.00432 * C * \beta_{f1} k_1 \left(\frac{1}{\varepsilon_1}\right)^{k_2 \beta_{f2}} \left(\frac{1}{E}\right)^{k_3 \beta_{f3}}$	k1: 0.007566		
$N_f = 0.00432 * C * \beta_{f1} k_1 \left(\frac{1}{c}\right)^{1.75} \left(\frac{1}{c}\right)^{1.75}$	k2: 3.9492		
	k3: 1.281		
$C = 10^M$	Bf1: 1		
$M = 4.84 \left(\frac{V_b}{V_a + V_b} - 0.69 \right)$	Bf2: 1		
\ra rb /	Bf3: 1		

AC Rutting

$$\begin{split} &\frac{\varepsilon_p}{\varepsilon_r} = k_z \beta_{r1} 10^{k_1} T^{k_2 \beta_{r2}} N^{k_3 B_{r3}} \\ &k_z = (C_1 + C_2 * depth) * 0.328196^{depth} \\ &C_1 = -0.1039 * H_\alpha^2 + 2.4868 * H_\alpha - 17.342 \\ &C_2 = 0.0172 * H_\alpha^2 - 1.7331 * H_\alpha + 27.428 \end{split}$$

 $\varepsilon_p = plastic strain(in/in)$ $\varepsilon_r = resilient strain(in/in)$ T = layer temperature(°F)N = number of load repetitions

 $H_{aa} = total AC thickness(in)$

ac .	· /	
AC Rutting Standard Deviation	0.24 * Pow(RUT,0.8026) + 0.001	
AC Layer	K1:-3.35412 K2:1.5606 K3:0.4791	Br1:1 Br2:1 Br3:1

Thermal Fracture

$$C_f = \text{400} * N \left(\frac{\log C/h_{ac}}{\sigma}\right) \\ & \sum_{G \text{ standard normal distribution evaluated at()}}^{C_f = \text{observed amount of thermal cracking}(ft/500ft)} \\ & \Delta C = \left(k * \beta t\right)^{n+1} * A * \Delta K^n \\ & \Delta C = (k * \beta t)^{n+1} * A * \Delta K^n \\ & A = 10^{(4.389-2.52*log(E*\sigma_m*n))} \\ & \Delta C = 1$$

CSM Fatigue

Level 3 K: 1.5

Level 3 Standard Deviation: 0.3972 * THERMAL + 20.422

Report generated on: 5/24/2023 5:35 PM

Version: 2.3.1 + 66

Created^{by:} on: 8/5/2016 12:00 AM

Approved by: on: 8/5/2016 12:00 AM

Page 22 of 23

Subgrade Rutting			
$\delta_a(N) = \beta_{s_1} k_1 \varepsilon_v h\left(\frac{\varepsilon_0}{\varepsilon_r}\right) \left e^{-\left(\frac{\rho}{N}\right)^{\beta}} \right \qquad \begin{cases} N \\ \varepsilon_v \\ \varepsilon_0 \end{cases}$		$\delta_a = permanent deformation for the layer N = number \ of \ repetitions \varepsilon_v = average \ veritcal \ strain(in/in) \varepsilon_0, \beta, \rho = material \ properties \varepsilon_r = resilient \ strain(in/in)$	
Granular		Fine	
k1: 2.03	Bs1: 1	k1: 1.35	Bs1: 1
Standard Deviation (BASERUT) 0.1477 * Pow(BASERUT,0.6711) + 0.001		Standard Deviation (BASERUT) 0.1235 * Pow(SUBRUT,0.5012) + 0.001	

AC Cracking						
AC Top Dow	n Cracking			AC Bottom Up C	racking	
$FC_{top} = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$	$1 + e^{\left(C_1 - C_2 * l\right)}$	-4 og ₁₀ (Damage	(i)) * 10.56		6000 $c_1*c_1'+c_2*c_2'log_{10}(D*$ 74-39.748*(1+	
c1: 7	c2: 3.5	c3: 0	c4: 1000	c1: 1	c2: 1	c3: 6000
AC Cracking	Top Standa	rd Deviation	•	AC Cracking Bot	tom Standard De	eviation
200 + 2300/ (TOP+0.000		72-2.1654*L0	OG10	1.13 + 13/(1+exp (BOTTOM+0.00		G10

CSM Cracking			IRI Flexible Pavements				
FC_{ctb}	$= C_1 +$	$\frac{C}{1+e^{C_3-C}}$	1 2 ' ₄ (Damage)	C1 - Ruti C2 - Fati	ting gue Crack	C3 - Tran C4 - Site l	sverse Crack Factors
C1: 0	C2: 75	C3: 5	C4: 3	C1: 40	C2: 0.4	C3: 0.008	C4: 0.015
CSM Stand	dard Deviation	i				,	
CTB*1				1			

Report generated on: 5/24/2023 5:35 PM

Version: 2.3.1+66 Created by: on: 8/5/2016 12:00 AM

Horizon Drive HMA (64-22) 30-year Design

e Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive HMA (64-22) 30-year Design.

Design Inputs

Design Life: 30 years Base construction: May, 2024 Climate Data 39.134, -108.538

Sources (Lat/Lon) Design Type: **FLEXIBLE** Pavement construction: July, 2024

> Traffic opening: September, 2024

Design Structure

Layer type	Material Type	Thickness (in)
Flexible	R2 Level 1 SX(100) PG 64-22	2.0
Flexible	R4 Level 1 S(100) PG 64- 22	9.5
NonStabilized	Crushed gravel	8.0
NonStabilized	CDOT Class 2 ABC	8.0
Subgrade	A-4	6.0
Subgrade	A-4	Semi-infinite

Volumetric at Construction:		
Effective binder content (%)	11.2	
Air voids (%)	5.1	

Traffic

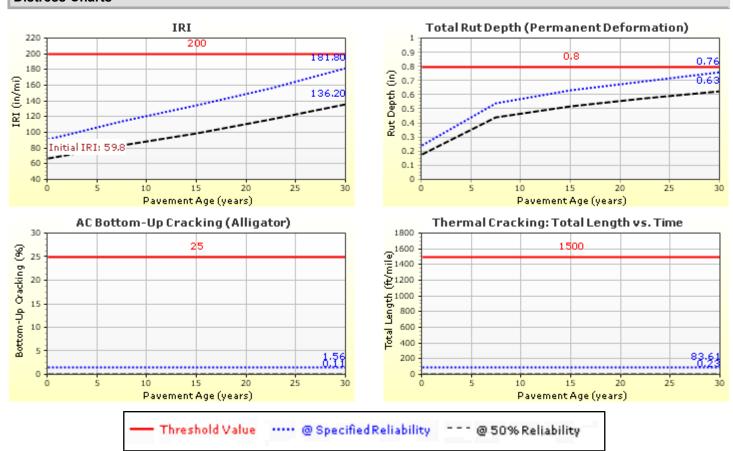
Age (year)	Heavy Trucks (cumulative)
2024 (initial)	3,640
2039 (15 years)	10,346,300
2054 (30 years)	24,271,100

Design Outputs

Distress Prediction Summary

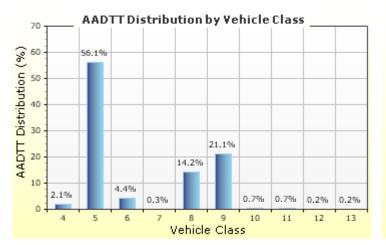
Distress Type		Distress @ Specified Reliability		Reliability (%)		
· · · · · · · · · · · · · · · · · · ·	Target	Predicted	Target	Achieved	Satisfied?	
Terminal IRI (in/mile)	200.00	181.82	90.00	96.34	Pass	
Permanent deformation - total pavement (in)	0.80	0.76	90.00	95.11	Pass	
AC bottom-up fatigue cracking (% lane area)	25.00	1.56	90.00	100.00	Pass	
AC thermal cracking (ft/mile)	1500.00	83.61	90.00	100.00	Pass	
AC top-down fatigue cracking (ft/mile)	3000.00	282.77	90.00	100.00	Pass	
Permanent deformation - AC only (in)	0.65	0.28	90.00	100.00	Pass	

Report generated on: 8/31/2023 5:16 PM


Version: 2.3.1+66

Created^{by:} on: 8/5/2016 12:00 AM

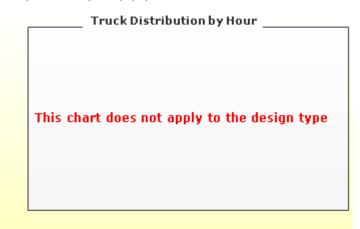
Distress Charts

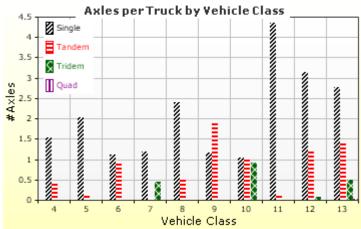


Traffic Inputs

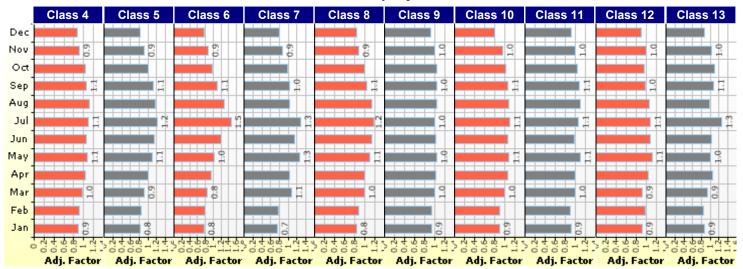
Graphical Representation of Traffic Inputs

Initial two-way AADTT: 3,640


Number of lanes in design direction: 2


Percent of trucks in design direction (%): 50.0

Percent of trucks in design lane (%): 90.0


Operational speed (mph) 35.0

Traffic Volume Monthly Adjustment Factors

Horizon Drive HMA (64-22) 30-year Design

e Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive HMA (64-22) 30-year Design.

Tabular Representation of Traffic Inputs

Volume Monthly Adjustment Factors

Level 3: Default MAF

Month					Vehicle	Class				
WIOTILIT	4	5	6	7	8	9	10	11	12	13
January	0.9	0.8	0.8	0.7	0.8	0.9	0.9	0.9	0.9	0.9
February	0.9	0.8	0.8	0.8	0.9	0.9	0.9	0.9	1.0	0.8
March	1.0	0.9	0.8	1.1	1.0	1.0	1.0	1.0	0.9	0.9
April	1.0	1.0	0.9	1.0	1.0	1.0	1.1	1.0	1.0	1.1
May	1.1	1.1	1.0	1.3	1.1	1.0	1.1	1.1	1.1	1.0
June	1.1	1.1	1.2	1.1	1.1	1.0	1.1	1.0	1.1	1.0
July	1.1	1.2	1.5	1.3	1.2	1.0	1.1	1.1	1.1	1.3
August	1.1	1.2	1.3	1.0	1.1	1.0	1.1	1.1	1.1	1.0
September	1.1	1.1	1.1	1.0	1.1	1.0	1.1	1.1	1.0	1.1
October	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.9	1.1
November	0.9	0.9	0.9	0.9	0.9	1.0	1.0	1.0	1.0	1.0
December	0.9	0.8	0.8	0.8	0.8	0.9	0.8	0.9	0.9	0.9

Distributions by Vehicle Class

Truck Distribution by Hour does not apply

Vehicle Class	AADTT Distribution (%)	Growt	vth Factor Function		
	(Level 3) `´	Rate (%)			
Class 4	2.1%	2%	Compound		
Class 5	56.1%	2%	Compound		
Class 6	4.4%	2%	Compound		
Class 7	0.3%	2%	Compound		
Class 8	14.2%	2%	Compound		
Class 9	21.1%	2%	Compound		
Class 10	0.7%	2%	Compound		
Class 11	0.7%	2%	Compound		
Class 12	0.2%	2%	Compound		
Class 13	0.2%	2%	Compound		

Axle Configuration

Traffic Wander	
Mean wheel location (in)	18.0
Traffic wander standard deviation (in)	10.0
Design lane width (ft)	12.0

Average Axle Spacing			
Tandem axle spacing (in)	51.6		
Tridem axle	49.2		

spacing (in) Quad axle spacing 49.2 (in)

Axle Configuration Average axle width (ft) 8.5 Dual tire spacing (in) 12.0

120.0

Wheelbase does not apply

Tire pressure (psi)

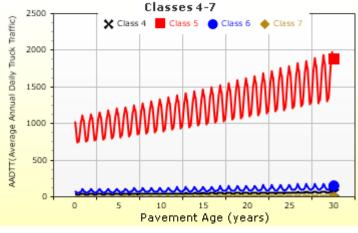
Number of Axles per Truck

Vehicle Class	Single Axle	Tandem Axle	Tridem Axle	Quad Axle
Class 4	1.53	0.45	0	0
Class 5	2.02	0.16	0.02	0
Class 6	1.12	0.93	0	0
Class 7	1.19	0.07	0.45	0.02
Class 8	2.41	0.56	0.02	0
Class 9	1.16	1.88	0.01	0
Class 10	1.05	1.01	0.93	0.02
Class 11	4.35	0.13	0	0
Class 12	3.15	1.22	0.09	0
Class 13	2.77	1.4	0.51	0.04

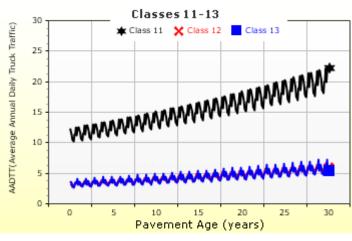
Report generated on: 8/31/2023 5:16 PM

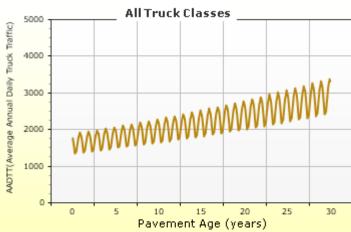
Version: 2.3.1+66

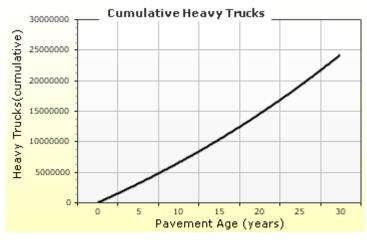
Created by: on: 8/5/2016 12:00 AM


Approved by: on: 8/5/2016 12:00 AM

Page 4 of 23



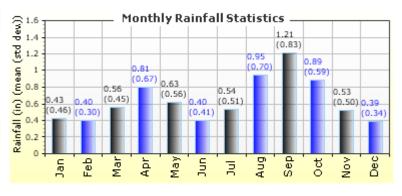

AADTT (Average Annual Daily Truck Traffic) Growth


* Traffic cap is not enforced

Climate Inputs

Climate Data Sources:

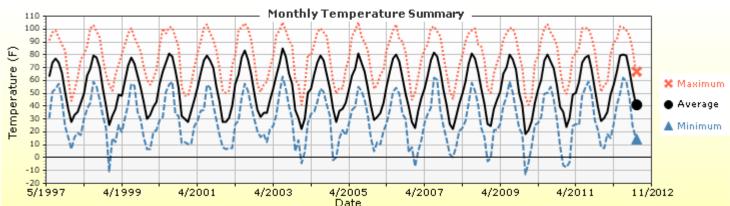
Climate Station Cities: Location (lat lon elevation(ft))
GRAND JUNCTION, CO 39.13400 -108.53800 4839

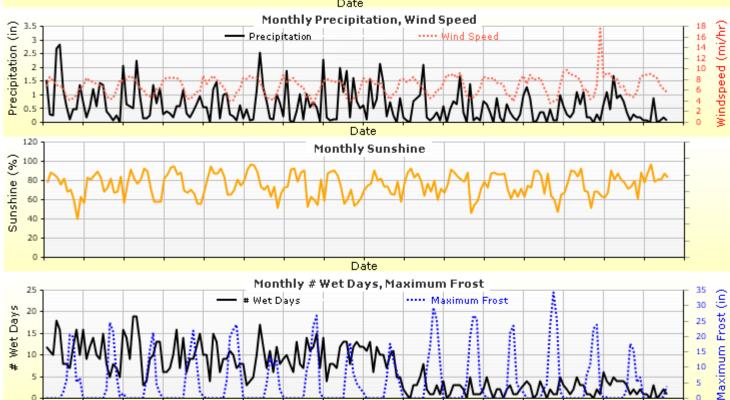


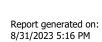
Mean annual air temperature (°F) 53.55

Mean annual precipitation (in) 7.76

Freezing index (°F - days) 398.73


Average annual number of freeze/thaw cycles: 111.77




Water table depth (ft)

4.00

Monthly Climate Summary:

5/1997

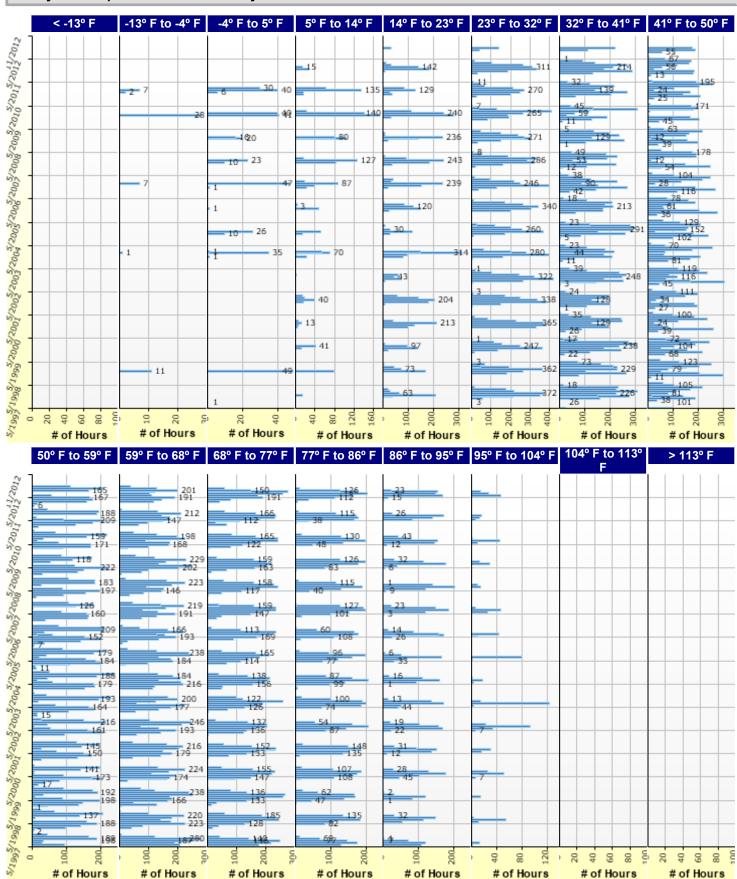
4/2001

Created by: on: 8/5/2016 12:00 AM

4/2005

4/2007

4/2003


Approved by: on: 8/5/2016 12:00 AM

11/2012

Hourly Air Temperature Distribution by Month:

Design Properties

HMA Design Properties

Use Multilayer Rutting Model	False
Using G* based model (not nationally calibrated)	False
Is NCHRP 1-37A HMA Rutting Model Coefficients	True
Endurance Limit	-
Use Reflective Cracking	True

Structure - ICM Properties	
AC surface shortwave absorptivity	0.85

Layer Name	II avor Tyno	Interface Friction
Layer 1 Flexible : R2 Level 1 SX (100) PG 64-22	Flexible (1)	1.00
Layer 2 Flexible : R4 Level 1 S (100) PG 64-22	Flexible (1)	1.00
Layer 3 Non-stabilized Base : Crushed gravel	Non-stabilized Base (4)	1.00
Layer 4 Non-stabilized Base : CDOT Class 2 ABC	Non-stabilized Base (4)	1.00
Layer 5 Subgrade : A-4	Subgrade (5)	1.00
Layer 6 Subgrade : A-4	Subgrade (5)	-

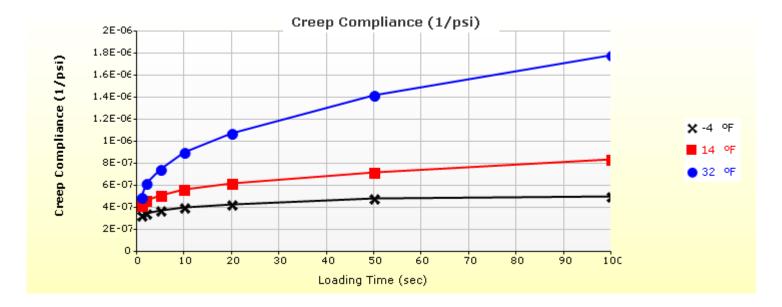
Report generated on: 8/31/2023 5:16 PM

Version: 2.3.1+66

Created by: on: 8/5/2016 12:00 AM

Approved by: on: 8/5/2016 12:00 AM

Page 8 of 23



Thermal Cracking (Input Level: 1)

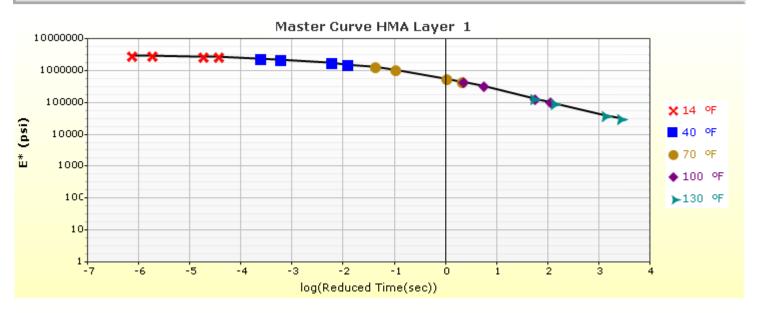
Indirect tensile strength at 14 °F (psi)	451.00
Thermal Contraction	
Is thermal contraction calculated?	True
Mix coefficient of thermal contraction (in/in/°F)	-
Aggregate coefficient of thermal contraction (in/in/°F)	5.0e-006
Voids in Mineral Aggregate (%)	16.3

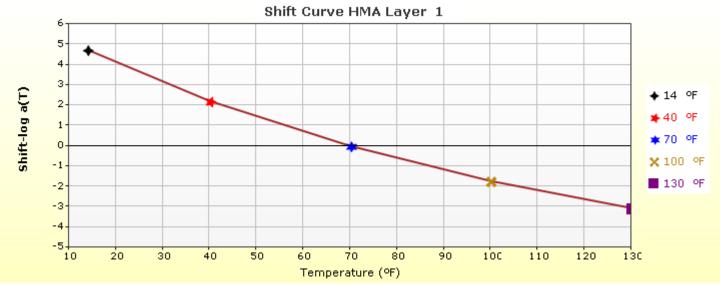
	Creep Compliance (1/psi)		
Loading time (sec)	-4 °F 14 °F 32 °F		32 °F
1	3.34e-007	4.19e-007	4.99e-007
2	3.53e-007	4.64e-007	6.19e-007
5	3.79e-007	5.15e-007	7.49e-007
10	4.05e-007	5.70e-007	9.08e-007
20	4.31e-007	6.26e-007	1.08e-006
50	4.87e-007	7.27e-007	1.43e-006
100	5.05e-007	8.41e-007	1.79e-006

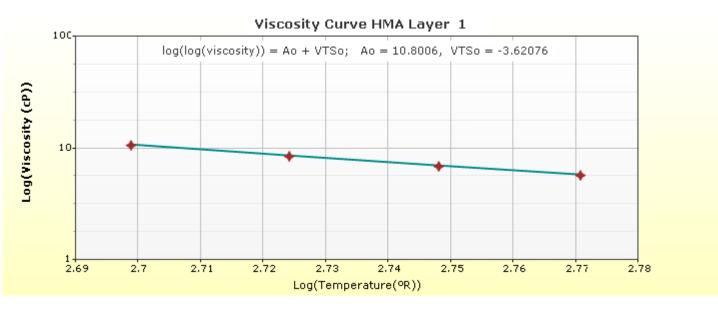
Report generated on: 8/31/2023 5:16 PM

Version: 2.3.1+66

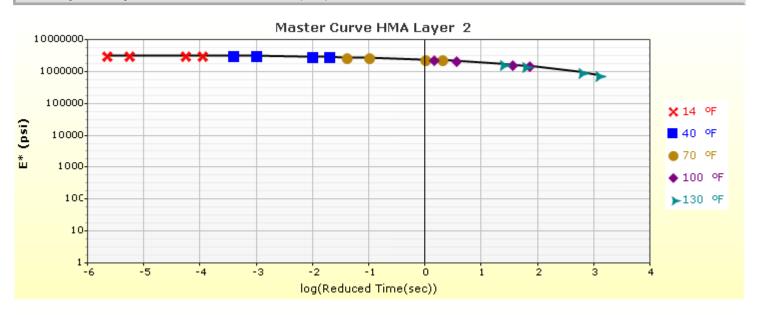
Created by: on: 8/5/2016 12:00 AM


Approved by: on: 8/5/2016 12:00 AM

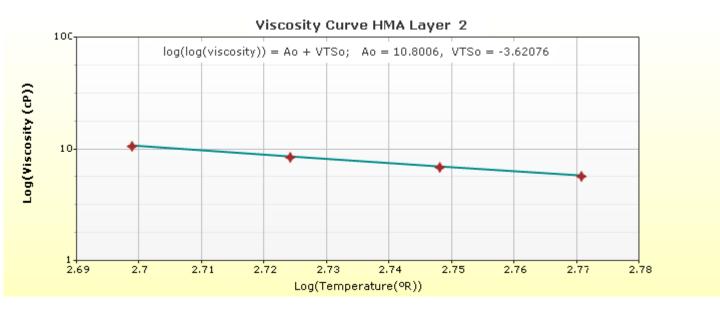

5/2016 12:00 AM Page 9 of 23



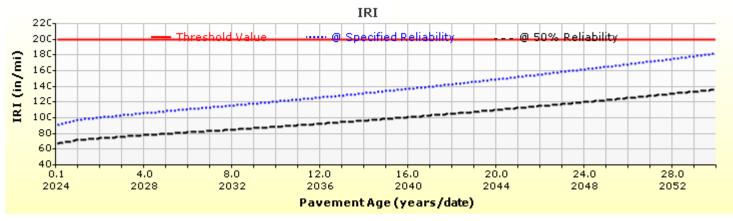
HMA Layer 1: Layer 1 Flexible: R2 Level 1 SX(100) PG 64-22

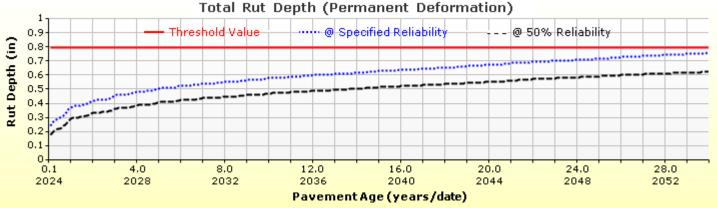


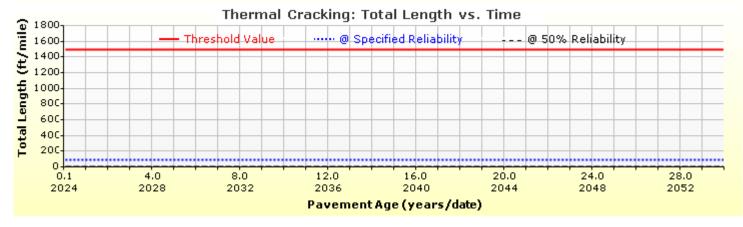
Created^{by:} on: 8/5/2016 12:00 AM



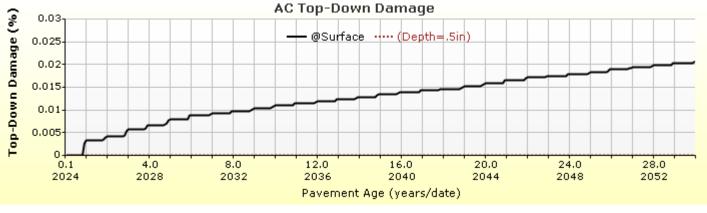
HMA Layer 2: Layer 2 Flexible: R4 Level 1 S(100) PG 64-22

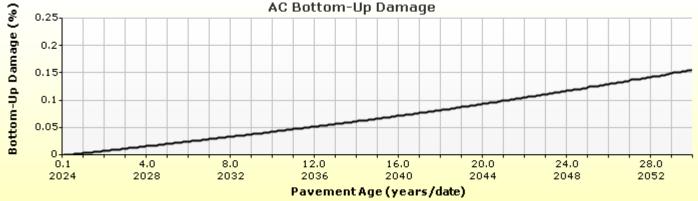


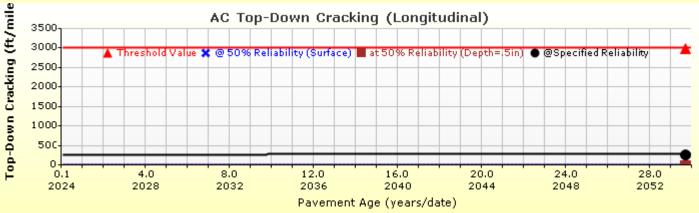


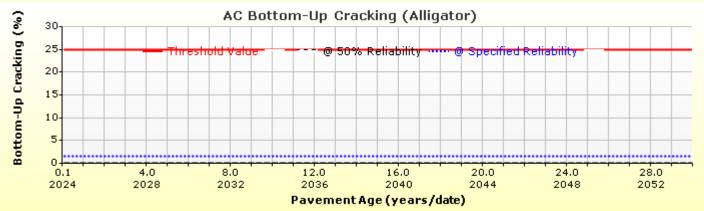


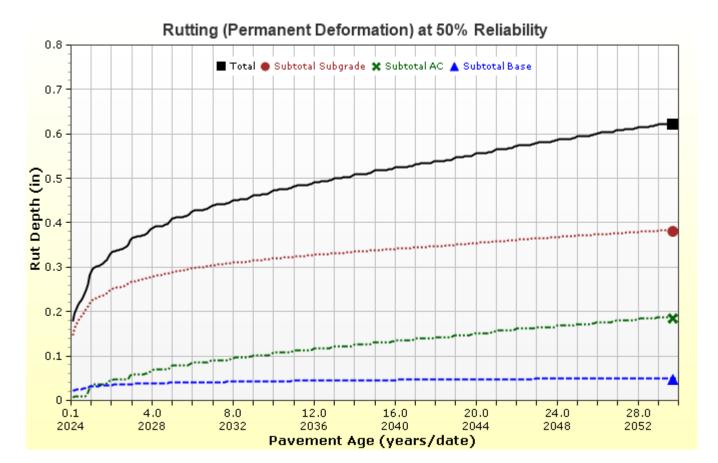
Analysis Output Charts



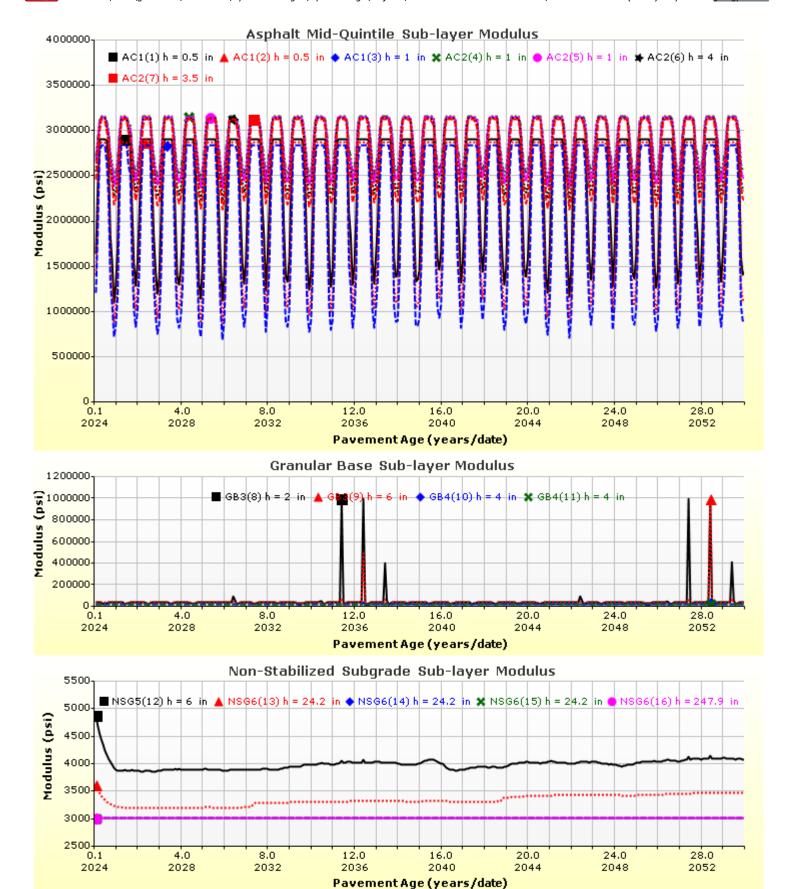








le Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive HMA (64-22) 30-year Design.de



le Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive HMA (64-22) 30-year Design

Layer Information

Layer 1 Flexible: R2 Level 1 SX(100) PG 64-22

Asphalt			
Thickness (in)	2.0		
Unit weight (pcf)	145.0		
Poisson's ratio	Is Calculated? True		
	Ratio	-	
	Parameter A	-1.63	
	Parameter B	3.84E-06	

Asphalt Dynamic Modulus (Input Level: 1)

T (°F)	0.5 Hz	1 Hz	10 Hz	25 Hz
14	2333549	2642179	2861449	2927779
40	1309490	1791270	2219829	2365949
70	379514	695090	1127310	1318450
100	87238	174824	349546	452545
130	29326	49265	92795	122034

Asphalt Binder

Temperature (°F)	Binder Gstar (Pa)	Phase angle (deg)
147.2	1857	81.6
158	889	83.1
168.8	451	85

General Info

Name	Value
Reference temperature (°F)	70
Effective binder content (%)	11.2
Air voids (%)	5.1
Thermal conductivity (BTU/hr-ft-°F)	0.67
Heat capacity (BTU/lb-°F)	0.23

Identifiers

Field	Value
Display name/identifier	R2 Level 1 SX(100) PG 64-22
Description of object	Mix ID # FS1938
Author	CDOT
Date Created	4/3/2013 12:00:00 AM
Approver	CDOT
Date approved	4/3/2013 12:00:00 AM
State	Colorado
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	sx
User defined field 2	
User defined field 3	
Revision Number	2

Report generated on: 8/31/2023 5:16 PM

Version: 2.3.1+66

Created^{by:} on: 8/5/2016 12:00 AM

Layer 2 Flexible : R4 Level 1 S(100) PG 64-22

Asphalt			
Thickness (in)	9.5		
Unit weight (pcf)	150.7		
Poisson's ratio	Is Calculated?	True	
	Ratio	-	
	Parameter A	-1.63	
	Parameter B	3.84E-06	

Asphalt Dynamic Modulus (Input Level: 1)

T (°F)	0.5 Hz	1 Hz	10 Hz	25 Hz
14	3066800	3098200	3172300	3192100
40	2806000	2874100	3039900	3085600
70	2266800	2396000	2735700	2835600
100	1522600	1696200	2219300	2393200
130	820200	975200	1545400	1773100

Asphalt Binder

Temperature (°F)	Binder Gstar (Pa)	Phase angle (deg)
168.8	451	85
147.2	1857	81.6
158	889	83.1

General Info

Name	Value
Reference temperature (°F)	70
Effective binder content (%)	10.59
Air voids (%)	6.34
Thermal conductivity (BTU/hr-ft-ºF)	0.67
Heat capacity (BTU/lb-°F)	0.23

Identifiers

Field	Value
Display name/identifier	R4 Level 1 S(100) PG 64-22
Description of object	Mix ID # FSA 0931-031
Author	CDOT
Date Created	5/3/2016 12:00:00 AM
Approver	CDOT - MP
Date approved	5/3/2016 12:00:00 AM
State	Colorado
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	S
User defined field 2	
User defined field 3	
Revision Number	0

Report generated on: 8/31/2023 5:16 PM

Version: 2.3.1+66

Created^{by:} on: 8/5/2016 12:00 AM

Layer 3 Non-stabilized Base : Crushed gravel

Unbound	
Layer thickness (in)	8.0
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus (Input	Level: 3	١
modulus (mpat	ECTOI. O	,

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi)
25000.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	Crushed gravel
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	42

Sieve	
Liquid Limit	6.0
Plasticity Index	1.0

True

Is layer compacted?

	Is User Defined?	Value
, , ,		127.7
Saturated hydraulic conductivity (ft/hr)	False	5.054e-02
Specific gravity of solids	False	2.7
Water Content (%)	False	7.4

User-defined Soil Water Characteristic Curve (SWCC)		
Is User Defined? False		
af	7.2555	
bf	1.3328	
cf	0.8242	
hr	117.4000	

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	8.7
#100	
#80	12.9
#60	
#50	
#40	20.0
#30	
#20	
#16	
#10	33.8
#8	
#4	44.7
3/8-in.	57.2
1/2-in.	63.1
3/4-in.	72.7
1-in.	78.8
1 1/2-in.	85.8
2-in.	91.6
2 1/2-in.	
3-in.	
3 1/2-in.	97.6

Report generated on: 8/31/2023 5:16 PM

Version: 2.3.1+66 Created^{by:} on: 8/5/2016 12:00 AM

Layer 4 Non-stabilized Base : CDOT Class 2 ABC

Unbound	
Layer thickness (in)	8.0
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus ((Input	Level: 3	١
Modulus	IIIPUL	LCVCI. O	,

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi) 12000.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	CDOT Class 2 ABC
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve

Liquid Limit	6.0
Plasticity Index	1.0
Is layer compacted?	True

	Is User Defined?	Value
, , ,	False	127.7
Saturated hydraulic conductivity (ft/hr)	False	5.054e-02
Specific gravity of solids	False	2.7
Water Content (%)	False	7.4

User-defined Soil Water Characteristic Curve (SWCC)		
Is User Defined?		
af	7.2555	
bf	1.3328	
cf	0.8242	
hr	117.4000	

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	8.7
#100	
#80	12.9
#60	
#50	
#40	20.0
#30	
#20	
#16	
#10	33.8
#8	
#4	44.7
3/8-in.	57.2
1/2-in.	63.1
3/4-in.	72.7
1-in.	78.8
1 1/2-in.	85.8
2-in.	91.6
2 1/2-in.	
3-in.	
3 1/2-in.	97.6

Report generated on: 8/31/2023 5:16 PM

Version: 2.3.1+66

Created^{by:} on: 8/5/2016 12:00 AM

Layer 5 Subgrade: A-4

Unbound	
Layer thickness (in)	6.0
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus (Input Level: 3)

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi) 6482.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	A-4
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve

Liquid Limit	21.0
Plasticity Index	5.0
Is layer compacted?	True

	Is User Defined?	Value
Maximum dry unit weight (pcf)	False	119
Saturated hydraulic conductivity (ft/hr)	False	7.589e-06
Specific gravity of solids	False	2.7
Water Content (%)	False	11.8

User-defined Soil Water Characteristic Curve (SWCC)	
Is User Defined? False	
af	68.8377
bf	0.9983
cf	0.4757
hr	500.0000

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	60.6
#100	
#80	73.9
#60	
#50	
#40	82.7
#30	
#20	
#16	
#10	89.9
#8	
#4	93.0
3/8-in.	95.6
1/2-in.	96.7
3/4-in.	98.0
1-in.	98.7
1 1/2-in.	99.4
2-in.	99.6
2 1/2-in.	
3-in.	
3 1/2-in.	99.8

Report generated on: 8/31/2023 5:16 PM

Version: 2.3.1+66 Created^{by:} on: 8/5/2016 12:00 AM

Layer 6 Subgrade: A-4

Unbound	
Layer thickness (in)	Semi-infinite
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus (Input Level: 3)

Analysis Type:	Modify input values by temperature/moisture	
Method:	Resilient Modulus (psi)	

Resilient Modulus (psi) 6482.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	A-4
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve

Liquid Limit	21.0
Plasticity Index	5.0
Is layer compacted?	True

	Is User Defined?	Value
, , ,	False	119
Saturated hydraulic conductivity (ft/hr)	False	7.589e-06
Specific gravity of solids	False	2.7
Water Content (%)	False	11.8

User-defined Soil Water Characteristic Curve (SWCC)	
Is User Defined?	
af	68.8377
bf	0.9983
cf	0.4757
hr	500.0000

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	60.6
#100	
#80	73.9
#60	
#50	
#40	82.7
#30	
#20	
#16	
#10	89.9
#8	
#4	93.0
3/8-in.	95.6
1/2-in.	96.7
3/4-in.	98.0
1-in.	98.7
1 1/2-in.	99.4
2-in.	99.6
2 1/2-in.	
3-in.	
3 1/2-in.	99.8

Report generated on: 8/31/2023 5:16 PM

Version: 2.3.1+66

Created^{by:} on: 8/5/2016 12:00 AM

Horizon Drive HMA (64-22) 30-year Design

Calibration Coefficients

AC Fatigue					
$N_f = 0.00432 * C * \beta_{f1} k_1 \left(\frac{1}{\varepsilon_1}\right)^{k_2 \beta_{f2}} \left(\frac{1}{E}\right)^{k_3 \beta_{f3}}$	k1: 0.007566				
$N_f = 0.00432 * C * \beta_{f1} k_1 \left(\frac{1}{c}\right)$	k2: 3.9492				
	k3: 1.281				
$C=10^{M}$	Bf1: 1				
$M = 4.84 \left(\frac{V_b}{V_a + V_b} - 0.69 \right)$	Bf2: 1				
Ya 1 1 b	Bf3: 1				

AC Rutting

$$\begin{split} &\frac{\varepsilon_p}{\varepsilon_r} = k_z \beta_{r1} 10^{k_1} T^{k_2 \beta_{r2}} N^{k_3 B_{r3}} \\ &k_z = (C_1 + C_2 * depth) * 0.328196^{depth} \\ &C_1 = -0.1039 * H_\alpha^2 + 2.4868 * H_\alpha - 17.342 \\ &C_2 = 0.0172 * H_\alpha^2 - 1.7331 * H_\alpha + 27.428 \end{split}$$

 $\varepsilon_p = plastic strain(in/in)$ $\varepsilon_r = resilient strain(in/in)$ $T = layer temperature(^{\circ}F)$ N = number of load repetitions

 $H_{aa} = total AC thickness(in)$

ac .	· /				
AC Rutting Standard Deviation	0.24 * Pow(RUT,0.8026) + 0.001				
AC Layer	K1:-3.35412 K2:1.5606 K3:0.4791	Br1:1 Br2:1 Br3:1			

Thermal Fracture

$$C_f = 400 * N \left(\frac{\log C/h_{ac}}{\sigma}\right) \begin{cases} C_f = \text{observed amount of thermal cracking}(ft/500ft) \\ k = \text{refression coefficient determined through field calibration} \\ N() = \text{standard normal distribution evaluated at}() \\ \sigma = \text{standard deviation of the log of the depth of cracks in the payments} \\ C = \text{crack depth}(in) \\ AC = (k * \beta t)^{n+1} * A * \Delta K^n \\ A = 10^{(4.389-2.52*log(E*\sigma_m*n))} \begin{cases} E*\sigma_m*n \\ A = \text{finch ness of asphalt layer}(in) \\ AC = \text{Change in the crack depth due to a cooling cycle} \\ A. n = \text{Fracture parameters for the asphalt mixture} \\ E = \text{mixture stiff ness} \\ \sigma_M = \text{Undamaged mixture tensile strength} \\ \beta_t = \text{Calibration parameter} \end{cases}$$

$$\text{Level 1 K: 1.5} \qquad \text{Level 1 Standard Deviation: 0.1468 * THERMAL + 65.027} \\ \text{Level 2 K: 0.5} \qquad \text{Level 2 Standard Deviation: 0.2841 * THERMAL + 55.462} \\ \text{Level 3 K: 1.5} \qquad \text{Level 3 Standard Deviation: 0.3972 * THERMAL + 20.422} \end{cases}$$

CSM Fatigue

$$N_f = 10^{\left(rac{k_1eta_{c1}\left(rac{\sigma_S}{M_r}
ight)}{k_2eta_{c2}}
ight)}egin{array}{c} N_f = number \ \sigma_s = Tensile: \ M_r = moduli \end{array}$$

 $N_f = number \ of \ repetitions \ to \ fatigue \ cracking$ $\sigma_s = Tensile stress(psi)$ $M_r = modulus \ of \ rupture(psi)$

Bc1: 0.75 k2: 1 Bc2:1.1

Report generated on: 8/31/2023 5:16 PM

Version: 2.3.1 + 66

Created^{by:} on: 8/5/2016 12:00 AM

Horizon Drive HMA (64-22) 30-year Design le Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive HMA (64-22) 30-year Design.de

Subgrade Ruttin	g		
$\delta_a(N) = \beta_{s_1} N$	$\left(\epsilon_1 \varepsilon_v h\left(\frac{\varepsilon_0}{\varepsilon_r}\right) \middle e^{-\left(\frac{\rho}{N}\right)^{\frac{1}{p}}}\right)$		itcal strain(in/in) al properties
Granular		Fine	
k1: 2.03	Bs1: 1	k1: 1.35	Bs1: 1
Standard Deviation 0.1477 * Pow(BA	on (BASERUT) SERUT,0.6711) + 0		viation (BASERUT) v(SUBRUT,0.5012) + 0.001

AC Cracking							
AC Top Down Cracking				AC Bottom Up Cracking			
$FC_{top} = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$	$FC_{top} = \left(\frac{C_4}{1 + e^{\left(C_1 - C_2 * log_{10}(Damage)\right)}}\right) * 10.56$		$FC = \left(\frac{6000}{1 + e^{\left(c_{1} * c_{1}' + c_{2} * c_{2}' log_{10}(D*100)\right)}}\right) * \left(\frac{1}{60}\right)$ $C'_{2} = -2.40874 - 39.748 * (1 + h_{ac})^{-2.856}$ $C'_{1} = -2 * C'_{2}$				
c1: 7	c2: 3.5	c3: 0	c4: 1000	c1: 1	c2: 1	c3: 6000	
AC Cracking Top Standard Deviation		AC Cracking Bottom Standard Deviation					
200 + 2300 (TOP+0.000		72-2.1654*L0	OG10	1.13 + 13/(1+ex (BOTTOM+0.00		G10	

CSM Cracking			IRI Flexible Pavements				
FC_{ctb} = $C_1 + \frac{C_2}{1 + e^{C_3 - C_4(Damage)}}$		C1 - Rutting C3 - Transverse C2 - Fatigue Crack C4 - Site Factors					
C1: 0	C2: 75	C3: 5	C4: 3	C1: 40	C2: 0.4	C3: 0.008	C4: 0.015
CSM Standard Deviation							
CTB*1]			

Report generated on: 8/31/2023 5:16 PM

Version: 2.3.1+66 Created by: on: 8/5/2016 12:00 AM

APPENDIX G

HORIZON DRIVE AND G ROAD ROUNDABOUT 20 AND 30-YEAR DESIGN LIFE FOR FLEXIBLE PAVEMENT M-E DESIGN PAVEMENT OUTPUT SHEETS

Design Inputs

Design Life: 20 years Base construction: May, 2024 Climate Data 39.134, -108.538

Sources (Lat/Lon) Design Type: **FLEXIBLE** Pavement construction: July, 2024

> Traffic opening: September, 2024

Design Structure

Layer type	Material Type	Thickness (in)
Flexible	R2 Level 1 SX(100) PG 64-22	2.0
Flexible	R4 Level 1 S(100) PG 64- 22	9.5
NonStabilized	Crushed gravel	8.0
NonStabilized	CDOT Class 2 ABC	8.0
Subgrade	A-4	6.0
Subgrade	A-4	Semi-infinite

Volumetric at Construction:				
Effective binder content (%)	11.2			
Air voids (%)	5.1			

Traffic

Age (year)	Heavy Trucks (cumulative)
2024 (initial)	6,350
2034 (10 years)	11,428,200
2044 (20 years)	25,359,200

Design Outputs

Distress Prediction Summary

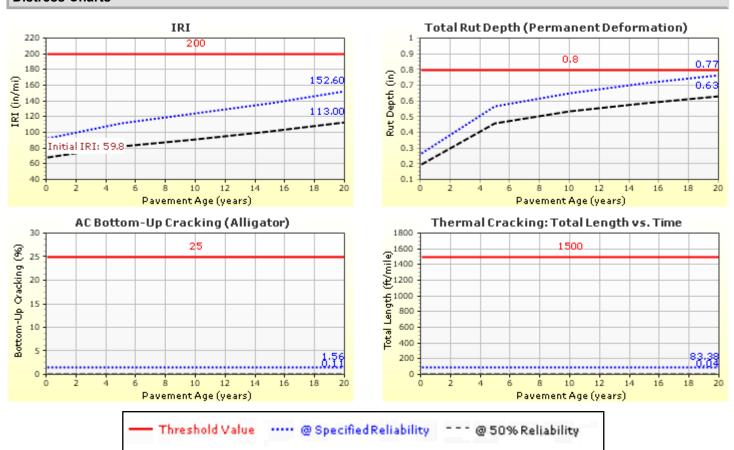
Distress Type		Specified Ibility	Reliab	Criterion	
	Target	Predicted	Target	Achieved	Satisfied?
Terminal IRI (in/mile)	200.00	152.63	90.00	99.75	Pass
Permanent deformation - total pavement (in)	0.80	0.77	90.00	94.50	Pass
AC bottom-up fatigue cracking (% lane area)	25.00	1.56	90.00	100.00	Pass
AC thermal cracking (ft/mile)	1500.00	83.38	90.00	100.00	Pass
AC top-down fatigue cracking (ft/mile)	3000.00	289.98	90.00	100.00	Pass
Permanent deformation - AC only (in)	0.65	0.28	90.00	100.00	Pass

Report generated on: 5/24/2023 5:47 PM

Version: 2.3.1+66

Created^{by:} on: 8/5/2016 12:00 AM

Approved by: on: 8/5/2016 12:00 AM


Page 1 of 23

Pv D

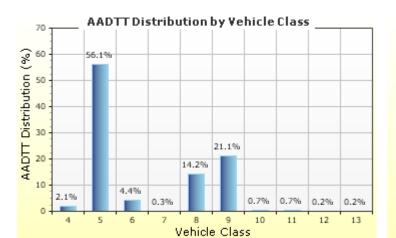
Horizon Drive and G Road Roundabout HMA Design ame: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road Roundabout HMA D

Distress Charts

Created by: on: 8/5/2016 12:00 AM Approved by: on: 8/5/2016 12:00 AM

Page 2 of 23

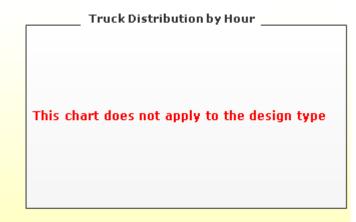
Horizon Drive and G Road Roundabout HMA Design

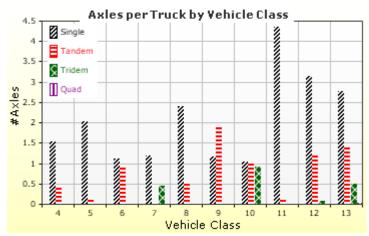

Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road Roundabout HMA

Traffic Inputs

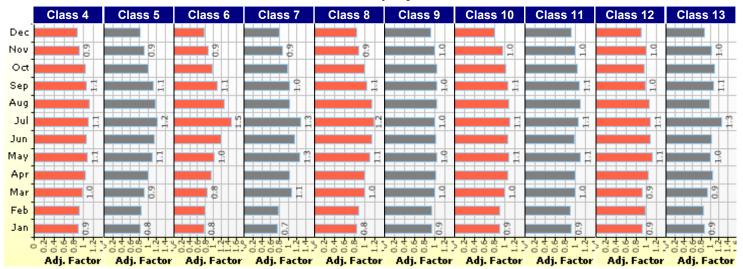
Graphical Representation of Traffic Inputs

Initial two-way AADTT: 6,350


Number of lanes in design direction: 2


Percent of trucks in design direction (%): 50.0

Percent of trucks in design lane (%): 90.0


Operational speed (mph) 35.0

Traffic Volume Monthly Adjustment Factors

Horizon Drive and G Road Roundabout HMA Design

ame: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road Roundabout HMA D

Tabular Representation of Traffic Inputs

Volume Monthly Adjustment Factors

Level 3: Default MAF

Month	Vehicle Class									
WOILLI	4	5	6	7	8	9	10	11	12	13
January	0.9	0.8	0.8	0.7	0.8	0.9	0.9	0.9	0.9	0.9
February	0.9	0.8	0.8	0.8	0.9	0.9	0.9	0.9	1.0	0.8
March	1.0	0.9	0.8	1.1	1.0	1.0	1.0	1.0	0.9	0.9
April	1.0	1.0	0.9	1.0	1.0	1.0	1.1	1.0	1.0	1.1
May	1.1	1.1	1.0	1.3	1.1	1.0	1.1	1.1	1.1	1.0
June	1.1	1.1	1.2	1.1	1.1	1.0	1.1	1.0	1.1	1.0
July	1.1	1.2	1.5	1.3	1.2	1.0	1.1	1.1	1.1	1.3
August	1.1	1.2	1.3	1.0	1.1	1.0	1.1	1.1	1.1	1.0
September	1.1	1.1	1.1	1.0	1.1	1.0	1.1	1.1	1.0	1.1
October	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.9	1.1
November	0.9	0.9	0.9	0.9	0.9	1.0	1.0	1.0	1.0	1.0
December	0.9	0.8	0.8	0.8	0.8	0.9	0.8	0.9	0.9	0.9

Distributions by Vehicle Class

Truck Distribution by Hour does not apply

Vehicle Class	AADTT Distribution (%)	Growt	h Factor
	(Level 3) `´	Rate (%)	Function
Class 4	2.1%	2%	Compound
Class 5	56.1%	2%	Compound
Class 6	4.4%	2%	Compound
Class 7	0.3%	2%	Compound
Class 8	14.2%	2%	Compound
Class 9	21.1%	2%	Compound
Class 10	0.7%	2%	Compound
Class 11	0.7%	2%	Compound
Class 12	0.2%	2%	Compound
Class 13	0.2%	2%	Compound

Axle Configuration

Traffic Wander				
Mean wheel location (in)	18.0			
Traffic wander standard deviation (in)	10.0			
Design lane width (ft)	12.0			

-	Wheel	base	does	not	ap	vla	

Dual tire spacing (in)

Tire pressure (psi)

		Number	of Axle	s per Tr	uck
Axle Configuration	า	Vehicle Class	Single	Tandem	Trid
Average axle width (ft)	8.5	Class	Axle	Axle	Ах

12.0

120.0

Vehicle Class			Tridem Axle	Quad Axle	
Class 4	1.53	0.45	0	0	
Class 5	2.02	0.16	0.02	0	
Class 6	1.12	0.93	0	0	
Class 7	1.19	0.07	0.45	0.02	
Class 8	2.41	0.56	0.02	0	
Class 9	1.16	1.88	0.01	0	
Class 10	1.05	1.01	0.93	0.02	
Class 11	4.35	0.13	0	0	
Class 12	3.15	1.22	0.09	0	
Class 13	2.77	1.4	0.51	0.04	

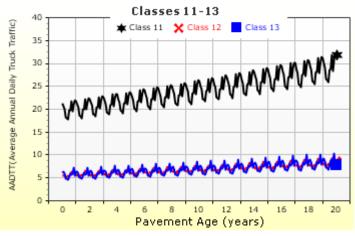
Average Axie Spacing				
Tandem axle spacing (in)	51.6			
Tridem axle spacing (in)	49.2			
Quad axle spacing (in)	49.2			

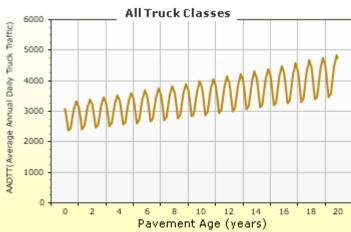
Report generated on: 5/24/2023 5:47 PM

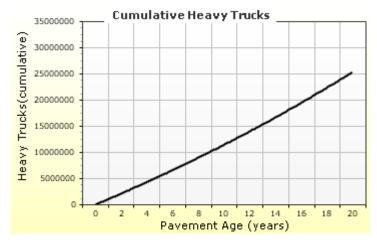
Version: 2.3.1+66

Created by: on: 8/5/2016 12:00 AM

Horizon Drive and G Road Roundabout HMA Design ame: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road Roundabout HMA Design\Projects\Horizon and G Road Roundabout\Horizon Drive and G Road Roundabout HMA Design\Projects\Horizon and G Road Roundabout HMA Design\Projects\Horizon and G Road Roundabout\Horizon Drive and G Road Roundabout HMA Design\Projects\Horizon and G Road Roundabout\Horizon Drive and G Road Roundabout HMA Design\Projects\Horizon and G Road Roundabout\Horizon Drive and G Road Roundabout HMA Design\Projects\Horizon Drive and G Road Roundabout\Horizon Drive and G Road Roundabout\Horizo




AADTT (Average Annual Daily Truck Traffic) Growth

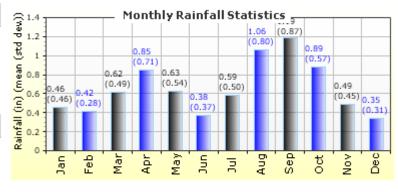

* Traffic cap is not enforced

Horizon Drive and G Road Roundabout HMA Design ame: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road Roundabout HMA

Climate Inputs

Climate Data Sources:

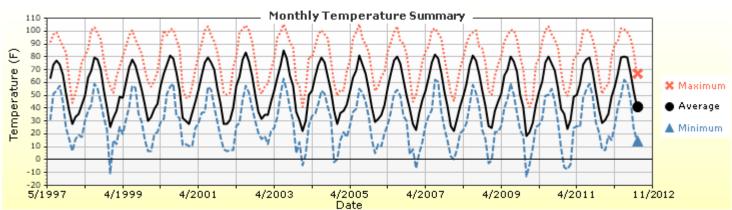
Climate Station Cities: Location (lat lon elevation(ft))
GRAND JUNCTION, CO 39.13400 -108.53800 4839

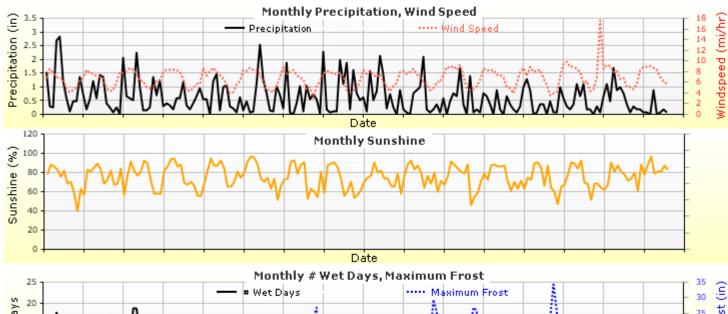


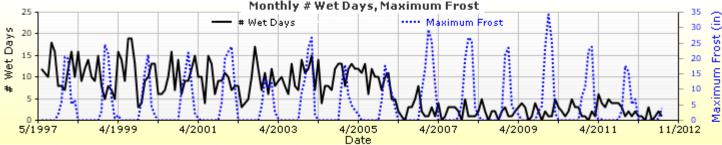
Mean annual air temperature (°F) 53.75

Mean annual precipitation (in) 7.96

Freezing index (°F - days) 360.58

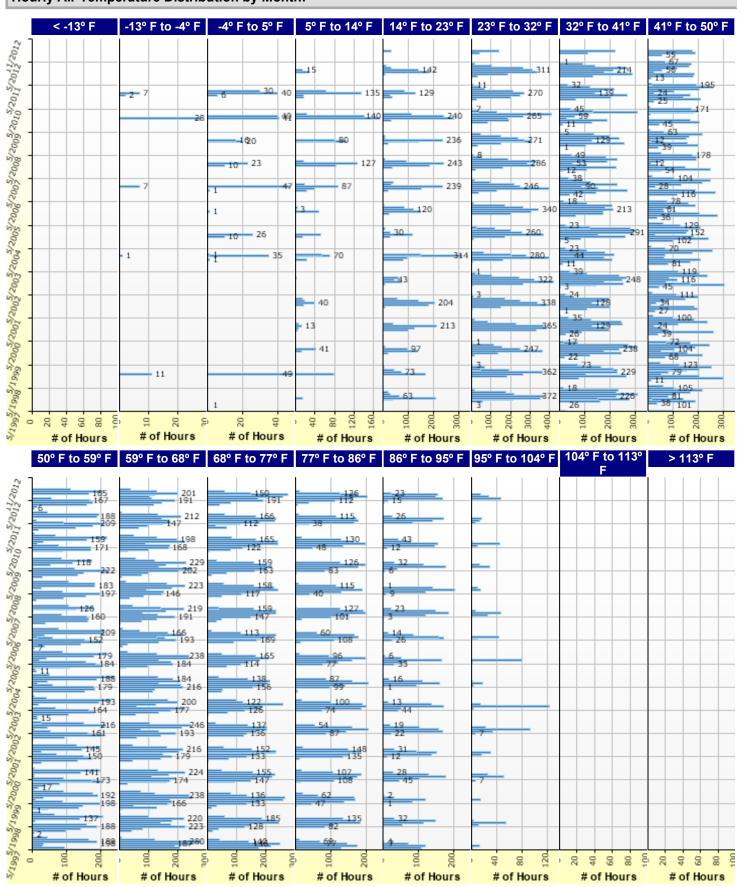

Average annual number of freeze/thaw cycles: 111.77




Water table depth (ft)

4.00

Monthly Climate Summary:


Created by: on: 8/5/2016 12:00 AM

Horizon Drive and G Road Roundabout HMA Design Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road Roundabout HMA D

Hourly Air Temperature Distribution by Month:

Horizon Drive and G Road Roundabout HMA Design ame: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizon and G Road Roundabout\Horizon Drive and G Road Roundabout HMA Design Design

Design Properties

HMA Design Properties

Use Multilayer Rutting Model	False
Using G* based model (not nationally calibrated)	False
Is NCHRP 1-37A HMA Rutting Model Coefficients	True
Endurance Limit	-
Use Reflective Cracking	True

Structure - ICM Properties	
AC surface shortwave absorptivity	0.85

Layer Name	Layer Type	Interface Friction
Layer 1 Flexible : R2 Level 1 SX (100) PG 64-22	Flexible (1)	1.00
Layer 2 Flexible : R4 Level 1 S (100) PG 64-22	Flexible (1)	1.00
Layer 3 Non-stabilized Base : Crushed gravel	Non-stabilized Base (4)	1.00
Layer 4 Non-stabilized Base : CDOT Class 2 ABC	Non-stabilized Base (4)	1.00
Layer 5 Subgrade : A-4	Subgrade (5)	1.00
Layer 6 Subgrade : A-4	Subgrade (5)	-

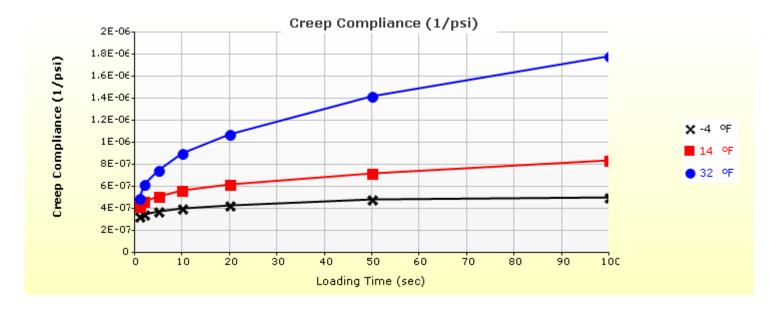
Report generated on: 5/24/2023 5:47 PM

Version: 2.3.1+66

Created^{by:} on: 8/5/2016 12:00 AM

Approved by: on: 8/5/2016 12:00 AM

Page 8 of 23

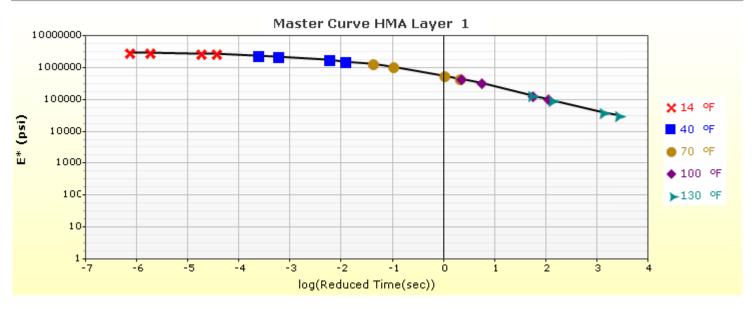

Horizon Drive and G Road Roundabout HMA Design ame: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road Roundabout HMA Design

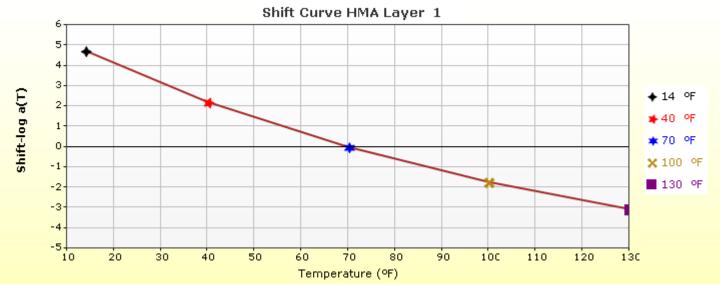
Thermal Cracking (Input Level: 1)

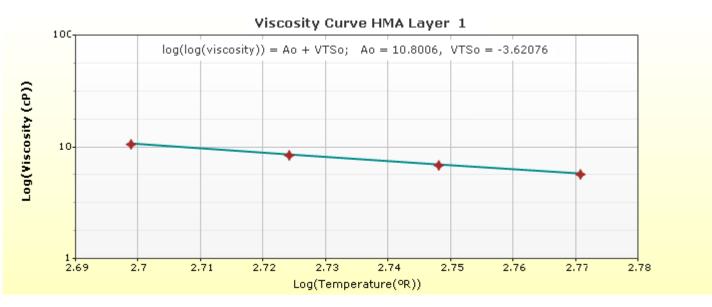
Indirect tensile strength at 14 °F (psi)	451.00
Thermal Contraction	
Is thermal contraction calculated?	True
Mix coefficient of thermal contraction (in/in/ºF)	-
Aggregate coefficient of thermal contraction (in/in/°F)	5.0e-006
Voids in Mineral Aggregate (%)	16.3

	Creep Compliance (1/psi)		
Loading time (sec)	-4 °F 14 °F 32 °F		
1	3.34e-007	4.19e-007	4.99e-007
2	3.53e-007	4.64e-007	6.19e-007
5	3.79e-007	5.15e-007	7.49e-007
10	4.05e-007	5.70e-007	9.08e-007
20	4.31e-007	6.26e-007	1.08e-006
50	4.87e-007	7.27e-007	1.43e-006
100	5.05e-007	8.41e-007	1.79e-006

Report generated on: 5/24/2023 5:47 PM


Version: 2.3.1+66 Created^{by:} on: 8/5/2016 12:00 AM

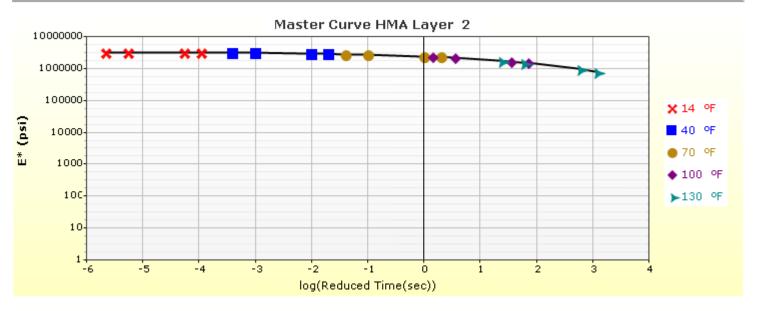


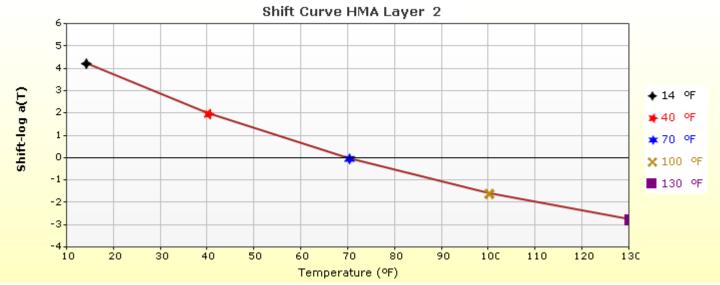

Horizon Drive and G Road Roundabout HMA Design ame: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizon and G Road Roundabout\Horizon Drive and G Road Roundabout HMA Design AM Design AM Design AM Design AM Design AM Design Desig

HMA Layer 1: Layer 1 Flexible : R2 Level 1 SX(100) PG 64-22

Report generated on: 5/24/2023 5:47 PM

Version: 2.3.1+66


Created^{by:} on: 8/5/2016 12:00 AM

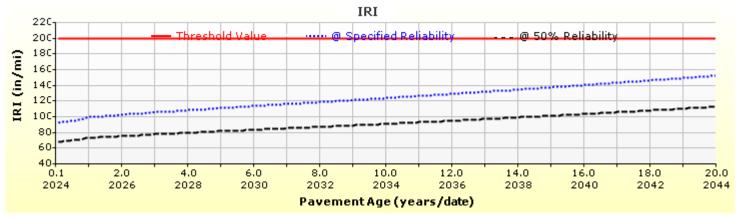


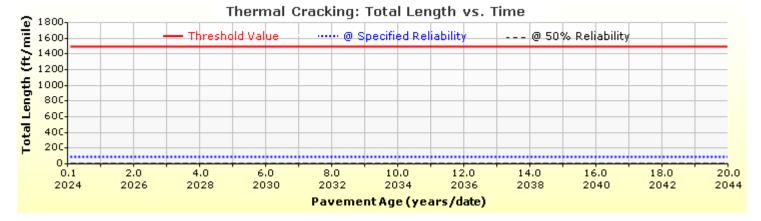
Horizon Drive and G Road Roundabout HMA Design ame: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizon and G Road Roundabout\Horizon Drive and G Road Roundabout HMA Design

HMA Layer 2: Layer 2 Flexible : R4 Level 1 S(100) PG 64-22

Report generated on: 5/24/2023 5:47 PM

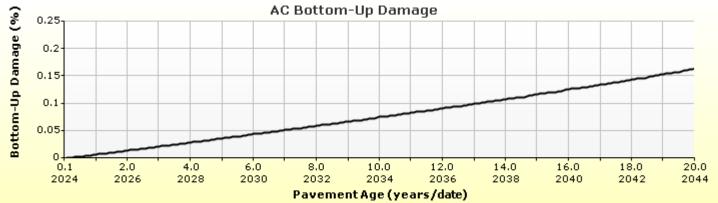
Version: 2.3.1+66

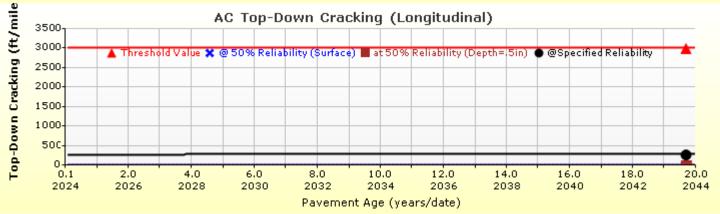

Created^{by:} on: 8/5/2016 12:00 AM

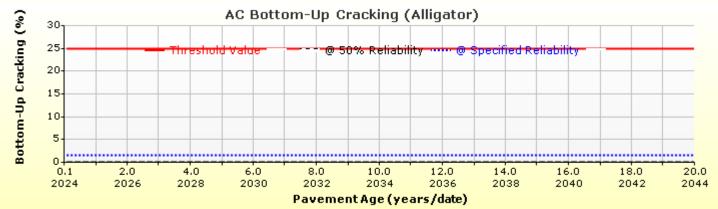

Horizon Drive and G Road Roundabout HMA Design

Analysis Output Charts

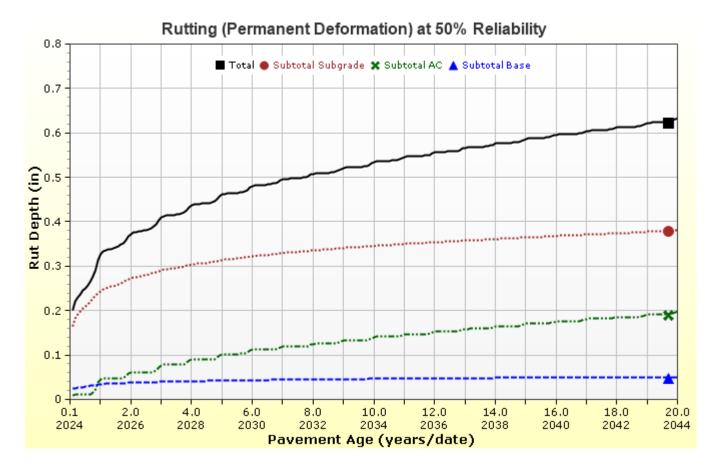




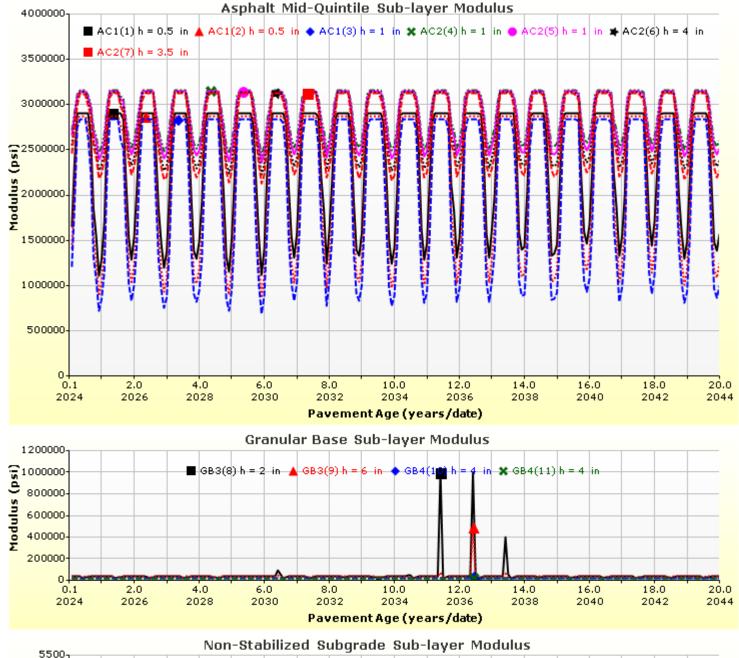

PvD

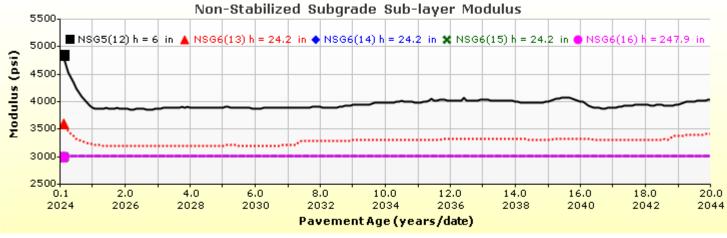

Horizon Drive and G Road Roundabout HMA Design ame: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road Roundabout HMA D

Created by: on: 8/5/2016 12:00 AM


Approved by: on: 8/5/2016 12:00 AM

Page 13 of 23


Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road Roundabout HMA Designs



Horizon Drive and G Road Roundabout HMA Design ame: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road Roundabout HMA

Horizon Drive and G Road Roundabout HMA Design

ame: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road Roundabout HMA D

Layer Information

Layer 1 Flexible: R2 Level 1 SX(100) PG 64-22

Asphalt				
Thickness (in)	2.0			
Unit weight (pcf)	145.0	145.0		
Poisson's ratio	ls Calculated?	True		
	Ratio	-		
	Parameter A	-1.63		
	Parameter B	3.84E-06		

Asphalt Dynamic Modulus (Input Level: 1)

T (°F)	0.5 Hz	1 Hz	10 Hz	25 Hz
14	2333549	2642179	2861449	2927779
40	1309490	1791270	2219829	2365949
70	379514	695090	1127310	1318450
100	87238	174824	349546	452545
130	29326	49265	92795	122034

Asphalt Binder

Temperature (°F)	Binder Gstar (Pa)	Phase angle (deg)
147.2	1857	81.6
158	889	83.1
168.8	451	85

General Info

Name	Value
Reference temperature (°F)	70
Effective binder content (%)	11.2
Air voids (%)	5.1
Thermal conductivity (BTU/hr-ft-ºF)	0.67
Heat capacity (BTU/lb-ºF)	0.23

Identifiers

Field	Value
Display name/identifier	R2 Level 1 SX(100) PG 64-22
Description of object	Mix ID # FS1938
Author	CDOT
Date Created	4/3/2013 12:00:00 AM
Approver	CDOT
Date approved	4/3/2013 12:00:00 AM
State	Colorado
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	sx
User defined field 2	
User defined field 3	
Revision Number	2

Report generated on: 5/24/2023 5:47 PM

Version: 2.3.1+66

Created^{by:} on: 8/5/2016 12:00 AM

Approved by: on: 8/5/2016 12:00 AM

Page 16 of 23

Horizon Drive and G Road Roundabout HMA Design ame: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road Roundabout HMA Design AASH Design AASH Design AASH Design Design

Layer 2 Flexible : R4 Level 1 S(100) PG 64-22

Asphalt			
Thickness (in)	9.5		
Unit weight (pcf)	150.7		
Poisson's ratio	Is Calculated? True		
	Ratio	-	
	Parameter A	-1.63	
	Parameter B	3.84E-06	

Asphalt Dynamic Modulus (Input Level: 1)

T (°F)	0.5 Hz	1 Hz	10 Hz	25 Hz
14	3066800	3098200	3172300	3192100
40	2806000	2874100	3039900	3085600
70	2266800	2396000	2735700	2835600
100	1522600	1696200	2219300	2393200
130	820200	975200	1545400	1773100

Asphalt Binder

Temperature (°F)	Binder Gstar (Pa)	Phase angle (deg)
168.8	451	85
147.2	1857	81.6
158	889	83.1

General Info

Name	Value
Reference temperature (°F)	70
Effective binder content (%)	10.59
Air voids (%)	6.34
Thermal conductivity (BTU/hr-ft-ºF)	0.67
Heat capacity (BTU/lb-ºF)	0.23

Identifiers

Field	Value
Display name/identifier	R4 Level 1 S(100) PG 64-22
Description of object	Mix ID # FSA 0931-031
Author	CDOT
Date Created	5/3/2016 12:00:00 AM
Approver	CDOT - MP
Date approved	5/3/2016 12:00:00 AM
State	Colorado
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	S
User defined field 2	
User defined field 3	
Revision Number	0

Report generated on: 5/24/2023 5:47 PM

Version: 2.3.1+66

Created^{by:} on: 8/5/2016 12:00 AM

Horizon Drive and G Road Roundabout HMA Design ame: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road Roundabout HMA Design Design

Layer 3 Non-stabilized Base : Crushed gravel

Unbound	
Layer thickness (in)	8.0
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

ı	Resilient Modulus (psi)
	25000.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	Crushed gravel
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	42

Sieve	
Liquid Limit	6.0
Plasticity Index	1.0

True

Is layer compacted?

	Is User Defined?	Value
, , ,	False	127.7
Saturated hydraulic conductivity (ft/hr)	False	5.054e-02
Specific gravity of solids	False	2.7
Water Content (%)	False	7.4

User-defined Soil Water Characteristic Curve (SWCC)	
Is User Defined?	
af	7.2555
bf	1.3328
cf	0.8242
hr	117.4000

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	8.7
#100	
#80	12.9
#60	
#50	
#40	20.0
#30	
#20	
#16	
#10	33.8
#8	
#4	44.7
3/8-in.	57.2
1/2-in.	63.1
3/4-in.	72.7
1-in.	78.8
1 1/2-in.	85.8
2-in.	91.6
2 1/2-in.	
3-in.	
3 1/2-in.	97.6

Report generated on: 5/24/2023 5:47 PM

Version: 2.3.1+66

Created^{by:} on: 8/5/2016 12:00 AM

Horizon Drive and G Road Roundabout HMA Design ame: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road Roundabout HMA Design\Projects\Horizon and G Road Roundabout\Horizon Drive and G Road Roundabout HMA Design\Projects\Horizon and G Road Roundabout\Horizon Drive and G Road Roundabout HMA Design\Projects\Horizon and G Road Roundabout\Horizon Drive and G Road Roundabout HMA Design\Projects\Horizon and G Road Roundabout\Horizon Drive and G Road Roundabout HMA Design\Projects\Horizon and G Road Roundabout\Horizon Drive and G Road Roundabout\Horizon Britan B

Layer 4 Non-stabilized Base : CDOT Class 2 ABC

Unbound	
Layer thickness (in)	8.0
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus ((Input	Level:	3)
Modulus	liiput	LCVCI.	υ,

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi)
12000.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	CDOT Class 2 ABC
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve

Liquid Limit	6.0
Plasticity Index	1.0
Is layer compacted?	True

	Is User Defined?	Value
Maximum dry unit weight (pcf)	False	127.7
Saturated hydraulic conductivity (ft/hr)	False	5.054e-02
Specific gravity of solids	False	2.7
Water Content (%)	False	7.4

User-defined Soil Water Characteristic Curve (SWCC)		
Is User Defined? False		
af	7.2555	
bf	1.3328	
cf	0.8242	
hr	117.4000	

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	8.7
#100	
#80	12.9
#60	
#50	
#40	20.0
#30	
#20	
#16	
#10	33.8
#8	
#4	44.7
3/8-in.	57.2
1/2-in.	63.1
3/4-in.	72.7
1-in.	78.8
1 1/2-in.	85.8
2-in.	91.6
2 1/2-in.	
3-in.	
3 1/2-in.	97.6

Report generated on: 5/24/2023 5:47 PM

Version: 2.3.1+66

Created^{by:} on: 8/5/2016 12:00 AM

Horizon Drive and G Road Roundabout HMA Design ame: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road Roundabout HMA Design\Projects\Horizon and G Road Roundabout\Horizon Drive and G Road Roundabout HMA Design\Projects\Horizon and G Road Roundabout\Horizon Drive and G Road Roundabout HMA Design\Projects\Horizon and G Road Roundabout\Horizon Drive and G Road Roundabout HMA Design\Projects\Horizon and G Road Roundabout\Horizon Drive and G Road Roundabout HMA Design\Projects\Horizon and G Road Roundabout\Horizon Drive and G Road Roundabout\Horizon Britan B

Layer 5 Subgrade : A-4

Unbound	
Layer thickness (in)	6.0
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus	/Innut	Lovali	31
Woulds	HIDUL	Levei.	J.

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi)	
6482.0	

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	A-4
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve

Liquid Limit	21.0
Plasticity Index	5.0
Is layer compacted?	True

	Is User Defined?	Value
Maximum dry unit weight (pcf)	False	119
Saturated hydraulic conductivity (ft/hr)	False	7.589e-06
Specific gravity of solids	False	2.7
Water Content (%)	False	11.8

User-defined Soil Water Characteristic Curve (SWCC)		
Is User Defined? False		
af	68.8377	
bf	0.9983	
cf	0.4757	
hr	500.0000	

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	60.6
#100	
#80	73.9
#60	
#50	
#40	82.7
#30	
#20	
#16	
#10	89.9
#8	
#4	93.0
3/8-in.	95.6
1/2-in.	96.7
3/4-in.	98.0
1-in.	98.7
1 1/2-in.	99.4
2-in.	99.6
2 1/2-in.	
3-in.	
3 1/2-in.	99.8

Report generated on: 5/24/2023 5:47 PM

Version: 2.3.1+66

Created by: on: 8/5/2016 12:00 AM

Horizon Drive and G Road Roundabout HMA Design ame: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road Roundabout HMA Design AASH THE C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road Roundabout HMA Design

Layer 6 Subgrade : A-4

Unbound	
Layer thickness (in)	Semi-infinite
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus	(Innut	Ι Δνα	I· 31
Wiodulus	(III)PUL	Leve	1. J)

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi)	
6482.0	

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	A-4
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve

Liquid Limit	21.0
Plasticity Index	5.0
Is layer compacted?	True

	Is User Defined?	Value
, , ,	False	119
Saturated hydraulic conductivity (ft/hr)	False	7.589e-06
Specific gravity of solids	False	2.7
Water Content (%)	False	11.8

User-defined Soil Water Characteristic Curve (SWCC)				
Is User Defined?	False			
if 68.8377				
of 0.9983				
cf 0.4757				
hr 500.0000				

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	60.6
#100	
#80	73.9
#60	
#50	
#40	82.7
#30	
#20	
#16	
#10	89.9
#8	
#4	93.0
3/8-in.	95.6
1/2-in.	96.7
3/4-in.	98.0
1-in.	98.7
1 1/2-in.	99.4
2-in.	99.6
2 1/2-in.	
3-in.	
3 1/2-in.	99.8

Report generated on: 5/24/2023 5:47 PM

Version: 2.3.1+66

Created by: on: 8/5/2016 12:00 AM

Horizon Drive and G Road Roundabout HMA Design me: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road Roundabout HMA

Calibration Coefficients

AC Fatigue				
$N_{f} = 0.00432 * C * \beta_{f1} k_{1} \left(\frac{1}{\varepsilon_{1}}\right)^{k_{2}\beta_{f2}} \left(\frac{1}{E}\right)^{k_{3}\beta_{f3}}$	k1: 0.007566			
$N_f = 0.00432 * C * \beta_{f1} k_1 \left(\frac{1}{c}\right)$	k2: 3.9492			
(c ₁)	k3: 1.281			
$C = 10^{10}$	Bf1: 1			
$M = 4.84 \left(\frac{V_b}{V_a + V_b} - 0.69 \right)$	Bf2: 1			
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Bf3: 1			

AC Rutting

$$\begin{split} \frac{\varepsilon_p}{\varepsilon_r} &= k_z \beta_{r1} 10^{k_1} T^{k_2 \beta_{r2}} N^{k_3 B_{r3}} \\ k_z &= (C_1 + C_2 * depth) * 0.328196^{depth} \\ C_1 &= -0.1039 * H_\alpha^2 + 2.4868 * H_\alpha - 17.342 \\ C_2 &= 0.0172 * H_\alpha^2 - 1.7331 * H_\alpha + 27.428 \end{split}$$

 $\varepsilon_p = plastic strain(in/in)$ $\varepsilon_r = resilient strain(in/in)$ $T = layer temperature(^{\circ}F)$ N = number of load repetitions

 $H_{aa} = total AC thickness(in)$

ac .	· /	
AC Rutting Standard Deviation	0.24 * Pow(RUT,0.8026) + 0.001	
AC Layer	K1:-3.35412 K2:1.5606 K3:0.4791	Br1:1 Br2:1 Br3:1

Thermal Fracture

$$C_f = \text{400} * N(\frac{\log C/h_{ac}}{\sigma}) \\ \Delta C = (k*\beta t)^{n+1} * A*\Delta K^n \\ A = 10^{(4.389-2.52*\log(E^*\sigma_m^*n))} \\ \text{Level 1 K: 1.5} \\ \text{Level 2 Standard Deviation: 0.3972 * THERMAL + 55.462} \\ \text{Level 3 K: 1.5} \\ \text{Level 3 Standard Deviation: 0.6ff ficient determined through field calibration N() = standard normal distribution evaluated at() of the log of the depth of cracks in the payments of the log of the depth of cracks in the log of the depth of cracks in the payments of the log of the depth of cracks in the payments of the log of the depth of cracks in the payments of the log of the depth of cracks in the payments of the log of the depth of cracks in the payments of the log of the depth of cracks in the payment of the log of the depth of crack depth o$$

CSM Fatigue

$$N_f = 10^{\left(rac{k_1 eta_{c1} \left(rac{\sigma_s}{M_r}
ight)}{k_2 eta_{c2}}
ight)} egin{array}{c} N_f = number\ of\ repetitions\ to\ fatigue\ cracking\ \sigma_s = Tensile\ stress(psi)\ M_r = modulus\ of\ rupture(psi) \ \end{array}$$

Report generated on: 5/24/2023 5:47 PM

Version: 2.3.1 + 66

Created by: on: 8/5/2016 12:00 AM

Approved by: on: 8/5/2016 12:00 AM

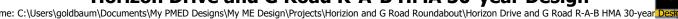
Page 22 of 23

Horizon Drive and G Road Roundabout HMA Design ame: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road Roundabout HMA Design AASH THE C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road Roundabout HMA Design

Subgrade Rut	ting				
$\delta_a(N) = \beta_{s_1} k_1 \varepsilon_v h\left(\frac{\varepsilon_0}{\varepsilon_r}\right) \left e^{-\left(\frac{\rho}{N}\right)^{\beta}} \right \qquad \begin{array}{c} N \\ \varepsilon_1 \\ \varepsilon_2 \end{array}$		$\delta_a = permanent deformation for the layer N = number \ of \ repetitions \varepsilon_v = average \ veritcal \ strain(in/in) \varepsilon_0, \beta, \rho = material \ properties \varepsilon_r = resilient \ strain(in/in)$			
Granular		Fine			
k1: 2.03	Bs1: 1	k1: 1.35 Bs1: 1			
		Standard Deviation (BASERUT)			

AC Cracking						
AC Top Down Cracking				AC Bottom Up Cracking		
$FC_{top} = \left(\frac{C_4}{1 + e^{(c_1 - c_2 * log_{10}(Damage))}}\right) * 10.56$		$FC = \left(\frac{6000}{1 + e^{\left(c_1 * c_1' + c_2 * c_2' log_{10}(D*100)\right)}}\right) * \left(\frac{1}{60}\right)$ $C_2' = -2.40874 - 39.748 * (1 + h_{ac})^{-2.856}$ $C_1' = -2 * C_2'$				
c1: 7	c2: 3.5	c3: 0	c4: 1000	c1: 1	c2: 1	c3: 6000
AC Cracking Top Standard Deviation AC Cracking Bottom Standard De				eviation		
200 + 2300/(1+exp(1.072-2.1654*LOG10 (TOP+0.0001)))		1.13 + 13/(1+exp(7.57-15.5*LOG10 (BOTTOM+0.0001)))				

CSM Cracking			IRI Flexible Pavements				
$FC_{ctb} = C_1 + \frac{C_2}{1 + e^{C_3 - C_4(Damage)}}$		C1 - Rutting C2 - Fatigue Crack		C3 - Transverse Crack C4 - Site Factors			
C1: 0	C2: 75	C3: 5	C4: 3	C1: 40	C2: 0.4	C3: 0.008	C4: 0.015
CSM Standard Deviation							
CTB*1				1			


Report generated on: 5/24/2023 5:47 PM

Version: 2.3.1+66

Created by: on: 8/5/2016 12:00 AM

Appr

Design Inputs

Design Life: 30 years Base construction: May, 2024 Climate Data 39.134, -108.538

Sources (Lat/Lon) Design Type: **FLEXIBLE** Pavement construction: July, 2024

> Traffic opening: September, 2024

Design Structure

Layer type	Material Type	Thickness (in)
Flexible	R2 Level 1 SX(100) PG 64-22	2.0
Flexible	R4 Level 1 S(100) PG 64- 22	10.5
NonStabilized	Crushed gravel	8.0
NonStabilized	CDOT Class 2 ABC	8.0
Subgrade	A-4	6.0
Subgrade	A-4	Semi-infinite

Volumetric at Construction:			
Effective binder content (%)			
Air voids (%)	5.1		

Traffic

Age (year)	Heavy Trucks (cumulative)
2024 (initial)	6,350
2039 (15 years)	18,049,200
2054 (30 years)	42,341,000

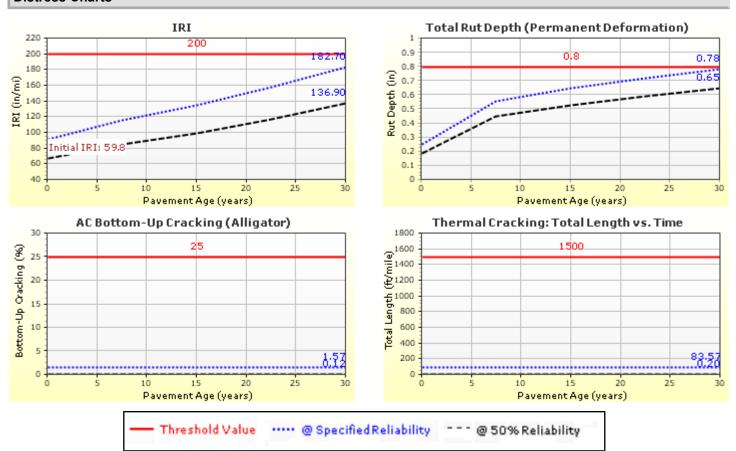
Design Outputs

Distress Prediction Summary

Distress Type		Specified Ibility	Reliability (%)		Criterion	
	Target	Predicted	Target	Achieved	Satisfied?	
Terminal IRI (in/mile)	200.00	182.72	90.00	96.12	Pass	
Permanent deformation - total pavement (in)	0.80	0.78	90.00	92.35	Pass	
AC bottom-up fatigue cracking (% lane area)	25.00	1.57	90.00	100.00	Pass	
AC thermal cracking (ft/mile)	1500.00	83.57	90.00	100.00	Pass	
AC top-down fatigue cracking (ft/mile)	3000.00	342.86	90.00	100.00	Pass	
Permanent deformation - AC only (in)	0.65	0.31	90.00	100.00	Pass	

Report generated on: 8/31/2023 5:03 PM

Version: 2.3.1+66

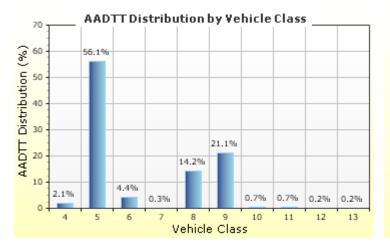

Created^{by:} on: 8/5/2016 12:00 AM

Pv D

Horizon Drive and G Road R-A-B HMA 30-year Design me: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road R-A-B HMA 30-year Design

Distress Charts

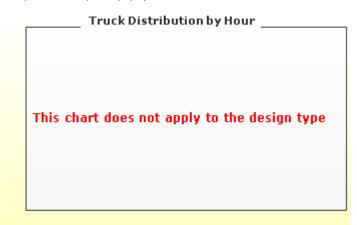
Horizon Drive and G Road R-A-B HMA 30-year Design me: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road R-A-B HMA 30-year Drive A B-A-B HMA 30-ye

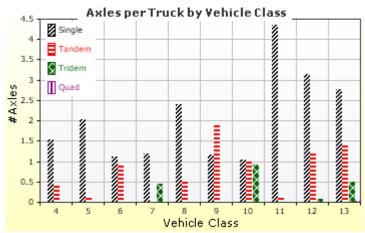


Traffic Inputs

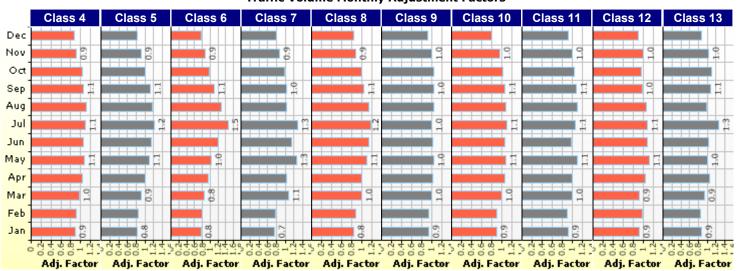
Graphical Representation of Traffic Inputs

Initial two-way AADTT: 6,350


Number of lanes in design direction: 2


Percent of trucks in design direction (%): 50.0

Percent of trucks in design lane (%): 90.0


Operational speed (mph) 35.0

Traffic Volume Monthly Adjustment Factors

Horizon Drive and G Road R-A-B HMA 30-year Design

ne: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road R-A-B HMA 30-year De

Tabular Representation of Traffic Inputs

Volume Monthly Adjustment Factors

Level 3: Default MAF

Month		Vehicle Class								
WOILLI	4	5	6	7	8	9	10	11	12	13
January	0.9	0.8	0.8	0.7	0.8	0.9	0.9	0.9	0.9	0.9
February	0.9	0.8	0.8	0.8	0.9	0.9	0.9	0.9	1.0	0.8
March	1.0	0.9	0.8	1.1	1.0	1.0	1.0	1.0	0.9	0.9
April	1.0	1.0	0.9	1.0	1.0	1.0	1.1	1.0	1.0	1.1
May	1.1	1.1	1.0	1.3	1.1	1.0	1.1	1.1	1.1	1.0
June	1.1	1.1	1.2	1.1	1.1	1.0	1.1	1.0	1.1	1.0
July	1.1	1.2	1.5	1.3	1.2	1.0	1.1	1.1	1.1	1.3
August	1.1	1.2	1.3	1.0	1.1	1.0	1.1	1.1	1.1	1.0
September	1.1	1.1	1.1	1.0	1.1	1.0	1.1	1.1	1.0	1.1
October	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.9	1.1
November	0.9	0.9	0.9	0.9	0.9	1.0	1.0	1.0	1.0	1.0
December	0.9	0.8	0.8	0.8	0.8	0.9	0.8	0.9	0.9	0.9

Distributions by Vehicle Class

Truck Distribution by Hour does not apply

Vehicle Class	AADTT Distribution (%)	Growth Factor		
	(Level 3) `	Rate (%)	Function	
Class 4	2.1%	2%	Compound	
Class 5	56.1%	2%	Compound	
Class 6	4.4%	2%	Compound	
Class 7	0.3%	2%	Compound	
Class 8	14.2%	2%	Compound	
Class 9	21.1%	2%	Compound	
Class 10	0.7%	2%	Compound	
Class 11	0.7%	2%	Compound	
Class 12	0.2%	2%	Compound	
Class 13	0.2%	2%	Compound	

Axle Configuration

Traffic Wander			
Mean wheel location (in)	18.0		
Traffic wander standard deviation (in)	10.0		
Design lane width (ft)	12.0		

Wheelbase	does	not	apply

Axle Configuration	า
Average axle width (ft)	8.5
Dual tire spacing (in)	12.0
Tire pressure (psi)	120.0

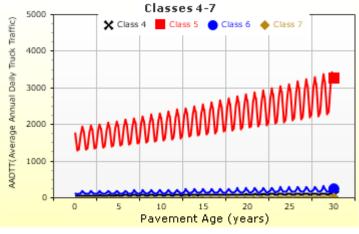
Number of Axles per Truck

Vehicle Class	Single Axle	Tandem Axle	Tridem Axle	Quad Axle
Class 4	1.53	0.45	0	0
Class 5	2.02	0.16	0.02	0
Class 6	1.12	0.93	0	0
Class 7	1.19	0.07	0.45	0.02
Class 8	2.41	0.56	0.02	0
Class 9	1.16	1.88	0.01	0
Class 10	1.05	1.01	0.93	0.02
Class 11	4.35	0.13	0	0
Class 12	3.15	1.22	0.09	0
Class 13	2.77	1.4	0.51	0.04

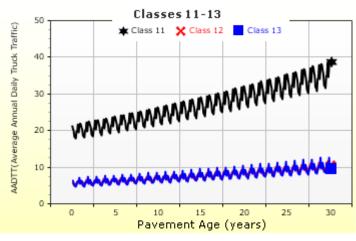
Average Axle Spacing Tandem axle 51.6 spacing (in) Tridem axle 49.2 spacing (in) Quad axle spacing 49.2 (in)

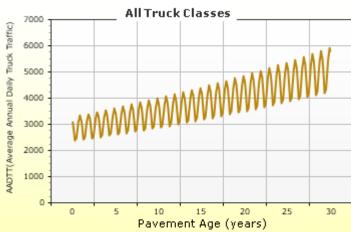
Report generated on: 8/31/2023 5:03 PM

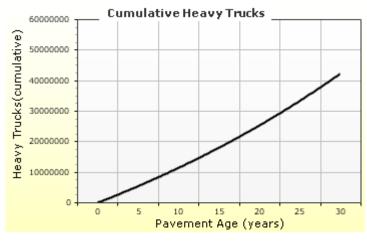
Version: 2.3.1+66


Created by: on: 8/5/2016 12:00 AM


Horizon Drive and G Road R-A-B HMA 30-year Design me: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road R-A-B HMA 30-year D




AADTT (Average Annual Daily Truck Traffic) Growth

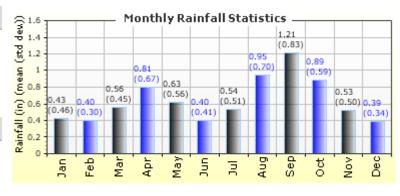

* Traffic cap is not enforced

Horizon Drive and G Road R-A-B HMA 30-year Design me: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road R-A-B HMA 30-year D

Climate Inputs

Climate Data Sources:

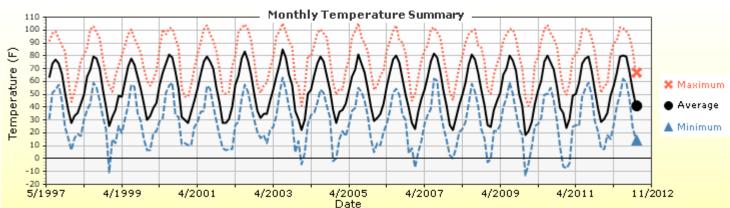
Climate Station Cities: Location (lat lon elevation(ft))
GRAND JUNCTION, CO 39.13400 -108.53800 4839

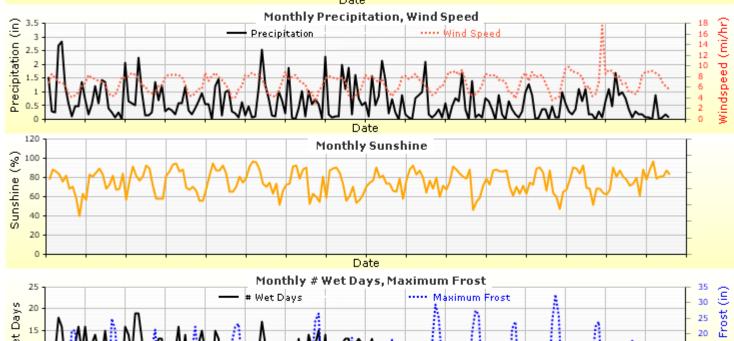


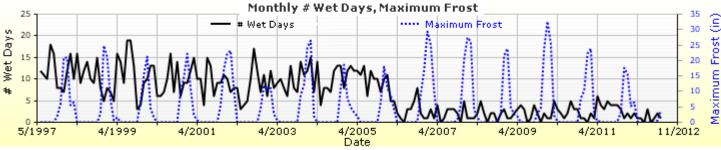
Mean annual air temperature (°F) 53.55

Mean annual precipitation (in) 7.76

Freezing index (°F - days) 398.73


Average annual number of freeze/thaw cycles: 111.77



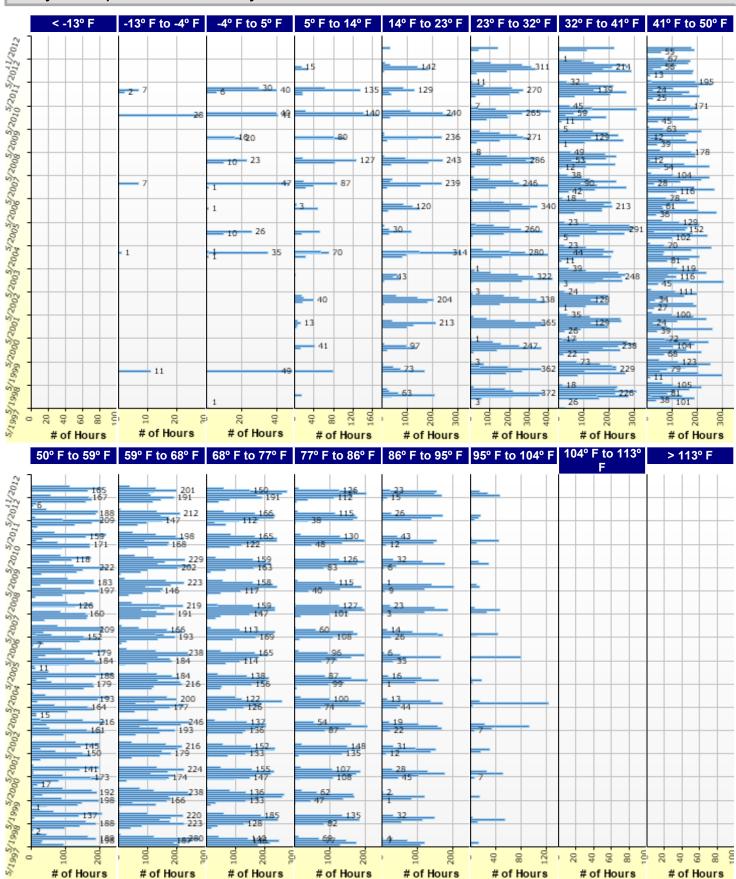

Water table depth (ft)

4.00

Monthly Climate Summary:

Report generated on: 8/31/2023 5:03 PM

Version: 2.3.1+66


Created^{by:} on: 8/5/2016 12:00 AM

Horizon Drive and G Road R-A-B HMA 30-year Design Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road R-A-B HMA 30-year Design

Hourly Air Temperature Distribution by Month:

Horizon Drive and G Road R-A-B HMA 30-year Design me: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road R-A-B HMA 30-year Design

Design Properties

HMA Design Properties

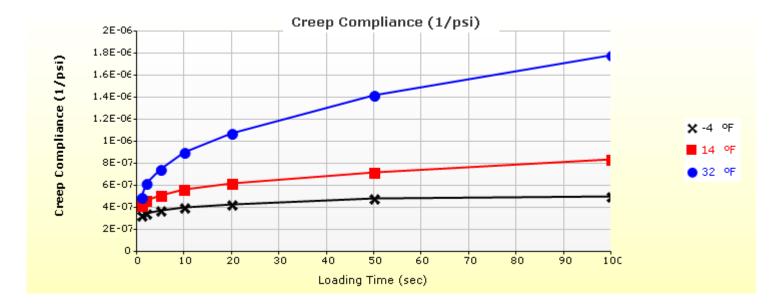
Use Multilayer Rutting Model	False
Using G* based model (not nationally calibrated)	False
Is NCHRP 1-37A HMA Rutting Model Coefficients	True
Endurance Limit	-
Use Reflective Cracking	True

	-
Structure - ICM Properties	
AC surface shortwave absorptivity	0.85

Layer Name	Layer Type	Interface Friction
Layer 1 Flexible : R2 Level 1 SX (100) PG 64-22	Flexible (1)	1.00
Layer 2 Flexible : R4 Level 1 S (100) PG 64-22	Flexible (1)	1.00
Layer 3 Non-stabilized Base : Crushed gravel	Non-stabilized Base (4)	1.00
Layer 4 Non-stabilized Base : CDOT Class 2 ABC	Non-stabilized Base (4)	1.00
Layer 5 Subgrade : A-4	Subgrade (5)	1.00
Layer 6 Subgrade : A-4	Subgrade (5)	-

Report generated on: 8/31/2023 5:03 PM

Version: 2.3.1+66 Created^{by:} on: 8/5/2016 12:00 AM

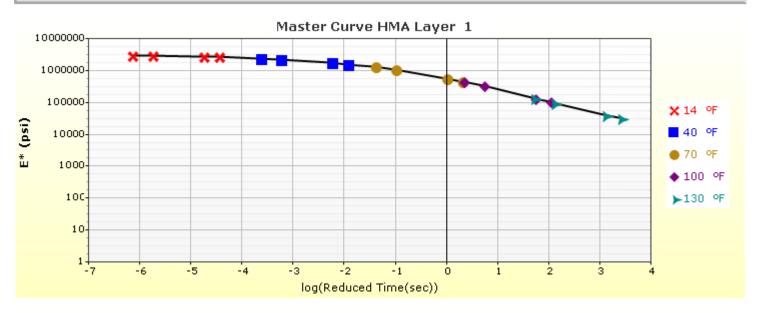

Horizon Drive and G Road R-A-B HMA 30-year Design me: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road R-A-B HMA 30-year Design

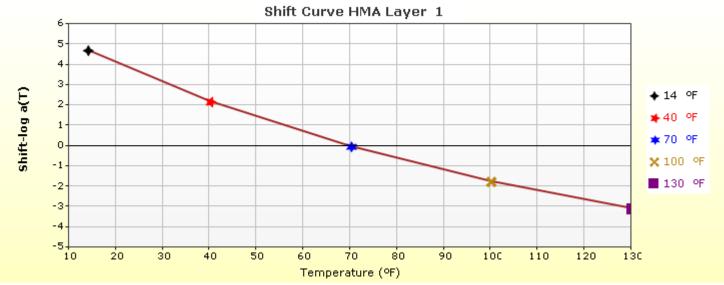
Thermal Cracking (Input Level: 1)

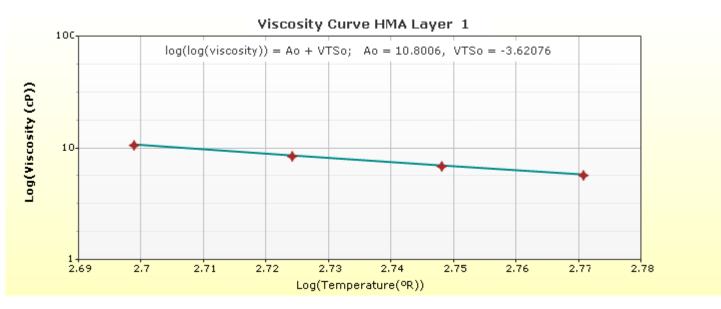
Indirect tensile strength at 14 °F (psi)	451.00
Thermal Contraction	
Is thermal contraction calculated?	True
Mix coefficient of thermal contraction (in/in/ºF)	-
Aggregate coefficient of thermal contraction (in/in/°F)	5.0e-006
Voids in Mineral Aggregate (%)	16.3

	Creep Compliance (1/psi)		
Loading time (sec)	-4 °F 14 °F 32 °F		32 °F
1	3.34e-007	4.19e-007	4.99e-007
2	3.53e-007	4.64e-007	6.19e-007
5	3.79e-007	5.15e-007	7.49e-007
10	4.05e-007	5.70e-007	9.08e-007
20	4.31e-007	6.26e-007	1.08e-006
50	4.87e-007	7.27e-007	1.43e-006
100	5.05e-007	8.41e-007	1.79e-006

Report generated on: 8/31/2023 5:03 PM


Version: 2.3.1+66 Created^{by:} on: 8/5/2016 12:00 AM



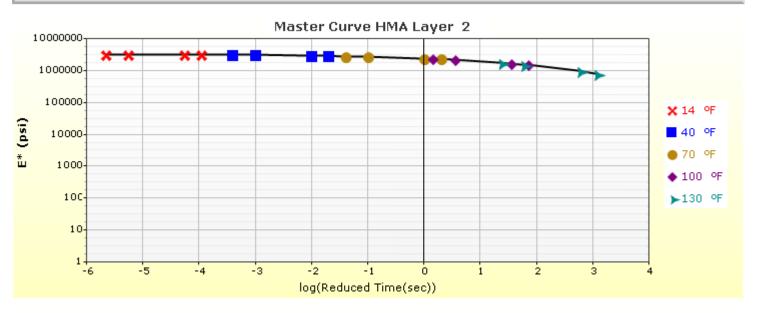

Horizon Drive and G Road R-A-B HMA 30-year Design me: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizon and G Road Roundabout\Horizon Drive and G Road R-A-B HMA 30-year Designs\My ME Designs\Projects\Horizon Drive and G Road R-A-B HMA 30-year Designs\My ME Design\Projects\Horizon Drive and G Road R-A-B HMA 30-year Designs\My ME Design\Projects\Horizon Drive and G Road R-A-B HMA 30-year Designs\My ME Design\Projects\Horizon Drive and G Road R-A-B HMA 30-year Designs\My ME Design\Projects\Horizon Drive and G Road R-A-B HMA 30-year Designs\My ME Designs\My ME Design\Projects\Horizon Drive and G Road R-A-B HMA 30-year Designs\My ME Designs\My ME Design\Projects\Horizon Drive and G Road R-A-B HMA 30-year Designs\My ME Designs\My

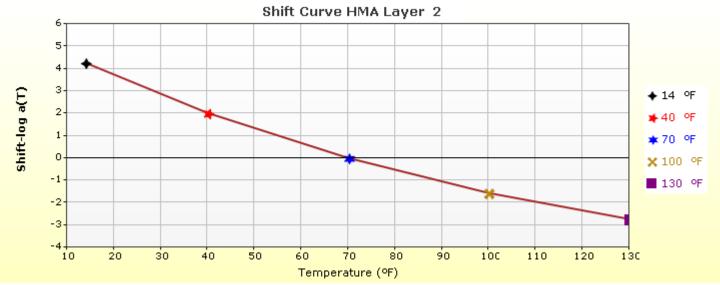
HMA Layer 1: Layer 1 Flexible : R2 Level 1 SX(100) PG 64-22

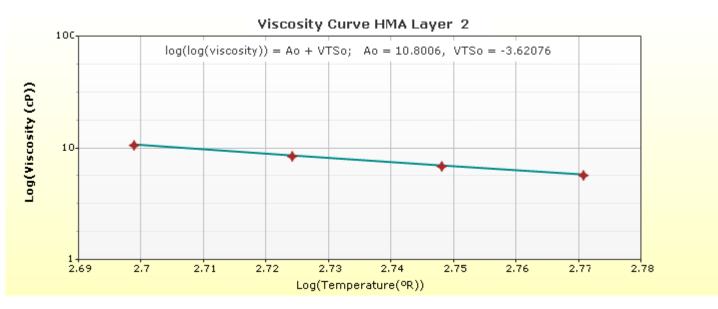
Report generated on: 8/31/2023 5:03 PM

Version: 2.3.1+66

Created^{by:} on: 8/5/2016 12:00 AM Approved by: on: 8/5/2016 12:00 AM


Page 10 of 23

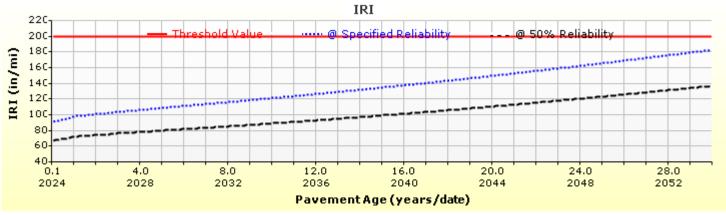


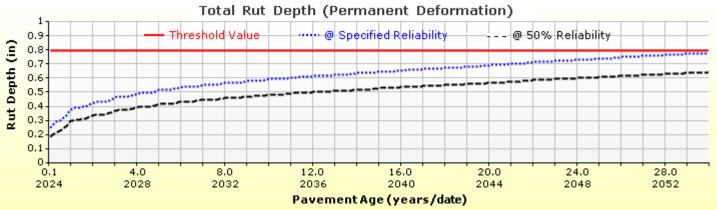

Horizon Drive and G Road R-A-B HMA 30-year Design me: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road R-A-B HMA 30-year Designs\My ME Designs\Projects\Horizon Drive and G Road R-A-B HMA 30-year Designs\My ME Design\Projects\Horizon Drive and G Road R-A-B HMA 30-year Designs\My ME Design\Projects\Horizon Drive and G Road R-A-B HMA 30-year Designs\My ME Design\Projects\Horizon Drive and G Road R-A-B HMA 30-year Designs\My ME Design\Projects\Horizon Drive and G Road R-A-B HMA 30-year Designs\My ME Designs\My ME Design\Projects\Horizon Drive and G Road R-A-B HMA 30-year Designs\My ME Designs\My M

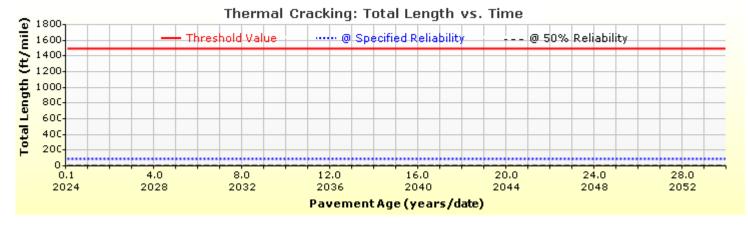
HMA Layer 2: Layer 2 Flexible : R4 Level 1 S(100) PG 64-22

Report generated on: 8/31/2023 5:03 PM

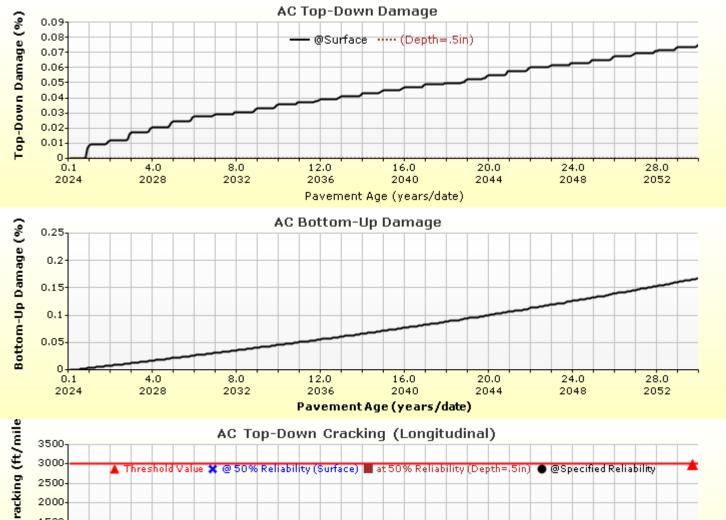
Version: 2.3.1+66

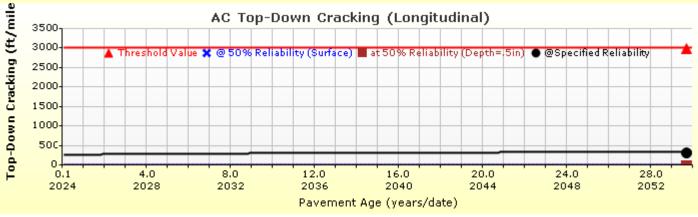

Created^{by:} on: 8/5/2016 12:00 AM

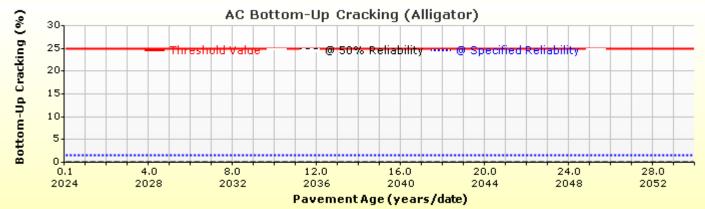



Horizon Drive and G Road R-A-B HMA 30-year Design me: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road R-A-B HMA 30-year Drive A B-A-B HMA 30-ye

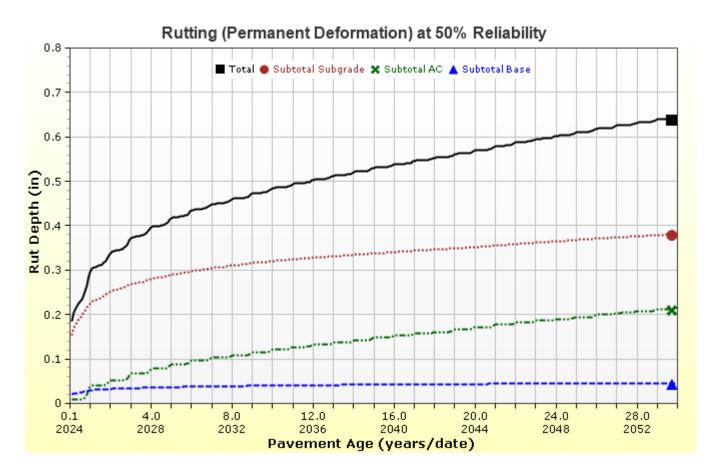
Analysis Output Charts





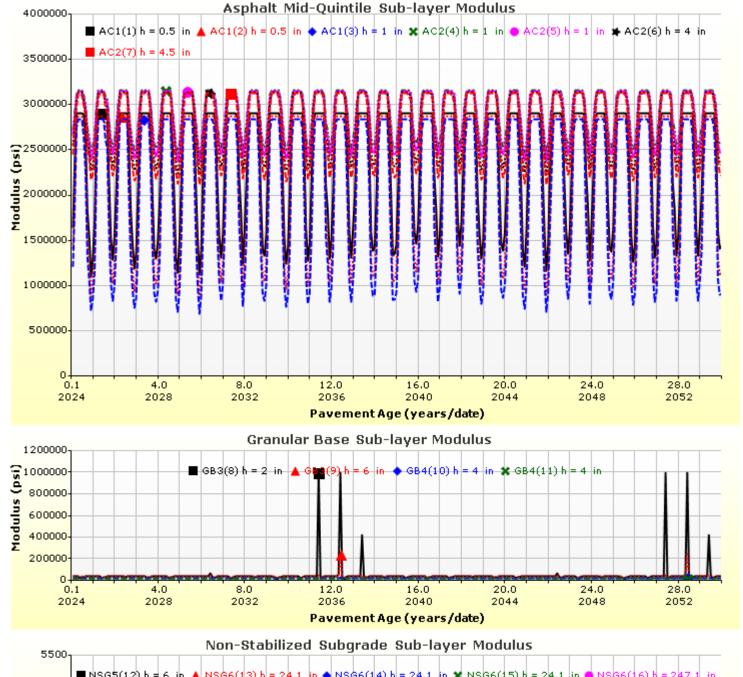


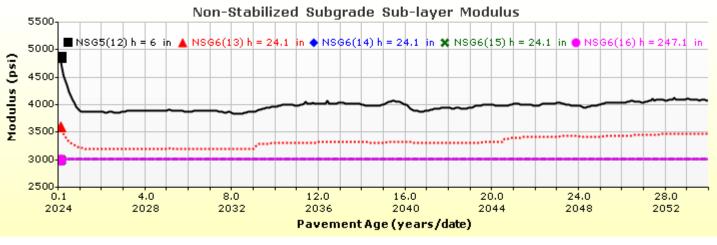
Horizon Drive and G Road R-A-B HMA 30-year Design me: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road R-A-B HMA 30-year Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road R-A-B HMA 30-year Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road R-A-B HMA 30-year Designs\My ME Design\Projects\Horizon And G Road Roundabout\Horizon Drive and G Road R-A-B HMA 30-year Designs\My ME Design\Projects\Horizon And G Road Roundabout\Horizon Drive and G Road R-A-B HMA 30-year Designs\My ME Design\Projects\Horizon And G Road Roundabout\Horizon Drive and G Road R-A-B HMA 30-year Designs\My ME Design\Projects\Horizon And G Road Roundabout\Horizon Drive and G Road R-A-B HMA 30-year Designs\My ME Designs\My ME



Created by: on: 8/5/2016 12:00 AM

Horizon Drive and G Road R-A-B HMA 30-year Design me: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road R-A-B HMA 30-year Design




Created^{by:} on: 8/5/2016 12:00 AM

Horizon Drive and G Road R-A-B HMA 30-year Design me: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road R-A-B HMA 30-year D

Horizon Drive and G Road R-A-B HMA 30-year Design me: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road R-A-B HMA 30-year De

Layer Information

Layer 1 Flexible: R2 Level 1 SX(100) PG 64-22

Asphalt			
Thickness (in)	2.0		
Unit weight (pcf)	145.0		
Poisson's ratio	Is Calculated? True		
	Ratio	-	
	Parameter A	-1.63	
	Parameter B	3.84E-06	

Asphalt Dynamic Modulus (Input Level: 1)

T (°F)	0.5 Hz	1 Hz	10 Hz	25 Hz
14	2333549	2642179	2861449	2927779
40	1309490	1791270	2219829	2365949
70	379514	695090	1127310	1318450
100	87238	174824	349546	452545
130	29326	49265	92795	122034

Asphalt Binder

Temperature (°F)	Binder Gstar (Pa)	Phase angle (deg)
147.2	1857	81.6
158	889	83.1
168.8	451	85

General Info

Name	Value
Reference temperature (°F)	70
Effective binder content (%)	11.2
Air voids (%)	5.1
Thermal conductivity (BTU/hr-ft-°F)	0.67
Heat capacity (BTU/lb-°F)	0.23

Identifiers

Field	Value
Display name/identifier	R2 Level 1 SX(100) PG 64-22
Description of object	Mix ID # FS1938
Author	CDOT
Date Created	4/3/2013 12:00:00 AM
Approver	CDOT
Date approved	4/3/2013 12:00:00 AM
State	Colorado
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	SX
User defined field 2	
User defined field 3	
Revision Number	2

Report generated on: 8/31/2023 5:03 PM

Version: 2.3.1+66

Created^{by:} on: 8/5/2016 12:00 AM

Approved by: on: 8/5/2016 12:00 AM

Page 16 of 23

Horizon Drive and G Road R-A-B HMA 30-year Design me: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road R-A-B HMA 30-year Design

Layer 2 Flexible : R4 Level 1 S(100) PG 64-22

Asphalt		
Thickness (in)	10.5	
Unit weight (pcf)	150.7	
Poisson's ratio	Is Calculated? True	
	Ratio	-
	Parameter A	-1.63
	Parameter B	3.84E-06

Asphalt Dynamic Modulus (Input Level: 1)

T (°F)	0.5 Hz	1 Hz	10 Hz	25 Hz
14	3066800	3098200	3172300	3192100
40	2806000	2874100	3039900	3085600
70	2266800	2396000	2735700	2835600
100	1522600	1696200	2219300	2393200
130	820200	975200	1545400	1773100

Asphalt Binder

Temperature (°F)	Binder Gstar (Pa)	Phase angle (deg)
168.8	451	85
147.2	1857	81.6
158	889	83.1

General Info

Name	Value
Reference temperature (°F)	70
Effective binder content (%)	10.59
Air voids (%)	6.34
Thermal conductivity (BTU/hr-ft-ºF)	0.67
Heat capacity (BTU/lb-ºF)	0.23

Identifiers

Field	Value
Display name/identifier	R4 Level 1 S(100) PG 64-22
Description of object	Mix ID # FSA 0931-031
Author	CDOT
Date Created	5/3/2016 12:00:00 AM
Approver	CDOT - MP
Date approved	5/3/2016 12:00:00 AM
State	Colorado
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	S
User defined field 2	
User defined field 3	
Revision Number	0

Report generated on: 8/31/2023 5:03 PM

Version: 2.3.1+66

Created^{by:} on: 8/5/2016 12:00 AM

Horizon Drive and G Road R-A-B HMA 30-year Design me: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road R-A-B HMA 30-year Design

Layer 3 Non-stabilized Base : Crushed gravel

Unbound	
Layer thickness (in)	8.0
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus	(Innut		. 21
Woulds	IIIDUL	LEVEI	. 31

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi)
25000.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	Crushed gravel
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	42

Sieve	
Liquid Limit	6.0
Plasticity Index	1.0

True

Is layer compacted?

	Is User Defined?	Value
Maximum dry unit weight (pcf)	False	127.7
Saturated hydraulic conductivity (ft/hr)	False	5.054e-02
Specific gravity of solids	False	2.7
Water Content (%)	False	7.4

User-defined Soil Water Characteristic Curve (SWCC)		
Is User Defined?	False	
af	7.2555	
bf	1.3328	
cf	0.8242	
hr	117.4000	

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	8.7
#100	
#80	12.9
#60	
#50	
#40	20.0
#30	
#20	
#16	
#10	33.8
#8	
#4	44.7
3/8-in.	57.2
1/2-in.	63.1
3/4-in.	72.7
1-in.	78.8
1 1/2-in.	85.8
2-in.	91.6
2 1/2-in.	
3-in.	
3 1/2-in.	97.6

Report generated on: 8/31/2023 5:03 PM

Version: 2.3.1+66

Created^{by:} on: 8/5/2016 12:00 AM

Horizon Drive and G Road R-A-B HMA 30-year Design me: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road R-A-B HMA 30-year Design

Layer 4 Non-stabilized Base : CDOT Class 2 ABC

Unbound	
Layer thickness (in)	8.0
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus	(Innut	Ι Δνα	I· 31
Wiodulus	(III)PUL	Leve	1. J)

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi)
12000.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	CDOT Class 2 ABC
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve

Liquid Limit	6.0
Plasticity Index	1.0
Is layer compacted?	True

	Is User Defined?	Value
, , ,		127.7
Saturated hydraulic conductivity (ft/hr)	False	5.054e-02
Specific gravity of solids	False	2.7
Water Content (%)	False	7.4

User-defined Soil Water Characteristic Curve (SWCC)	
Is User Defined?	False
af	7.2555
bf	1.3328
cf	0.8242
hr	117.4000

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	8.7
#100	
#80	12.9
#60	
#50	
#40	20.0
#30	
#20	
#16	
#10	33.8
#8	
#4	44.7
3/8-in.	57.2
1/2-in.	63.1
3/4-in.	72.7
1-in.	78.8
1 1/2-in.	85.8
2-in.	91.6
2 1/2-in.	
3-in.	
3 1/2-in.	97.6

Report generated on: 8/31/2023 5:03 PM

Version: 2.3.1+66 Created^{by:} on: 8/5/2016 12:00 AM

Horizon Drive and G Road R-A-B HMA 30-year Design me: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road R-A-B HMA 30-year Designs\My ME Design\Projects\Horizon and G Road Roundabout\Horizon Drive and G Road R-A-B HMA 30-year Design\Projects\Horizon and G Road Roundabout\Horizon Drive and G Road R-A-B HMA 30-year Design\Projects\Horizon and G Road Roundabout\Horizon Drive and G Road R-A-B HMA 30-year Design\Projects\Horizon and G Road Roundabout\Horizon Drive and G Road R-A-B HMA 30-year Design\Projects\Horizon and G Road Roundabout\Horizon Drive and G Road R-A-B HMA 30-year Design\Projects\Horizon and G Road Roundabout\Horizon Drive and G Road Roundabout\Horizon Britan Brita

Layer 5 Subgrade: A-4

Unbound	
Layer thickness (in)	6.0
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus (Input Level: 3)

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi) 6482.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	A-4
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve

Liquid Limit	21.0
Plasticity Index	5.0
Is layer compacted?	True

	Is User Defined?	Value
, , ,	False	119
Saturated hydraulic conductivity (ft/hr)	False	7.589e-06
Specific gravity of solids	False	2.7
Water Content (%)	False	11.8

User-defined Soil Water Characteristic Curve (SWCC)		
Is User Defined? False		
af	68.8377	
bf	0.9983	
cf	0.4757	
hr	500.0000	

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	60.6
#100	
#80	73.9
#60	
#50	
#40	82.7
#30	
#20	
#16	
#10	89.9
#8	
#4	93.0
3/8-in.	95.6
1/2-in.	96.7
3/4-in.	98.0
1-in.	98.7
1 1/2-in.	99.4
2-in.	99.6
2 1/2-in.	
3-in.	
3 1/2-in.	99.8

Report generated on: 8/31/2023 5:03 PM

Version: 2.3.1+66

Created^{by:} on: 8/5/2016 12:00 AM

Horizon Drive and G Road R-A-B HMA 30-year Design me: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road R-A-B HMA 30-year Design

Layer 6 Subgrade : A-4

Unbound	
Layer thickness (in)	Semi-infinite
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus ((Input	Level:	3)
Modulus	liiput	LCVCI.	υ,

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi)
6482.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	A-4
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve

Liquid Limit	21.0
Plasticity Index	5.0
Is layer compacted?	True

	Is User Defined?	Value
, , , , , , , , , , , , , , , , , , , ,	False	119
Saturated hydraulic conductivity (ft/hr)	False	7.589e-06
Specific gravity of solids	False	2.7
Water Content (%)	False	11.8

User-defined Soil Water Characteristic Curve (SWCC)					
Is User Defined? False					
af 68.8377					
bf 0.9983					
cf 0.4757					
hr	500.0000				

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	60.6
#100	
#80	73.9
#60	
#50	
#40	82.7
#30	
#20	
#16	
#10	89.9
#8	
#4	93.0
3/8-in.	95.6
1/2-in.	96.7
3/4-in.	98.0
1-in.	98.7
1 1/2-in.	99.4
2-in.	99.6
2 1/2-in.	
3-in.	
3 1/2-in.	99.8

Report generated on: 8/31/2023 5:03 PM

Version: 2.3.1+66

Created^{by:} on: 8/5/2016 12:00 AM

Horizon Drive and G Road R-A-B HMA 30-year Design ne: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road R-A-B HMA 30-year D

Calibration Coefficients

AC Fatigue	
$N_f = 0.00432 * C * \beta_{f1} k_1 \left(\frac{1}{\varepsilon_1}\right)^{k_2 \beta_{f2}} \left(\frac{1}{E}\right)^{k_3 \beta_{f3}}$	k1: 0.007566
$N_f = 0.00432 * C * \beta_{f1} k_1 \left(\frac{1}{c}\right)$	k2: 3.9492
	k3: 1.281
$C=10^{M}$	Bf1: 1
$M = 4.84 \left(\frac{V_b}{V_a + V_b} - 0.69 \right)$	Bf2: 1
Ya 1 1 b	Bf3: 1

AC Rutting

$$\begin{split} &\frac{\varepsilon_p}{\varepsilon_r} = k_z \beta_{r1} 10^{k_1} T^{k_2 \beta_{r2}} N^{k_3 B_{r3}} \\ &k_z = (C_1 + C_2 * depth) * 0.328196^{depth} \\ &C_1 = -0.1039 * H_\alpha^2 + 2.4868 * H_\alpha - 17.342 \\ &C_2 = 0.0172 * H_\alpha^2 - 1.7331 * H_\alpha + 27.428 \end{split}$$

 $\varepsilon_p = plastic strain(in/in)$ $\varepsilon_r = resilient strain(in/in)$ $T = layer temperature(^{\circ}F)$ N = number of load repetitions

 $H_{aa} = total AC thickness(in)$

ac .	· /		
AC Rutting Standard Deviation	0.24 * Pow(RUT,0.8026) + 0.001		
AC Layer	K1:-3.35412 K2:1.5606 K3:0.4791	Br1:1 Br2:1 Br3:1	

Thermal Fracture

$$C_f = 400 * N \left(\frac{\log C/h_{ac}}{\sigma}\right) \begin{cases} C_f = \text{observed amount of thermal cracking}(ft/500ft) \\ k = \text{refression coefficient determined through field calibration} \\ N() = \text{standard normal distribution evaluated at}() \\ \sigma = \text{standard deviation of the log of the depth of cracks in the payments} \\ C = \text{crack depth}(in) \\ AC = (k * \beta t)^{n+1} * A * \Delta K^n \\ A = 10^{(4.389-2.52*log(E*\sigma_m*n))} \begin{cases} E*\sigma_m*n \\ A = \text{finch ness of asphalt layer}(in) \\ AC = \text{Change in the crack depth due to a cooling cycle} \\ A. n = \text{Fracture parameters for the asphalt mixture} \\ E = \text{mixture stiff ness} \\ \sigma_M = \text{Undamaged mixture tensile strength} \\ \beta_t = \text{Calibration parameter} \end{cases}$$

$$\text{Level 1 K: 1.5} \qquad \text{Level 1 Standard Deviation: 0.1468 * THERMAL + 65.027} \\ \text{Level 2 K: 0.5} \qquad \text{Level 2 Standard Deviation: 0.2841 * THERMAL + 55.462} \\ \text{Level 3 K: 1.5} \qquad \text{Level 3 Standard Deviation: 0.3972 * THERMAL + 20.422} \end{cases}$$

CSM Fatigue

$$N_{f} = 10^{\left(\frac{k_{1}\beta_{c1}\left(\frac{\sigma_{s}}{M_{r}}\right)}{k_{2}\beta_{c2}}\right)} \begin{cases} N_{f} = number\ of\ repetitions\ to\ fatigue\ cracking} \\ \sigma_{s} = Tensile\ stress(psi) \\ M_{r} = modulus\ of\ rupture(psi) \\ \\ \text{Bc1: 0.75} \end{cases}$$

Report generated on: 8/31/2023 5:03 PM

Version: 2.3.1 + 66

Created^{by:} on: 8/5/2016 12:00 AM

Horizon Drive and G Road R-A-B HMA 30-year Design me: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive and G Road R-A-B HMA 30-year Design

Subgrade Rutting				
$\delta_a(N) = \beta_{s_1} k_1 \varepsilon_v h\left(\frac{\varepsilon_0}{\varepsilon_r}\right) \left e^{-\left(\frac{\rho}{N}\right)^{\beta}} \right \qquad \begin{cases} N \\ \varepsilon_v \\ \varepsilon_0 \end{cases}$		$\delta_a = permanent deformation for the layer N = number of repetitions \varepsilon_v = average veritcal strain(in/in) \varepsilon_0, \beta, \rho = material properties \varepsilon_r = resilient strain(in/in)$		
Granular		Fine		
k1: 2.03	Bs1: 1	k1: 1.35	Bs1: 1	
Standard Deviation (BASERUT) 0.1477 * Pow(BASERUT,0.6711) + 0.001		Standard Deviation (BASERUT) 0.1235 * Pow(SUBRUT,0.5012) + 0.001		

AC Cracking						
AC Top Down Cracking				AC Bottom Up C	racking	
$FC_{top} = \left(\frac{C_4}{1 + e^{\left(C_1 - C_2 * log_{10}(Damage)\right)}}\right) * 10.56$		$FC = \left(\frac{6000}{1 + e^{\left(C_1 * C_1' + C_2 * C_2' log_{10}(D*100)\right)}}\right) * \left(\frac{1}{60}\right)$ $C_2' = -2.40874 - 39.748 * (1 + h_{ac})^{-2.856}$ $C_1' = -2 * C_2'$				
c1: 7	c2: 3.5	c3: 0	c4: 1000	c1: 1	c2: 1	c3: 6000
AC Cracking Top Standard Deviation		AC Cracking Bottom Standard Deviation				
200 + 2300/(1+exp(1.072-2.1654*LOG10 (TOP+0.0001)))		1.13 + 13/(1+exp(7.57-15.5*LOG10 (BOTTOM+0.0001)))				

CSM Cracking		IRI Flexible Pavements					
FC_{ctb} = $C_1 + \frac{C_2}{1 + e^{C_3 - C_4(Damage)}}$		C1 - Rutting C2 - Fatigue Crack		C3 - Transverse Crack C4 - Site Factors			
C1: 0	C2: 75	C3: 5	C4: 3	C1: 40	C2: 0.4	C3: 0.008	C4: 0.015
CSM Stand	dard Deviation)			`		
CTB*1]			

Report generated on: 8/31/2023 5:03 PM

Version: 2.3.1+66 Created by: on: 8/5/2016 12:00 AM

Approved by: on: 8/5/2016 12:00 AM

Page 23 of 23

APPENDIX H

G ROAD

RIGID PAVEMENT M-E DESIGN OUTPUT SHEETS

File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\G Road PCCP Design (No Class 2).dgp

Design Inputs

Design Life: 30 years Existing construction: Climate Data 39.134, -108.538

Sources (Lat/Lon) **JPCP** Design Type: Pavement construction: May, 2024

> Traffic opening: September, 2024

Design Structure

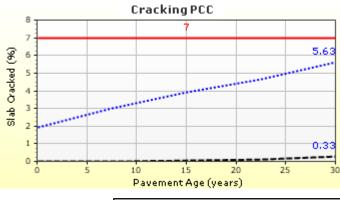
Layer type	Material Type	Thickness (in)
PCC	R4 Level 1 Lawson	9.5
NonStabilized	Crushed gravel	8.0
Subgrade	A-4	6.0
Subgrade	A-4	Semi-infinite

Joint Design:	
Joint spacing (ft)	15.0
Dowel diameter (in)	1.25
Slab width (ft)	12.0

Traffic	
---------	--

Age (year)	Heavy Trucks (cumulative)
2024 (initial)	890
2039 (15 years)	3,372,970
2054 (30 years)	7,912,540


Design Outputs


Distress Prediction Summary

Distress Type		Specified bility	Reliability (%)		Criterion Satisfied?	
	Target	Predicted	Target	Achieved	Satisfied?	
Terminal IRI (in/mile)	200.00	160.24	90.00	99.01	Pass	
Mean joint faulting (in)	0.20	0.09	90.00	100.00	Pass	
JPCP transverse cracking (percent slabs)	7.00	5.63	90.00	94.66	Pass	

Distress Charts

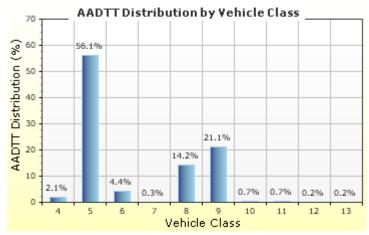
Threshold Value ···· @ Specified Reliability --- @ 50% Reliability

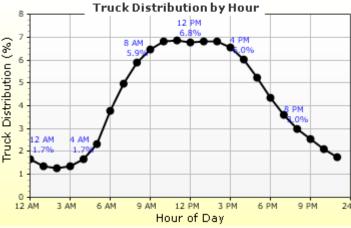
Report generated on: 5/24/2023 6:57 PM

Version: 2.3.1+66

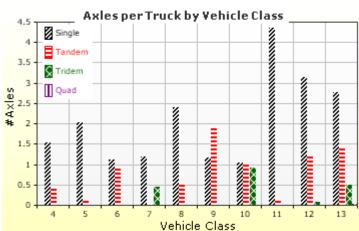
Created by: on: 8/5/2016 12:00 AM

File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\G Road PCCP Design (No Class 2).dgp

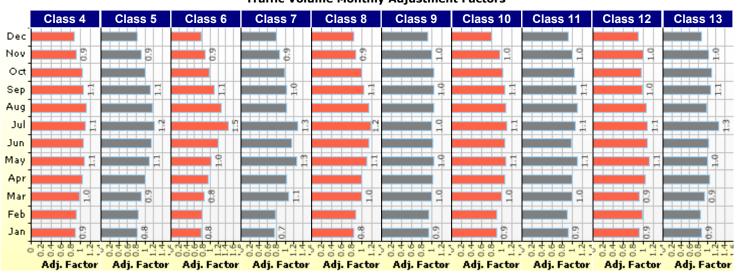

Traffic Inputs


Graphical Representation of Traffic Inputs

Initial two-way AADTT: 890


Number of lanes in design direction: 1

Percent of trucks in design direction (%): 60.0
Percent of trucks in design lane (%): 100.0
Operational speed (mph) 35.0



Traffic Volume Monthly Adjustment Factors

File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\G Road PCCP Design (No Class 2).dgp

Tabular Representation of Traffic Inputs

Volume Monthly Adjustment Factors

Level 3: Default MAF

Month	Vehicle Class									
WOILLI	4	5	6	7	8	9	10	11	12	13
January	0.9	0.8	0.8	0.7	0.8	0.9	0.9	0.9	0.9	0.9
February	0.9	0.8	0.8	0.8	0.9	0.9	0.9	0.9	1.0	0.8
March	1.0	0.9	0.8	1.1	1.0	1.0	1.0	1.0	0.9	0.9
April	1.0	1.0	0.9	1.0	1.0	1.0	1.1	1.0	1.0	1.1
May	1.1	1.1	1.0	1.3	1.1	1.0	1.1	1.1	1.1	1.0
June	1.1	1.1	1.2	1.1	1.1	1.0	1.1	1.0	1.1	1.0
July	1.1	1.2	1.5	1.3	1.2	1.0	1.1	1.1	1.1	1.3
August	1.1	1.2	1.3	1.0	1.1	1.0	1.1	1.1	1.1	1.0
September	1.1	1.1	1.1	1.0	1.1	1.0	1.1	1.1	1.0	1.1
October	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.9	1.1
November	0.9	0.9	0.9	0.9	0.9	1.0	1.0	1.0	1.0	1.0
December	0.9	0.8	0.8	0.8	0.8	0.9	0.8	0.9	0.9	0.9

Distributions by Vehicle Class

Vehicle Class	AADTT Distribution (%)	Growth Factor		
	(Level 3) `	Rate (%)	Function	
Class 4	2.1%	2%	Compound	
Class 5	56.1%	2%	Compound	
Class 6	4.4%	2%	Compound	
Class 7	0.3%	2%	Compound	
Class 8	14.2%	2%	Compound	
Class 9	21.1%	2%	Compound	
Class 10	0.7%	2%	Compound	
Class 11	0.7%	2%	Compound	
Class 12	0.2%	2%	Compound	
Class 13	0.2%	2%	Compound	

Truck Distribution by Hour

Hour	Distribution (%)	Hour	Distribution (%)
12 AM	1.65%	12 PM	6.75%
1 AM	1.37%	1 PM	6.81%
2 AM	1.28%	2 PM	6.83%
3 AM	1.36%	3 PM	6.56%
4 AM	1.66%	4 PM	6.02%
5 AM	2.32%	5 PM	5.23%
6 AM	3.8%	6 PM	4.35%
7 AM	4.95%	7 PM	3.59%
8 AM	5.9%	8 PM	2.98%
9 AM	6.48%	9 PM	2.56%
10 AM	6.83%	10 PM	2.12%
11 AM	6.85%	11 PM	1.75%
		Total	100%

Axle Configuration

Traffic Wander	
Mean wheel location (in)	18.0
Traffic wander standard deviation (in)	10.0
Design lane width (ft)	12.0

Axle Configuration	1
Average axle width (ft)	8.5
Dual tire spacing (in)	12.0
Tire pressure (psi)	120.0

Average Axle Spacing			
51.6			
49.2			
49.2			

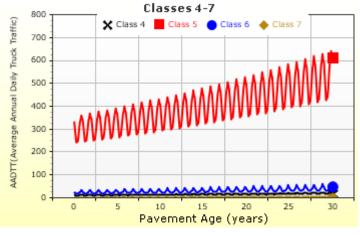
Wheelbase					
Value Type	Axle Type	Short	Medium	Long	
Average spacing of axles (ft)		12.0	15.0	18.0	
Percent of Trucks (%)		17.0	22.0	61.0	

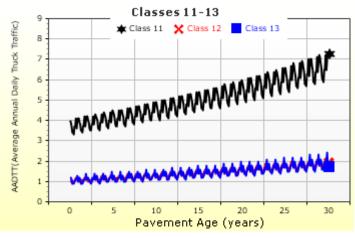
Number of Axles per Truck

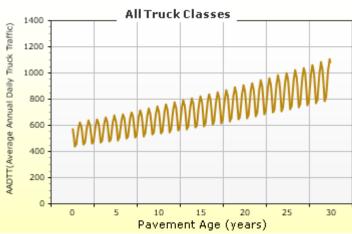
Vehicle Class	Single Axle	Tandem Axle	Tridem Axle	Quad Axle
Class 4	1.53	0.45	0	0
Class 5	2.02	0.16	0.02	0
Class 6	1.12	0.93	0	0
Class 7	1.19	0.07	0.45	0.02
Class 8	2.41	0.56	0.02	0
Class 9	1.16	1.88	0.01	0
Class 10	1.05	1.01	0.93	0.02
Class 11	4.35	0.13	0	0
Class 12	3.15	1.22	0.09	0
Class 13	2.77	1.4	0.51	0.04

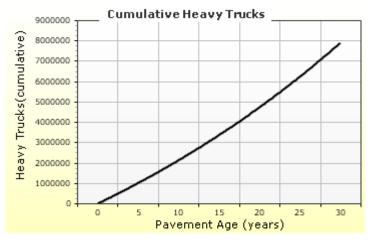
Report generated on: 5/24/2023 6:57 PM

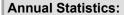
Version: 2.3.1+66


Created^{by:} on: 8/5/2016 12:00 AM


File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\G Road PCCP Design (No Class 2).dgp


AADTT (Average Annual Daily Truck Traffic) Growth


* Traffic cap is not enforced

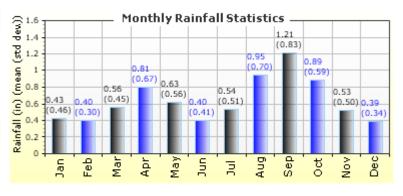


File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\G Road PCCP Design (No Class 2).dgp

Climate Inputs

Climate Data Sources:

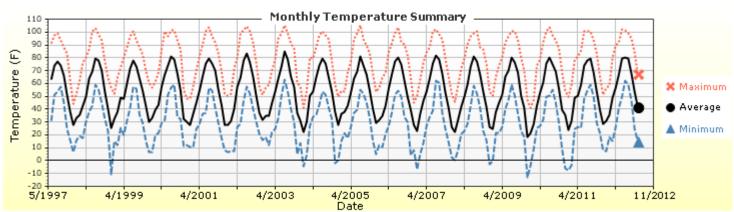
Climate Station Cities: Location (lat lon elevation(ft))
GRAND JUNCTION, CO 39.13400 -108.53800 4839

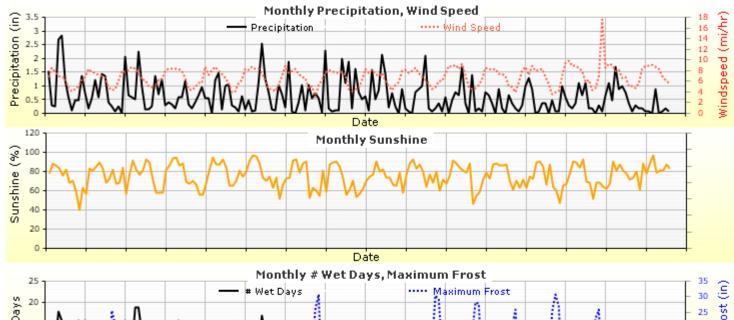


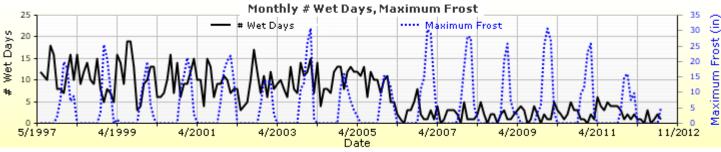
Mean annual air temperature (°F) 53.55

Mean annual precipitation (in) 7.76

Freezing index (°F - days) 398.73

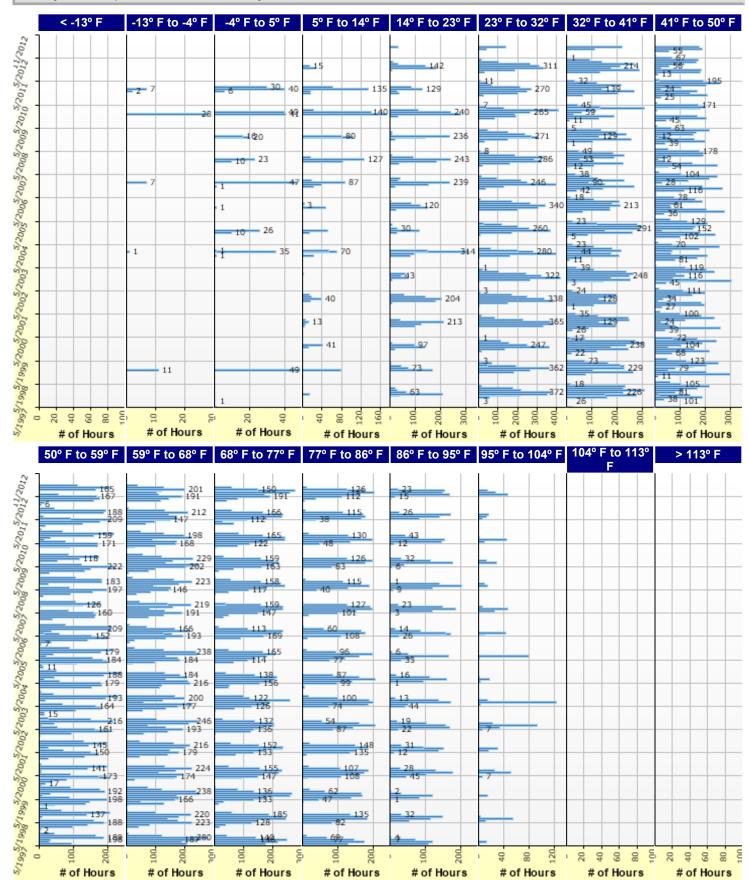

Average annual number of freeze/thaw cycles: 111.77




Water table depth (ft)

4.00

Monthly Climate Summary:


Created by: on: 8/5/2016 12:00 AM

File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\G Road PCCP Design (No Class 2).dgpx

Hourly Air Temperature Distribution by Month:

Design Properties

JPCP Design Properties

Structure - ICM Properties	
PCC surface shortwave absorptivity	0.85

PCC joint spacing (ft)		
Is joint spacing random ?	False	
Joint spacing (ft)	15.00	

Doweled Joints	
Is joint doweled?	True
Dowel diameter (in)	1.25
Dowel spacing (in)	12.00

Widened Slab	
Is slab widened ?	False
Slab width (ft)	12.00

Sealant type	Other(Including No Sealant Liquid Silicone)
--------------	---

Tied Shoulders	
Tied shoulders	True
Load transfer efficiency (%)	50.00

PCC-Base Contact Friction	
PCC-Base full friction contact	True
Months until friction loss	360.00

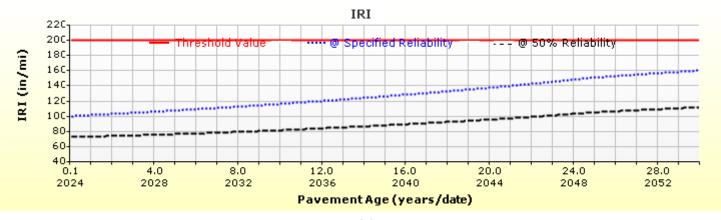
Erodibility index	3

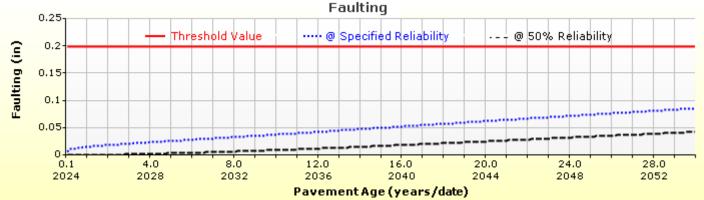
Permanent curl/warp effective temperature difference (°F)	-10.00
---	--------

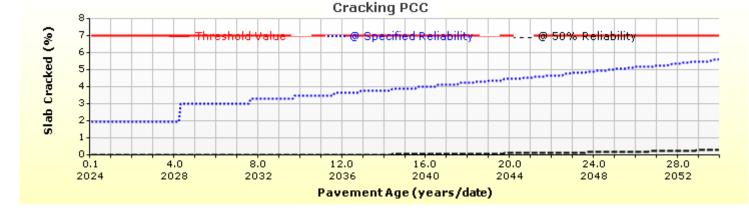
Report generated on: 5/24/2023 6:57 PM

Version: 2.3.1+66

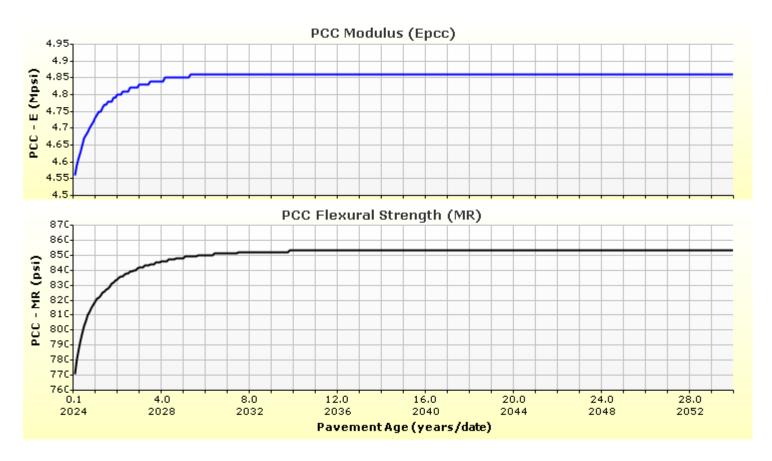
Created by: on: 8/5/2016 12:00 AM

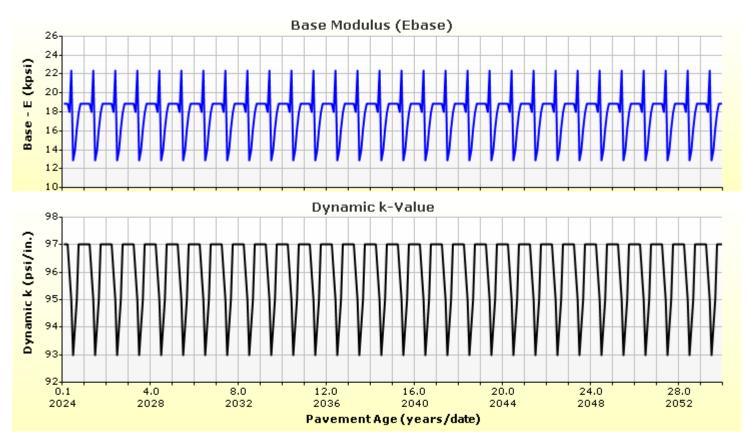

Approved by: on: 8/5/2016 12:00 AM


Page 7 of 15

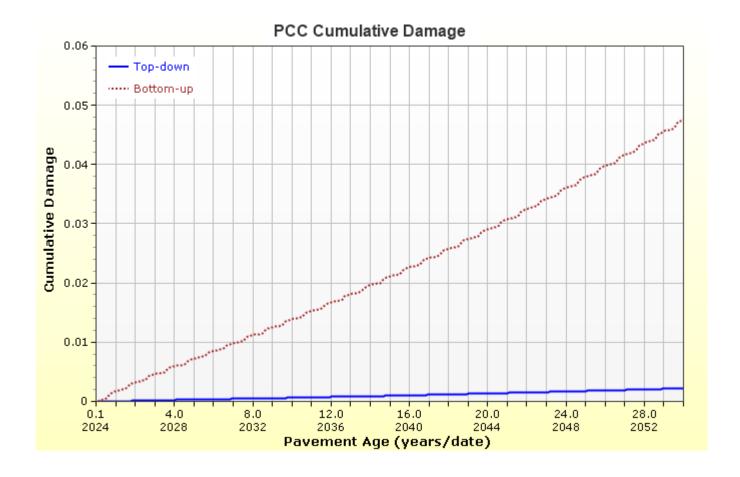


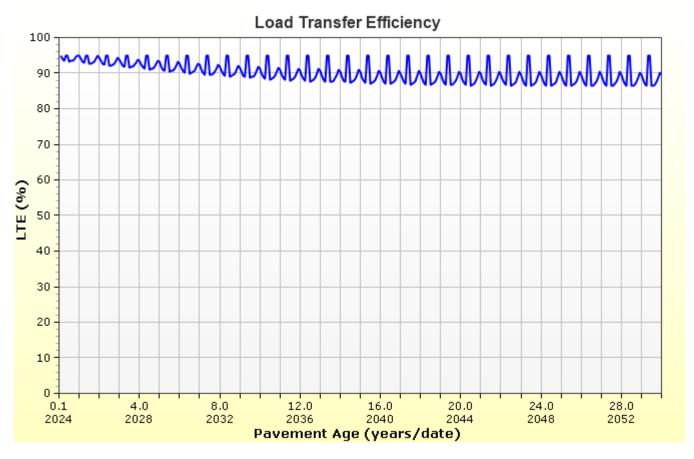
Analysis Output Charts





File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\G Road PCCP Design (No Class 2).dgp





Layer Information

Layer 1 PCC : R4 Level 1 Lawson

PCC	
Thickness (in)	9.5
Unit weight (pcf)	140.6
Poisson's ratio	0.2

Thermal	
PCC coefficient of thermal expansion (in/in/°F x 10^-6)	4.86
PCC thermal conductivity (BTU/hr-ft-°F)	1.25
PCC heat capacity (BTU/lb-ºF)	0.28

Mix		
Cement type		Type I (1)
Cementitious material content (lb/yd^3)		563
Water to cement ratio		0.36
Aggregate type		Dolomite (2)
PCC zero-stress	Calculated Internally?	True
temperature (°F)	User Value	-
	Calculated Value	90.7
Ultimate shrinkage	Calculated Internally?	True
(microstrain)	User Value	-
	Calculated Value	516.0
Reversible shrinkage (%)		50
Time to develop 50% of ultimate shrinkage (days)		35
Curing method		Curing Compound

PCC strength and modulus (Input Level: 1)

Time	Modulus of rupture (psi)	Elastic modulus (psi)
7-day	560	3230000
14-day	620	3500000
28-day	710	4030000
90-day	730	4240000
20-year/28-day	1.2	1.2

Identifiers

Field	Value
Display name/identifier	R4 Level 1 Lawson
Description of object	Mix ID # 2009105
Author	CDOT
Date Created	4/3/2013 12:00:00 AM
Approver	CDOT
Date approved	4/3/2013 12:00:00 AM
State	Colorado
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	Region 4/1/6
User defined field 2	
User defined field 3	
Revision Number	0

Report generated on: 5/24/2023 6:57 PM

Version: 2.3.1+66 Created^{by:} on: 8/5/2016 12:00 AM

Layer 2 Non-stabilized Base : Crushed gravel

Unbound	
Layer thickness (in)	8.0
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Analysis Type:	Modify input values by temperature/moisture
Method: Resilient Modulus (psi)	

Resilient Modulus (psi) 12000.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	Crushed gravel
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	42

Sieve

Liquid Limit	6.0
Plasticity Index	1.0
Is layer compacted?	True

	Is User Defined?	Value
, , ,	False	127.7
Saturated hydraulic conductivity (ft/hr)	False	5.054e-02
Specific gravity of solids	False	2.7
Water Content (%)	False	7.4

User-defined Soil Water Characteristic Curve (SWCC)		
Is User Defined?		
af	7.2555	
bf 1.3328		
cf 0.8242		
hr 117.4000		

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	8.7
#100	
#80	12.9
#60	
#50	
#40	20.0
#30	
#20	
#16	
#10	33.8
#8	
#4	44.7
3/8-in.	57.2
1/2-in.	63.1
3/4-in.	72.7
1-in.	78.8
1 1/2-in.	85.8
2-in.	91.6
2 1/2-in.	
3-in.	
3 1/2-in.	97.6

Report generated on: 5/24/2023 6:57 PM

Version: 2.3.1+66

Created by: on: 8/5/2016 12:00 AM

Layer 3 Subgrade: A-4

Unbound	
Layer thickness (in)	6.0
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus (Input Level: 3)

Analysis Type:	Modify input values by temperature/moisture
Method: Resilient Modulus (psi)	

Resilient Modulus (psi) 6482.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	A-4
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve

Liquid Limit	21.0
Plasticity Index	5.0
Is layer compacted?	True

	Is User Defined?	Value
Maximum dry unit weight (pcf)	False	119
Saturated hydraulic conductivity (ft/hr)	False	7.589e-06
Specific gravity of solids	False	2.7
Water Content (%)	False	11.8

User-defined Soil Water Characteristic Curve (SWCC)		
Is User Defined? False		
af	68.8377	
bf	0.9983	
cf	0.4757	
hr	500.0000	

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	60.6
#100	
#80	73.9
#60	
#50	
#40	82.7
#30	
#20	
#16	
#10	89.9
#8	
#4	93.0
3/8-in.	95.6
1/2-in.	96.7
3/4-in.	98.0
1-in.	98.7
1 1/2-in.	99.4
2-in.	99.6
2 1/2-in.	
3-in.	
3 1/2-in.	99.8

Report generated on: 5/24/2023 6:57 PM

Version: 2.3.1+66

Created by: on: 8/5/2016 12:00 AM

Layer 4 Subgrade : A-4

Unbound	
Layer thickness (in)	Semi-infinite
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus (Input Level: 3)

Analysis Type:	Modify input values by temperature/moisture	
Method:	Resilient Modulus (psi)	

Resilient Modulus (psi) 6482.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	A-4
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve

Liquid Limit	21.0
Plasticity Index	5.0
Is layer compacted?	True

	Is User Defined?	Value
, , ,	False	119
Saturated hydraulic conductivity (ft/hr)	False	7.589e-06
Specific gravity of solids	False	2.7
Water Content (%)	False	11.8

User-defined Soil Water Characteristic Curve (SWCC)			
Is User Defined? False			
af	68.8377		
bf	0.9983		
cf	0.4757		
hr	500.0000		

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	60.6
#100	
#80	73.9
#60	
#50	
#40	82.7
#30	
#20	
#16	
#10	89.9
#8	
#4	93.0
3/8-in.	95.6
1/2-in.	96.7
3/4-in.	98.0
1-in.	98.7
1 1/2-in.	99.4
2-in.	99.6
2 1/2-in.	
3-in.	
3 1/2-in.	99.8

Report generated on: 5/24/2023 6:57 PM

Version: 2.3.1+66 Created by: on: 8/5/2016 12:00 AM

Calibration Coefficients

PCC Faulting				
	$C_{12} = C_1 + (C_2 * FR^{0.25})$			
$C_{34} = C_3 + (C_3)$	•	,	Wet Days\ 1 ^C 6	
$FaultMax_0 =$	$FaultMax_0 = C_{12} * \delta_{curling} * \left[\log(1 + C_5 * 5.0^{EROD}) * \log\left(P_{200} * \frac{WetDays}{p_S}\right) \right]^{1-6}$			
$FaultMax_i = FaultMax_0 + C_7 * \sum_{i=1}^{m} DE_j * \log(1 + C_5 * 5.0^{EROD})^{C_6}$				
$\Delta Fault_i = C_{34}$	$*(FaultMax_{i-1} - Fa)$	$ult_{i-1})^2 * DE_i$		
$C_8 = DowelD$	eterioration			
C1: 0.5104	C2: 0.00838	C3: 0.00147	C4: 0.008345	
C5: 5999 C6: 0.8404 C7: 5.9293 C8: 400				
PCC Reliability Faulting Standard Deviation				
0.0831*Pow(FAULT,0.3426) + 0.00521				

IRI-jpcp		
C1 - Cracking	C1: 0.8203	C2: 0.4417
C2 - Spalling	C3: 1.4929	C4: 25.24
C3 - Faulting	Reliability Stan	dard Deviation
C4 - Site Factor	5.4	_

PCC Cracking						
MD	Fatigue Coefficier	nts	Cracking Coefficie	ents		
$\log(N) = C1 \cdot (\frac{MR}{})^{C2}$	C1: 2	C2: 1.22	C4: 0.6	C5: -2.05		
σ	PCC Reliability Cracking Standard Deviation					
$CRK = \frac{100}{T}$	Pow(57.08*CRACK,0.33) + 1.5					
$CRK = \frac{100}{1 + C4 FD^{CS}}$						

Report generated on: 5/24/2023 6:57 PM

Version: 2.3.1+66 Created by: on: 8/5/2016 12:00 AM

APPENDIX I

27 1/2 ROAD

RIGID PAVEMENT M-E DESIGN OUTPUT SHEETS

File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\27.5 Road PCCP Design (No Class 2).

Design Inputs

Design Life: 30 years Existing construction: Climate Data 39.134, -108.538

Sources (Lat/Lon) **JPCP** Design Type: Pavement construction: May, 2024

> Traffic opening: September, 2024

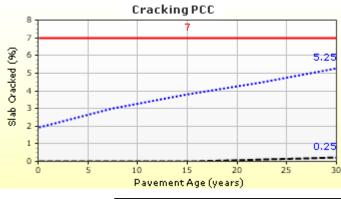
Design Structure

Layer type	Material Type	Thickness (in)
PCC	R4 Level 1 Lawson	10.0
NonStabilized	Crushed gravel	8.0
Subgrade	A-4	6.0
Subgrade	A-4	Semi-infinite

Joint Design:			
Joint spacing (ft)	15.0		
Dowel diameter (in)	1.50		
Slab width (ft)	12.0		

Age (year)	Heavy Trucks (cumulative)
2024 (initial)	1,820
2039 (15 years)	6,897,530
2054 (30 years)	16,180,700

Design Outputs


Distress Prediction Summary

Distress Type		Specified bility	Reliab	Criterion Satisfied?	
	Target	Predicted	Target	Achieved	Satisfied?
Terminal IRI (in/mile)	200.00	154.16	90.00	99.44	Pass
Mean joint faulting (in)	0.20	0.08	90.00	100.00	Pass
JPCP transverse cracking (percent slabs)	7.00	5.25	90.00	95.81	Pass

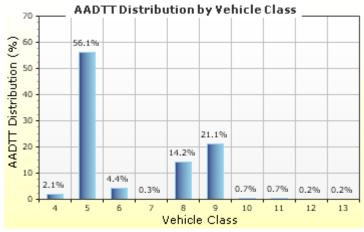
Distress Charts

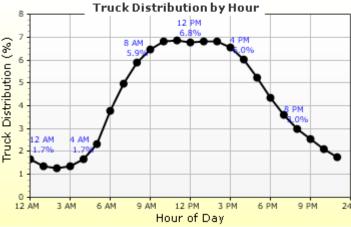
Threshold Value ···· @ Specified Reliability --- @ 50% Reliability

Report generated on: 5/24/2023 6:56 PM

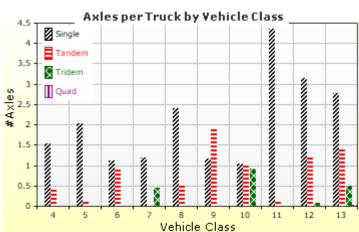
Version: 2.3.1+66

Created by: on: 8/5/2016 12:00 AM

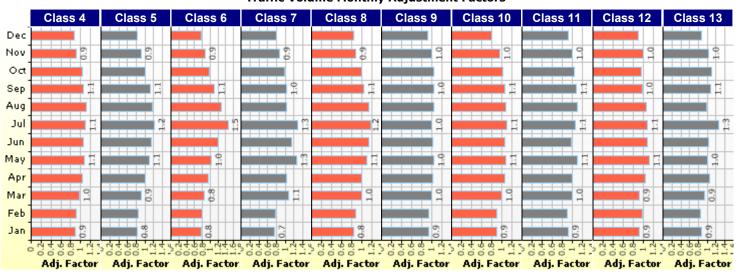




Traffic Inputs


Graphical Representation of Traffic Inputs

Initial two-way AADTT: 1.820 Number of lanes in design direction: 1 Percent of trucks in design direction (%): 60.0 Percent of trucks in design lane (%): 100.0 Operational speed (mph) 35.0



Traffic Volume Monthly Adjustment Factors

File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\27.5 Road PCCP Design (No Class 2).dg

Tabular Representation of Traffic Inputs

Volume Monthly Adjustment Factors

Level 3: Default MAF

Month	Vehicle Class									
WIOTILIT	4	5	6	7	8	9	10	11	12	13
January	0.9	0.8	0.8	0.7	0.8	0.9	0.9	0.9	0.9	0.9
February	0.9	0.8	0.8	0.8	0.9	0.9	0.9	0.9	1.0	0.8
March	1.0	0.9	0.8	1.1	1.0	1.0	1.0	1.0	0.9	0.9
April	1.0	1.0	0.9	1.0	1.0	1.0	1.1	1.0	1.0	1.1
May	1.1	1.1	1.0	1.3	1.1	1.0	1.1	1.1	1.1	1.0
June	1.1	1.1	1.2	1.1	1.1	1.0	1.1	1.0	1.1	1.0
July	1.1	1.2	1.5	1.3	1.2	1.0	1.1	1.1	1.1	1.3
August	1.1	1.2	1.3	1.0	1.1	1.0	1.1	1.1	1.1	1.0
September	1.1	1.1	1.1	1.0	1.1	1.0	1.1	1.1	1.0	1.1
October	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.9	1.1
November	0.9	0.9	0.9	0.9	0.9	1.0	1.0	1.0	1.0	1.0
December	0.9	0.8	0.8	0.8	0.8	0.9	0.8	0.9	0.9	0.9

Distributions by Vehicle Class

Vehicle Class	AADTT Distribution (%)	Growth Factor		
	(Level 3) `	Rate (%)	Function	
Class 4	2.1%	2%	Compound	
Class 5	56.1%	2%	Compound	
Class 6	4.4%	2%	Compound	
Class 7	0.3%	2%	Compound	
Class 8	14.2%	2%	Compound	
Class 9	21.1%	2%	Compound	
Class 10	0.7%	2%	Compound	
Class 11	0.7%	2%	Compound	
Class 12	0.2%	2%	Compound	
Class 13	0.2%	2%	Compound	

Truck Distribution by Hour

Hour	Distribution (%)	Hour	Distribution (%)
12 AM	1.65%	12 PM	6.75%
1 AM	1.37%	1 PM	6.81%
2 AM	1.28%	2 PM	6.83%
3 AM	1.36%	3 PM	6.56%
4 AM	1.66%	4 PM	6.02%
5 AM	2.32%	5 PM	5.23%
6 AM	3.8%	6 PM	4.35%
7 AM	4.95%	7 PM	3.59%
8 AM	5.9%	8 PM	2.98%
9 AM	6.48%	9 PM	2.56%
10 AM	6.83%	10 PM	2.12%
11 AM	6.85%	11 PM	1.75%
		Total	100%

Axle Configuration

Traffic Wander			
Mean wheel location (in)	18.0		
Traffic wander standard deviation (in)	10.0		
Design lane width (ft)	12.0		

Axle Configuration				
Average axle width (ft)	8.5			
Dual tire spacing (in)	12.0			
Tire pressure (psi)	120.0			

Average Axle Spa	cing
Tandem axle spacing (in)	51.6
Tridem axle spacing (in)	49.2
Quad axle spacing (in)	49.2
	49.2

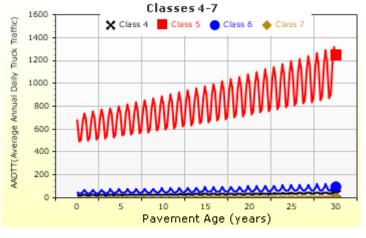
Wheelbase				
Value Type	Axle Type	Short	Medium	Long
Average space (ft)	cing of axles	12.0	15.0	18.0
Percent of Tr	rucks (%)	17.0	22.0	61.0

Number of Axles per Truck

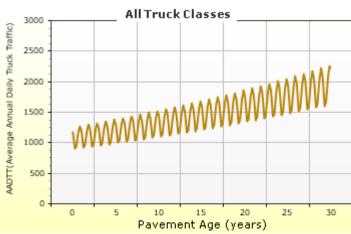
Vehicle Class	Single Axle	Tandem Axle	Tridem Axle	Quad Axle
Class 4	1.53	0.45	0	0
Class 5	2.02	0.16	0.02	0
Class 6	1.12	0.93	0	0
Class 7	1.19	0.07	0.45	0.02
Class 8	2.41	0.56	0.02	0
Class 9	1.16	1.88	0.01	0
Class 10	1.05	1.01	0.93	0.02
Class 11	4.35	0.13	0	0
Class 12	3.15	1.22	0.09	0
Class 13	2.77	1.4	0.51	0.04

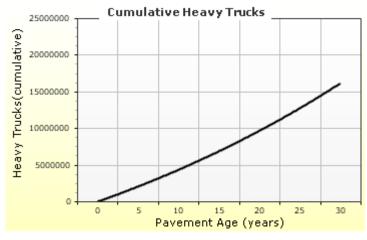
Report generated on: 5/24/2023 6:56 PM

Version: 2.3.1+66


Created^{by:} on: 8/5/2016 12:00 AM


File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\27.5 Road PCCP Design (No Class 2).d


AADTT (Average Annual Daily Truck Traffic) Growth

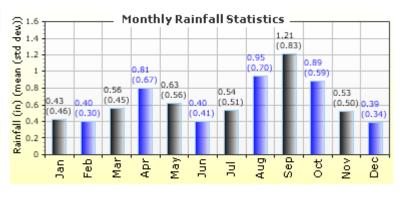

* Traffic cap is not enforced

File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\27.5 Road PCCP Design (No Class 2).

Climate Inputs

Climate Data Sources:

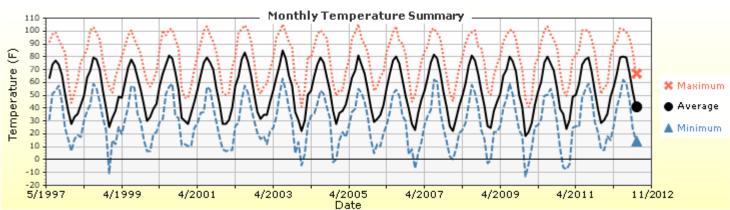
Climate Station Cities: Location (lat lon elevation(ft))
GRAND JUNCTION, CO 39.13400 -108.53800 4839

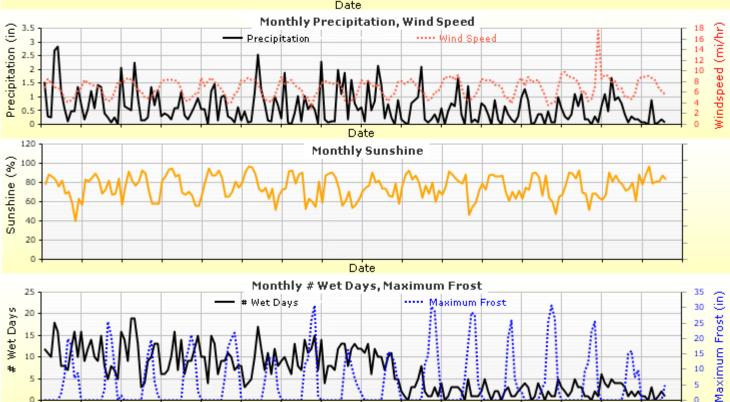


Mean annual air temperature (°F) 53.55

Mean annual precipitation (in) 7.76

Freezing index (°F - days) 398.73


Average annual number of freeze/thaw cycles: 111.77



Water table depth (ft)

4.00

Monthly Climate Summary:

5/1997

4/2001

4/1999

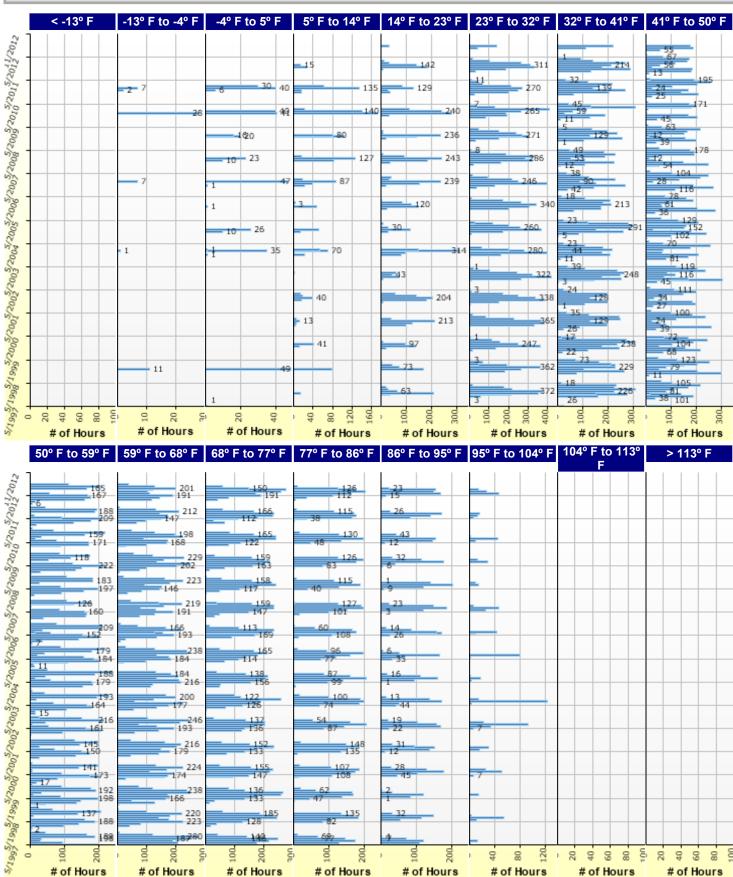
Created^{by:} on: 8/5/2016 12:00 AM

4/2003

4/2005

4/2007

Approved by: on: 8/5/2016 12:00 AM


11/2012

File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\27.5 Road PCCP Design (No Class 2).dgg

Hourly Air Temperature Distribution by Month:

Design Properties

JPCP Design Properties

Ş	Structure - ICM Properties	
í	PCC surface shortwave absorptivity	0.85

PCC joint spacing (ft)			
Is joint spacing random ?	False		
Joint spacing (ft)	15.00		

Doweled Joints	
Is joint doweled?	True
Dowel diameter (in)	1.50
Dowel spacing (in)	12.00

Widened Slab		
Is slab widened ?	False	
Slab width (ft)	12.00	

Sealant type	Other(Including No Sealant Liquid
	Silicone)

Tied Shoulders	
Tied shoulders	True
Load transfer efficiency (%)	50.00

PCC-Base Contact Friction		
PCC-Base full friction contact	True	
Months until friction loss	360.00	

Erodibility index	3

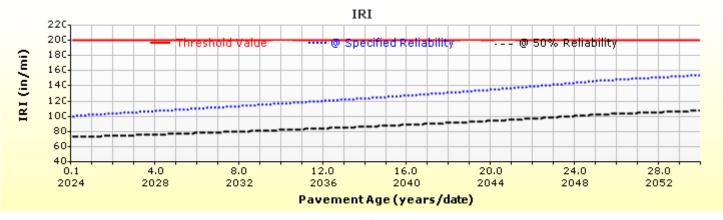
Permanent curl/warp effective temperature difference (°F)	-10.00
---	--------

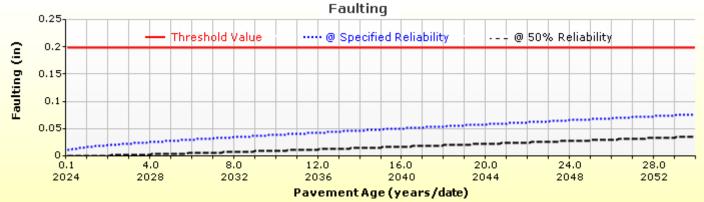
Report generated on: 5/24/2023 6:56 PM

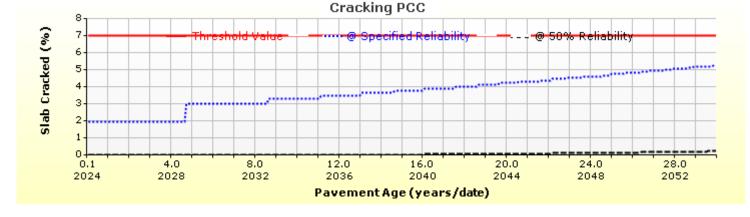
Version: 2.3.1+66 Created by: on: 8/5/2016 12:00 AM

Approved by: on: 8/5/2016 12:00 AM

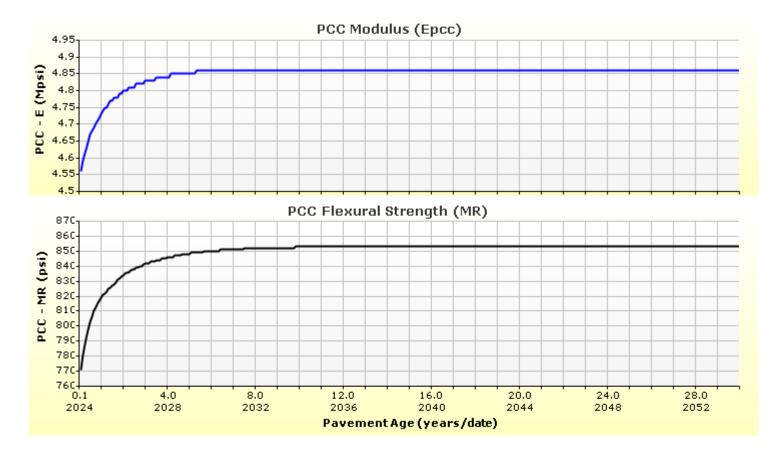
Page 7 of 15

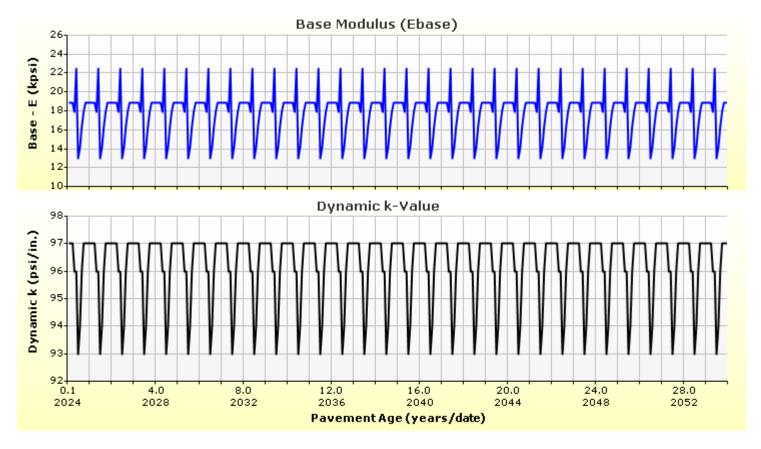




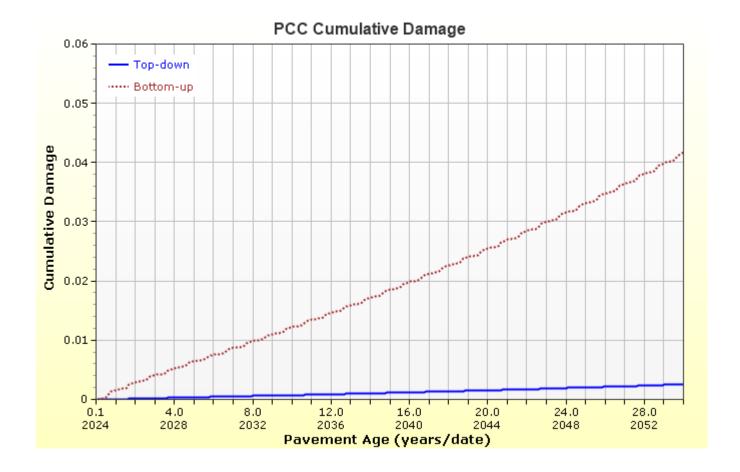

File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\27.5 Road PCCP Design (No Class 2).

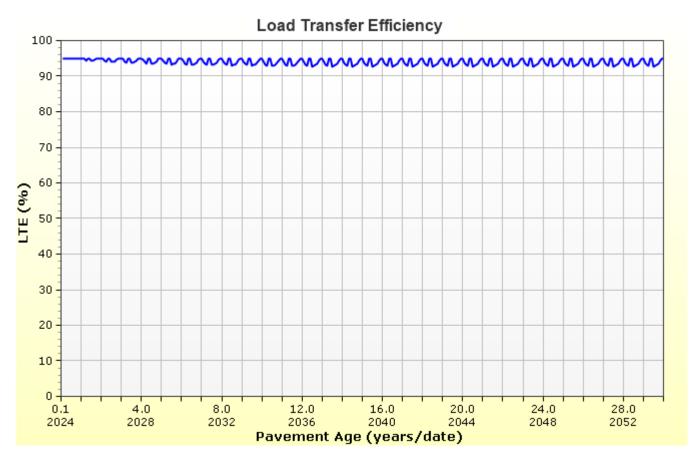
Analysis Output Charts





File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\27.5 Road PCCP Design (No Class 2).





File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\27.5 Road PCCP Design (No Class 2).d

Layer Information

Layer 1 PCC: R4 Level 1 Lawson

PCC	
Thickness (in)	10.0
Unit weight (pcf)	140.6
Poisson's ratio	0.2

Thermal	
PCC coefficient of thermal expansion (in/in/°F x 10^-6)	4.86
PCC thermal conductivity (BTU/hr-ft-°F)	1.25
PCC heat capacity (BTU/lb-°F)	0.28

Mix		
Cement type		Type I (1)
Cementitious material co	ontent (lb/yd^3)	563
Water to cement ratio		0.36
Aggregate type		Dolomite (2)
PCC zero-stress	Calculated Internally?	True
temperature (ºF)	User Value	-
	Calculated Value	90.7
Ultimate shrinkage	Calculated Internally?	True
(microstrain)	User Value	-
	Calculated Value	516.0
Reversible shrinkage (%)		50
Time to develop 50% of ultimate shrinkage (days)		35
Curing method		Curing Compound

PCC strength and modulus (Input Level: 1)

Time	Modulus of rupture (psi)	Elastic modulus (psi)
7-day	560	3230000
14-day	620	3500000
28-day	710	4030000
90-day	730	4240000
20-year/28-day	1.2	1.2

Identifiers

Field	Value
Display name/identifier	R4 Level 1 Lawson
Description of object	Mix ID # 2009105
Author	CDOT
Date Created	4/3/2013 12:00:00 AM
Approver	CDOT
Date approved	4/3/2013 12:00:00 AM
State	Colorado
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	Region 4/1/6
User defined field 2	
User defined field 3	
Revision Number	0

Report generated on: 5/24/2023 6:56 PM

Version: 2.3.1+66 Created^{by:} on: 8/5/2016 12:00 AM

Layer 2 Non-stabilized Base : Crushed gravel

Unbound	
Layer thickness (in)	8.0
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus	(Input	Level	: 3)

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi)
12000.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	Crushed gravel
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	42

Sieve	
Liquid Limit	6.0
Plasticity Index	1.0

True

7.4

Is layer compacted?

Water Content (%)

	Is User Defined?	Value
, , ,	False	127.7
Saturated hydraulic conductivity (ft/hr)	False	5.054e-02
Specific gravity of solids	False	2.7

False

User-defined Soil Water Characteristic Curve (SWCC)		
Is User Defined? False		
af	7.2555	
bf	1.3328	
cf	0.8242	
hr	117.4000	

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	8.7
#100	
#80	12.9
#60	
#50	
#40	20.0
#30	
#20	
#16	
#10	33.8
#8	
#4	44.7
3/8-in.	57.2
1/2-in.	63.1
3/4-in.	72.7
1-in.	78.8
1 1/2-in.	85.8
2-in.	91.6
2 1/2-in.	
3-in.	
3 1/2-in.	97.6

Report generated on: 5/24/2023 6:56 PM

Version: 2.3.1+66 Created^{by:} on: 8/5/2016 12:00 AM

Layer 3 Subgrade: A-4

Unbound	
Layer thickness (in)	6.0
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus (Input Level: 3)

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi) 6482.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	A-4
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve

Liquid Limit	21.0
Plasticity Index	5.0
Is layer compacted?	True

	Is User Defined?	Value
, , ,	False	119
Saturated hydraulic conductivity (ft/hr)	False	7.589e-06
Specific gravity of solids	False	2.7
Water Content (%)	False	11.8

User-defined Soil Water Characteristic Curve (SWCC)		
Is User Defined? False		
af	68.8377	
bf	0.9983	
cf	0.4757	
hr	500.0000	

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	60.6
#100	
#80	73.9
#60	
#50	
#40	82.7
#30	
#20	
#16	
#10	89.9
#8	
#4	93.0
3/8-in.	95.6
1/2-in.	96.7
3/4-in.	98.0
1-in.	98.7
1 1/2-in.	99.4
2-in.	99.6
2 1/2-in.	
3-in.	
3 1/2-in.	99.8

Report generated on: 5/24/2023 6:56 PM

Version: 2.3.1+66 Created by: on: 8/5/2016 12:00 AM

27.5 Road PCCP Design (No Class 2)

File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\27.5 Road PCCP Design (No Class 2).

Layer 4 Subgrade : A-4

Unbound	
Layer thickness (in)	Semi-infinite
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus (Input Level: 3)

Analysis Type: Modify input values by temperature/moisture	
Method:	Resilient Modulus (psi)

Resilient Modulus (psi) 6482.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	A-4
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve

Liquid Limit	21.0
Plasticity Index	5.0
Is layer compacted?	True

	Is User Defined?	Value
, , ,	False	119
Saturated hydraulic conductivity (ft/hr)	False	7.589e-06
Specific gravity of solids	False	2.7
Water Content (%)	False	11.8

User-defined Soil Water Characteristic Curve (SWCC)			
Is User Defined? False			
af 68.8377			
o.9983			
cf 0.4757			
hr 500.0000			

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	60.6
#100	
#80	73.9
#60	
#50	
#40	82.7
#30	
#20	
#16	
#10	89.9
#8	
#4	93.0
3/8-in.	95.6
1/2-in.	96.7
3/4-in.	98.0
1-in.	98.7
1 1/2-in.	99.4
2-in.	99.6
2 1/2-in.	
3-in.	
3 1/2-in.	99.8

Report generated on: 5/24/2023 6:56 PM

Version: 2.3.1+66 Created by: on: 8/5/2016 12:00 AM

27.5 Road PCCP Design (No Class 2) File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\27.5 Road PCCP Design (No Class 2).

Calibration Coefficients

PCC Faulting						
$C_{12} = C_1 + (C_2)$						
$C_{34} = C_3 + (C_4 * FR^{0.25})$ $FaultMax_0 = C_{12} * \delta_{curling} * \left[\log(1 + C_5 * 5.0^{EROD}) * \log\left(P_{200} * \frac{WetDays}{p_S}\right) \right]^{C_6}$						
	$FaultMax_i = FaultMax_0 + C_7 * \sum_{j=1}^{m} DE_j * \log(1 + C_5 * 5.0^{EROD})^{C_6}$					
$C_8 = DowelDe$	* (FaultMax _{i-1} – Fa eterioration	utt _{i-1}) - * DE _i				
C1: 0.5104	C1: 0.5104					
C5: 5999						
PCC Reliability Faulting Standard Deviation						
0.0831*Pow(FAULT,0.3426) + 0.00521						

IRI-jpcp		
C1 - Cracking	C1: 0.8203	C2: 0.4417
C2 - Spalling	C3: 1.4929	C4: 25.24
C3 - Faulting	Reliability Stan	dard Deviation
C4 - Site Factor	5.4	

PCC Cracking				
MP	Fatigue Coefficier	nts	Cracking Coefficients	
$\log(N) = C1 \cdot (\frac{MR}{R})^{C2}$	C1: 2	C2: 1.22	C4: 0.6	C5: -2.05
1 7	PCC Reliability Cracking Standard Deviation			
	Pow(57.08*CRACK,0.33) + 1.5			
$\frac{1+C4 FD^{C5}}{1+C4 FD^{C5}}$				

Report generated on: 5/24/2023 6:56 PM

Version: 2.3.1+66 Created by: on: 8/5/2016 12:00 AM

APPENDIX J

HORIZON DRIVE RIGID PAVEMENT M-E DESIGN OUTPUT SHEETS

File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive PCCP Design (No Class 2)...

Design Inputs

Design Life: 30 years Existing construction: Climate Data 39.134, -108.538

Sources (Lat/Lon) **JPCP** Design Type: Pavement construction: May, 2024

> Traffic opening: September, 2024

Design Structure

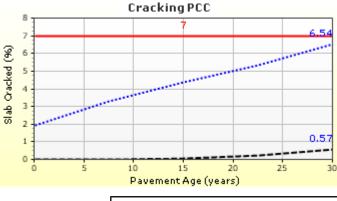
Layer type	Material Type	Thickness (in)
PCC	R4 Level 1 Lawson	10.0
NonStabilized	Crushed gravel	8.0
Subgrade	A-4	6.0
Subgrade	A-4	Semi-infinite

Joint Design:				
Joint spacing (ft)	15.0			
Dowel diameter (in)	1.25			
Slab width (ft)	12.0			

Traffic

Age (year)	Heavy Trucks (cumulative)
2024 (initial)	3,640
2039 (15 years)	10,346,300
2054 (30 years)	24,271,100

Design Outputs


Distress Prediction Summary

Distress Type	Distress @ Specified Reliability		Reliability (%)		Criterion Satisfied?	
	Target	Predicted	Target	Achieved	Satisfied?	
Terminal IRI (in/mile)	200.00	200.08	90.00	89.97	Fail	
Mean joint faulting (in)	0.20	0.15	90.00	99.03	Pass	
JPCP transverse cracking (percent slabs)	7.00	6.54	90.00	91.64	Pass	

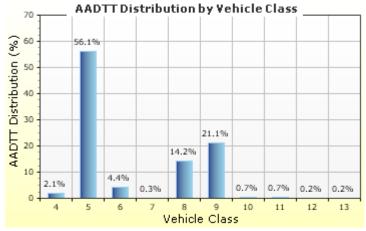
Distress Charts

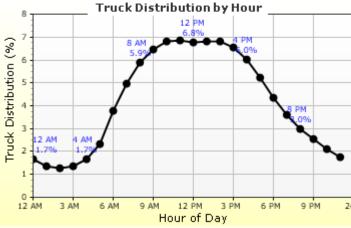
Threshold Value ···· @ Specified Reliability --- @ 50% Reliability

Report generated on: 5/24/2023 6:55 PM

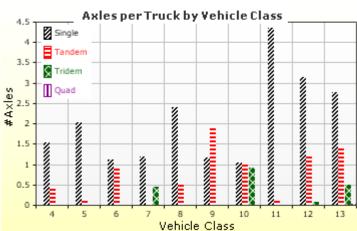
Version: 2.3.1+66

Created by: on: 8/5/2016 12:00 AM

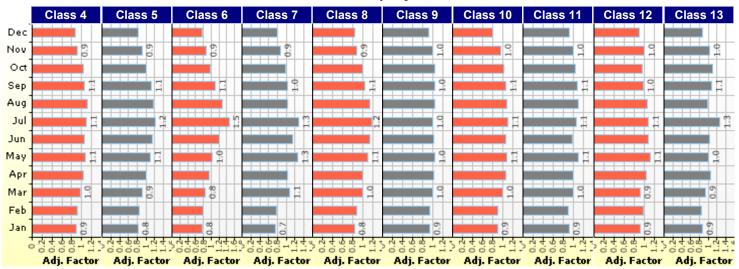

Traffic Inputs


Graphical Representation of Traffic Inputs

Initial two-way AADTT: 3,640


Number of lanes in design direction: 2

Percent of trucks in design direction (%): 50.0
Percent of trucks in design lane (%): 90.0
Operational speed (mph) 35.0



Traffic Volume Monthly Adjustment Factors

Tabular Representation of Traffic Inputs

Volume Monthly Adjustment Factors

Level 3: Default MAF

Month	Vehicle Class									
WOILLI	4	5	6	7	8	9	10	11	12	13
January	0.9	0.8	0.8	0.7	0.8	0.9	0.9	0.9	0.9	0.9
February	0.9	0.8	0.8	0.8	0.9	0.9	0.9	0.9	1.0	0.8
March	1.0	0.9	0.8	1.1	1.0	1.0	1.0	1.0	0.9	0.9
April	1.0	1.0	0.9	1.0	1.0	1.0	1.1	1.0	1.0	1.1
May	1.1	1.1	1.0	1.3	1.1	1.0	1.1	1.1	1.1	1.0
June	1.1	1.1	1.2	1.1	1.1	1.0	1.1	1.0	1.1	1.0
July	1.1	1.2	1.5	1.3	1.2	1.0	1.1	1.1	1.1	1.3
August	1.1	1.2	1.3	1.0	1.1	1.0	1.1	1.1	1.1	1.0
September	1.1	1.1	1.1	1.0	1.1	1.0	1.1	1.1	1.0	1.1
October	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.9	1.1
November	0.9	0.9	0.9	0.9	0.9	1.0	1.0	1.0	1.0	1.0
December	0.9	0.8	0.8	0.8	0.8	0.9	0.8	0.9	0.9	0.9

Distributions by Vehicle Class

Vehicle Class	AADTT Distribution (%)	Growth Factor		
	(Level 3) `´	Rate (%)	Function	
Class 4	2.1%	2%	Compound	
Class 5	56.1%	2%	Compound	
Class 6	4.4%	2%	Compound	
Class 7	0.3%	2%	Compound	
Class 8	14.2%	2%	Compound	
Class 9	21.1%	2%	Compound	
Class 10	0.7%	2%	Compound	
Class 11	0.7%	2%	Compound	
Class 12	0.2%	2%	Compound	
Class 13	0.2%	2%	Compound	

Truck Distribution by Hour

Hour	Distribution (%)	Hour	Distribution (%)
12 AM	1.65%	12 PM	6.75%
1 AM	1.37%	1 PM	6.81%
2 AM	1.28%	2 PM	6.83%
3 AM	1.36%	3 PM	6.56%
4 AM	1.66%	4 PM	6.02%
5 AM	2.32%	5 PM	5.23%
6 AM	3.8%	6 PM	4.35%
7 AM	4.95%	7 PM	3.59%
8 AM	5.9%	8 PM	2.98%
9 AM	6.48%	9 PM	2.56%
10 AM	6.83%	10 PM	2.12%
11 AM	6.85%	11 PM	1.75%
		Total	100%

Axle Configuration

Traffic Wander				
Mean wheel location (in)	18.0			
Traffic wander standard deviation (in)	10.0			
Design lane width (ft)	12.0			

Axle Configuration				
Average axle width (ft)	8.5			
Dual tire spacing (in)	12.0			
Tire pressure (psi)	120.0			

Average Axle Spacing			
51.6			
49.2			
49.2			

Wheelbase						
Value Type	Axle Type	Short	Medium	Long		
Average spacing of axles (ft)		12.0	15.0	18.0		
Percent of Trucks (%)		17.0	22.0	61.0		

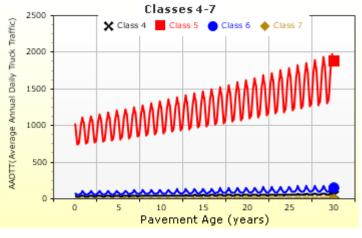
Number of Axles per Truck

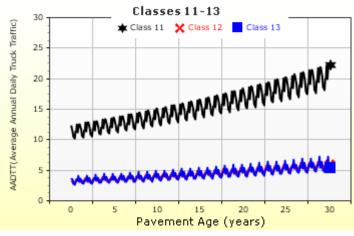
Vehicle Class	Single Axle	Tandem Axle	Tridem Axle	Quad Axle
Class 4	1.53	0.45	0	0
Class 5	2.02	0.16	0.02	0
Class 6	1.12	0.93	0	0
Class 7	1.19	0.07	0.45	0.02
Class 8	2.41	0.56	0.02	0
Class 9	1.16	1.88	0.01	0
Class 10	1.05	1.01	0.93	0.02
Class 11	4.35	0.13	0	0
Class 12	3.15	1.22	0.09	0
Class 13	2.77	1.4	0.51	0.04

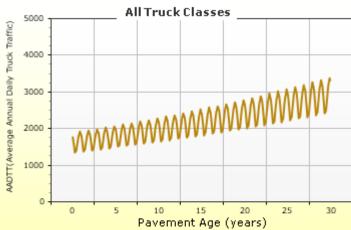
Report generated on: 5/24/2023 6:55 PM

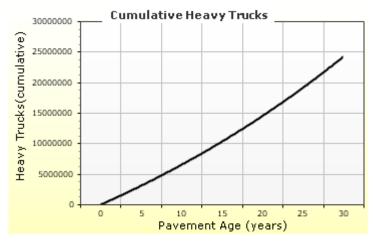
Version: 2.3.1+66

Created^{by:} on: 8/5/2016 12:00 AM


Horizon Drive PCCP Design (No Class 2)


File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive PCCP Design (No Class 2)...

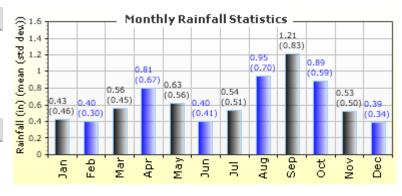

AADTT (Average Annual Daily Truck Traffic) Growth


* Traffic cap is not enforced

Climate Inputs

Climate Data Sources:

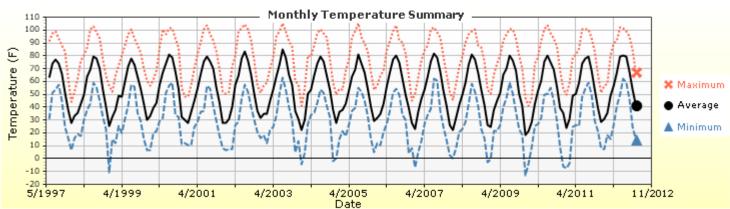
Climate Station Cities: Location (lat lon elevation(ft))
GRAND JUNCTION, CO 39.13400 -108.53800 4839

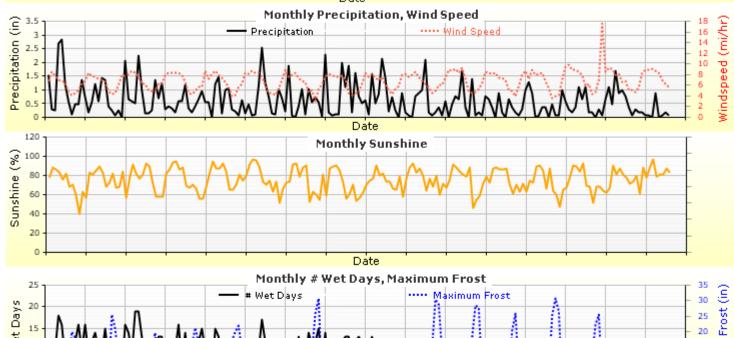


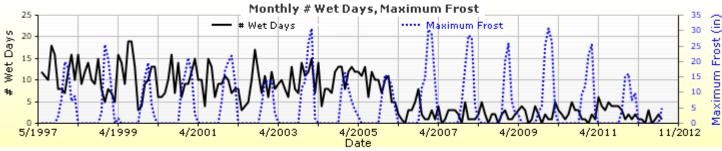
Mean annual air temperature (°F) 53.55

Mean annual precipitation (in) 7.76

Freezing index (°F - days) 398.73

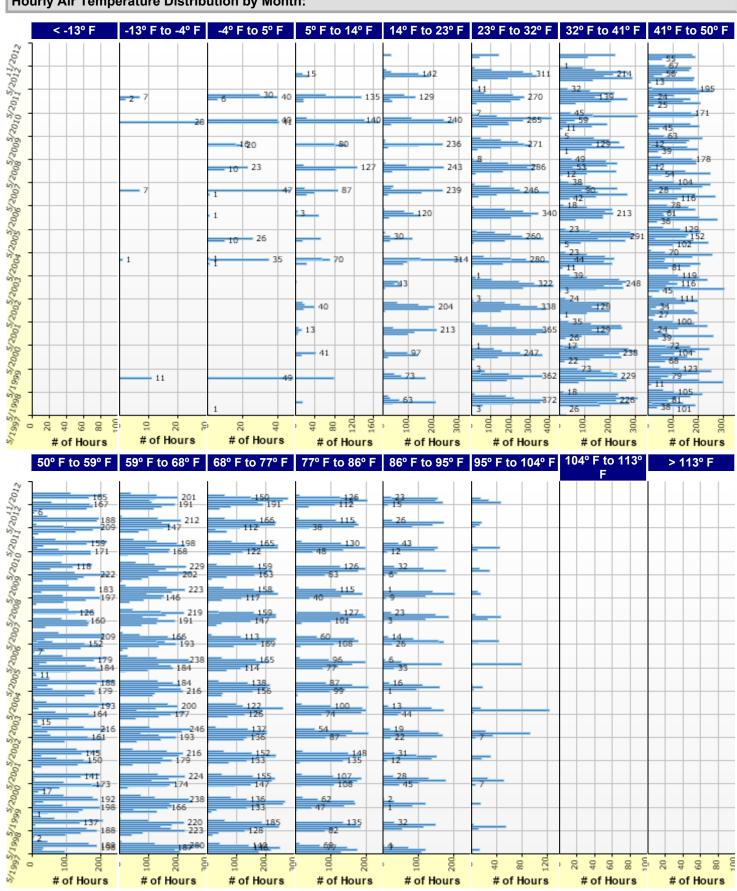

Average annual number of freeze/thaw cycles: 111.77




Water table depth (ft)

4.00

Monthly Climate Summary:



Created by: on: 8/5/2016 12:00 AM

Hourly Air Temperature Distribution by Month:

Design Properties

JPCP Design Properties

Structure - ICM Properties				
PCC surface shortwave absorptivity	0.85			

PCC joint spacing (ft)		
ls joint spacing random ?	False	
Joint spacing (ft)	15.00	

Doweled Joints	
Is joint doweled?	True
Dowel diameter (in)	1.25
Dowel spacing (in)	12.00

Widened Slab	
Is slab widened ?	False
Slab width (ft)	12.00

Sealant type	Other(Including No Sealant Liquid Silicone)
--------------	---

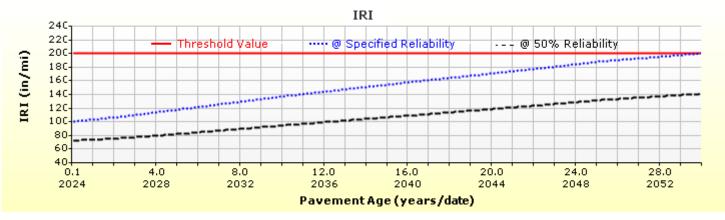
Tied Shoulders	
Tied shoulders	True
Load transfer efficiency (%)	50.00

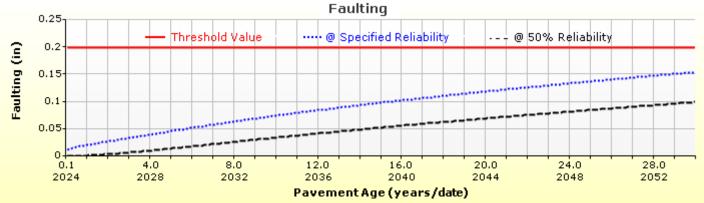
PCC-Base Contact Friction	
PCC-Base full friction contact	True
Months until friction loss	360.00

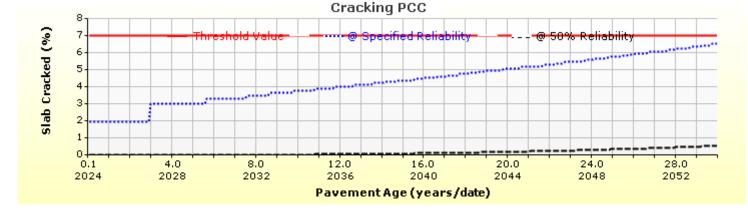
Erodibility index	3

Permanent curl/warp effective temperature difference (°F)	-10.00
---	--------

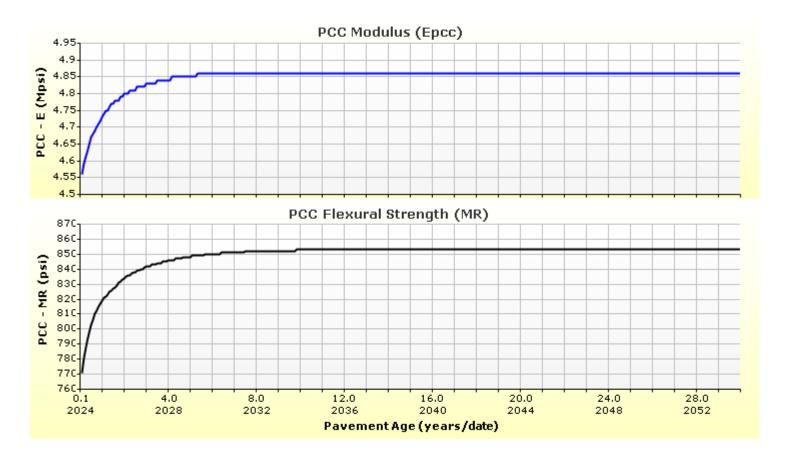
Report generated on: 5/24/2023 6:55 PM

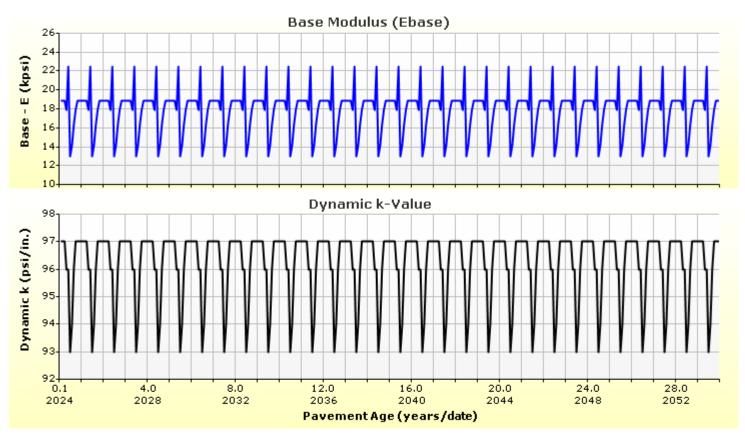

Version: 2.3.1+66


Created by: on: 8/5/2016 12:00 AM

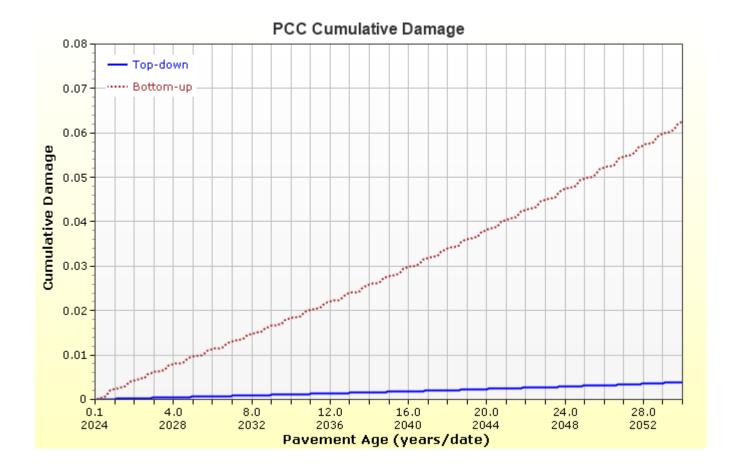


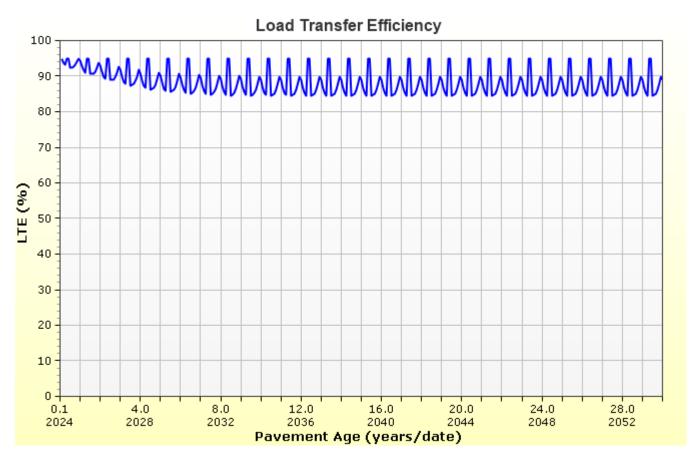
Analysis Output Charts





File Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon Drive PCCP Design (No Class 2).





Created^{by:} on: 8/5/2016 12:00 AM

Layer Information

Layer 1 PCC : R4 Level 1 Lawson

PCC	
Thickness (in)	10.0
Unit weight (pcf)	140.6
Poisson's ratio	0.2

Thermal	
PCC coefficient of thermal expansion (in/in/°F x 10^-6)	4.86
PCC thermal conductivity (BTU/hr-ft-°F)	1.25
PCC heat capacity (BTU/lb-°F)	0.28

[
Mix		
Cement type		Type I (1)
Cementitious material co	ontent (lb/yd^3)	563
Water to cement ratio		0.36
Aggregate type		Dolomite (2)
PCC zero-stress temperature (°F)	Calculated Internally?	True
	User Value	-
	Calculated Value	90.7
Ultimate shrinkage (microstrain)	Calculated Internally?	True
	User Value	-
	Calculated Value	516.0
Reversible shrinkage (%)		50
Time to develop 50% of ultimate shrinkage (days)		35
Curing method		Curing Compound

PCC strength and modulus (Input Level: 1)

Time	Modulus of rupture (psi)	Elastic modulus (psi)
7-day	560	3230000
14-day	620	3500000
28-day	710	4030000
90-day	730	4240000
20-year/28-day	1.2	1.2

Identifiers

Field	Value
Display name/identifier	R4 Level 1 Lawson
Description of object	Mix ID # 2009105
Author	CDOT
Date Created	4/3/2013 12:00:00 AM
Approver	CDOT
Date approved	4/3/2013 12:00:00 AM
State	Colorado
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	Region 4/1/6
User defined field 2	
User defined field 3	
Revision Number	0

Report generated on: 5/24/2023 6:55 PM

Version: 2.3.1+66

Created^{by:} on: 8/5/2016 12:00 AM

Layer 2 Non-stabilized Base : Crushed gravel

Unbound	
Layer thickness (in)	8.0
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus (Input Level: 3)

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi) 12000.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	Crushed gravel
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	42

Sieve	
Liquid Limit	6.0
Plasticity Index	1.0

Is layer compacted?

True

	Is User Defined?	Value
, , ,	False	127.7
Saturated hydraulic conductivity (ft/hr)	False	5.054e-02
Specific gravity of solids	False	2.7
Water Content (%)	False	7.4

User-defined Soil Water Characteristic Curve (SWCC)		
Is User Defined?		
af	7.2555	
bf	1.3328	
cf	0.8242	
hr	117.4000	

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	8.7
#100	
#80	12.9
#60	
#50	
#40	20.0
#30	
#20	
#16	
#10	33.8
#8	
#4	44.7
3/8-in.	57.2
1/2-in.	63.1
3/4-in.	72.7
1-in.	78.8
1 1/2-in.	85.8
2-in.	91.6
2 1/2-in.	
3-in.	
3 1/2-in.	97.6

Report generated on: 5/24/2023 6:55 PM

Version: 2.3.1+66

Created^{by:} on: 8/5/2016 12:00 AM

Layer 3 Subgrade: A-4

Unbound	
Layer thickness (in)	6.0
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus (Input Level: 3)

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi) 6482.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	A-4
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve

Liquid Limit	21.0
Plasticity Index	5.0
Is layer compacted?	True

	Is User Defined?	Value
, , ,	False	119
Saturated hydraulic conductivity (ft/hr)	False	7.589e-06
Specific gravity of solids	False	2.7
Water Content (%)	False	11.8

User-defined Soil Water Characteristic Curve (SWCC)		
Is User Defined? False		
af	68.8377	
bf	0.9983	
cf	0.4757	
hr 500.0000		

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	60.6
#100	
#80	73.9
#60	
#50	
#40	82.7
#30	
#20	
#16	
#10	89.9
#8	
#4	93.0
3/8-in.	95.6
1/2-in.	96.7
3/4-in.	98.0
1-in.	98.7
1 1/2-in.	99.4
2-in.	99.6
2 1/2-in.	
3-in.	
3 1/2-in.	99.8

Report generated on: 5/24/2023 6:55 PM

Version: 2.3.1+66 Created^{by:} on: 8/5/2016 12:00 AM

Layer 4 Subgrade: A-4

Unbound	
Layer thickness (in)	Semi-infinite
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus (Input Level: 3)

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi) 6482.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	A-4
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve

Liquid Limit	21.0
Plasticity Index	5.0
Is layer compacted?	True

	Is User Defined?	Value
, , ,	False	119
Saturated hydraulic conductivity (ft/hr)	False	7.589e-06
Specific gravity of solids	False	2.7
Water Content (%)	False	11.8

User-defined Soil Water Characteristic Curve (SWCC)		
Is User Defined?		
af	68.8377	
bf	0.9983	
cf	0.4757	
hr 500.0000		

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	60.6
#100	
#80	73.9
#60	
#50	
#40	82.7
#30	
#20	
#16	
#10	89.9
#8	
#4	93.0
3/8-in.	95.6
1/2-in.	96.7
3/4-in.	98.0
1-in.	98.7
1 1/2-in.	99.4
2-in.	99.6
2 1/2-in.	
3-in.	
3 1/2-in.	99.8

Report generated on: 5/24/2023 6:55 PM

Version: 2.3.1+66 Created by: on: 8/5/2016 12:00 AM

Calibration Coefficients

PCC Faulting								
	$C_{12} = C_1 + (C_2 * FR^{0.25})$							
$C_{34} = C_3 + (C_4 * FR^{0.25})$ $FaultMax_0 = C_{12} * \delta_{curling} * \left[\log(1 + C_5 * 5.0^{EROD}) * \log\left(P_{200} * \frac{WetDays}{p_S}\right) \right]^{C_6}$								
	$FaultMax_i = FaultMax_0 + C_7 * \sum_{j=1}^{m} DE_j * \log(1 + C_5 * 5.0^{EROD})^{C_6}$							
$\Delta Fault_i = C_{3i}$ $C_8 = DowelDe$	_i * (FaultMax _{i-1} – Fa eterioration	$ult_{i-1})^2 * DE_i$						
C1: 0.5104	C2: 0.00838	C3: 0.00147	C4: 0.008345					
C5: 5999	C6: 0.8404	C7: 5.9293	C8: 400					
PCC Reliability Faulting Standard Deviation								
0.0831*Pow(FAULT,0.3426) + 0.00521								

IRI-jpcp		
C1 - Cracking	C1: 0.8203	C2: 0.4417
C2 - Spalling	C3: 1.4929	C4: 25.24
C3 - Faulting	Reliability Stan	dard Deviation
C4 - Site Factor	5.4	_

PCC Cracking						
MD	Fatigue Coefficier	nts	Cracking Coefficients			
$\log(N) = C1 \cdot (\frac{MR}{R})^{C2}$	C1: 2	C2: 1.22	C4: 0.6	C5: -2.05		
		racking Standard D	eviation			
	Pow(57.08*CRACK,0.33) + 1.5					
$\frac{CKK - \frac{1 + C4 FD^{C5}}{1 + C4 FD^{C5}}}{1 + C4 FD^{C5}}$						

Report generated on: 5/24/2023 6:55 PM

Version: 2.3.1+66

Created by: on: 8/5/2016 12:00 AM

APPENDIX K

HORIZON DRIVE AND G ROAD ROUNDABOUT RIGID PAVEMENT M-E DESIGN PAVEMENT OUTPUT SHEETS

Horizon and G Road Roundabout PCCP Design (No Class 2)

ame: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon and G Road Roundabout PCCP Design

Design Inputs

Design Life: 30 years Existing construction: Climate Data 39.134, -108.538

Sources (Lat/Lon) **JPCP** Design Type: Pavement construction: May, 2024

> Traffic opening: September, 2024

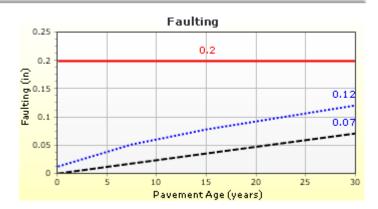
Design Structure

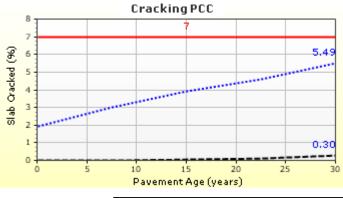
Layer type	Material Type	Thickness (in)
PCC	R4 Level 1 Lawson	10.5
NonStabilized	Crushed gravel	8.0
Subgrade	A-4	6.0
Subgrade	A-4	Semi-infinite

Joint Design:				
Joint spacing (ft)	15.0			
Dowel diameter (in)	1.50			
Slab width (ft)	12.0			

I	rattic	

Age (year)	Heavy Trucks (cumulative)
2024 (initial)	6,350
2039 (15 years)	18,049,200
2054 (30 years)	42,341,000


Design Outputs


Distress Prediction Summary

Distress Type		Specified bility	Reliabi	Criterion Satisfied?	
	Target	Predicted	Target	Achieved	Salisileur
Terminal IRI (in/mile)	200.00	179.48	90.00	96.15	Pass
Mean joint faulting (in)	0.20	0.12	90.00	99.95	Pass
JPCP transverse cracking (percent slabs)	7.00	5.49	90.00	95.08	Pass

Distress Charts

Threshold Value ···· @ Specified Reliability --- @ 50% Reliability

Report generated on: 5/24/2023 6:46 PM

Version: 2.3.1+66 Created by: on: 8/5/2016 12:00 AM

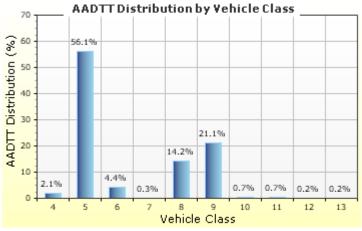
Approved by: on: 8/5/2016 12:00 AM

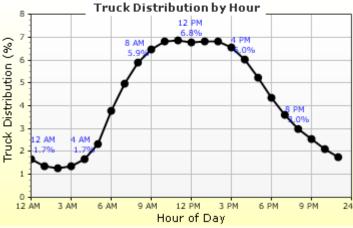
Page 1 of 15

Horizon and G Road Roundabout PCCP Design (No Class 2) ame: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizon and G Road Roundabout\Horizon and G Road Roundabout PCCP Design

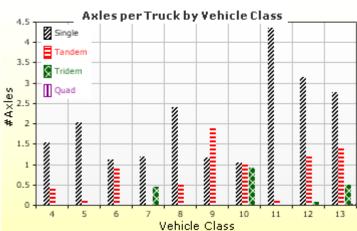
Traffic Inputs

Graphical Representation of Traffic Inputs

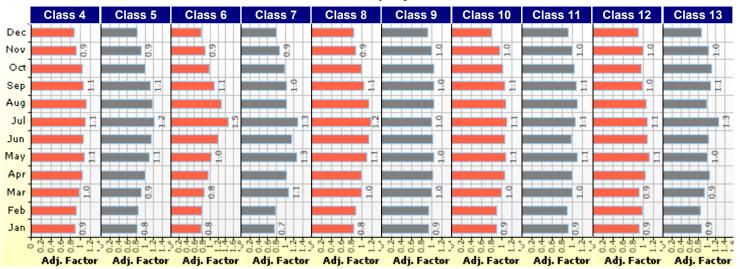

Initial two-way AADTT: 6,350


Number of lanes in design direction: 2

Percent of trucks in design direction (%): 50.0


Percent of trucks in design lane (%): 90.0

Operational speed (mph) 35.0



Traffic Volume Monthly Adjustment Factors

Horizon and G Road Roundabout PCCP Design (No Class 2)

Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon and G Road Roundabout PCCP Design

Tabular Representation of Traffic Inputs

Volume Monthly Adjustment Factors

Level 3: Default MAF

Month	Vehicle Class									
WOILLI	4	5	6	7	8	9	10	11	12	13
January	0.9	0.8	0.8	0.7	0.8	0.9	0.9	0.9	0.9	0.9
February	0.9	0.8	0.8	0.8	0.9	0.9	0.9	0.9	1.0	0.8
March	1.0	0.9	0.8	1.1	1.0	1.0	1.0	1.0	0.9	0.9
April	1.0	1.0	0.9	1.0	1.0	1.0	1.1	1.0	1.0	1.1
May	1.1	1.1	1.0	1.3	1.1	1.0	1.1	1.1	1.1	1.0
June	1.1	1.1	1.2	1.1	1.1	1.0	1.1	1.0	1.1	1.0
July	1.1	1.2	1.5	1.3	1.2	1.0	1.1	1.1	1.1	1.3
August	1.1	1.2	1.3	1.0	1.1	1.0	1.1	1.1	1.1	1.0
September	1.1	1.1	1.1	1.0	1.1	1.0	1.1	1.1	1.0	1.1
October	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.9	1.1
November	0.9	0.9	0.9	0.9	0.9	1.0	1.0	1.0	1.0	1.0
December	0.9	0.8	0.8	0.8	0.8	0.9	0.8	0.9	0.9	0.9

Distributions by Vehicle Class

Vehicle Class	AADTT Distribution (%)	Growth Factor			
	(Level 3) `	Rate (%)	Function		
Class 4	2.1%	2%	Compound		
Class 5	56.1%	2%	Compound		
Class 6	4.4%	2%	Compound		
Class 7	0.3%	2%	Compound		
Class 8	14.2%	2%	Compound		
Class 9	21.1%	2%	Compound		
Class 10	0.7%	2%	Compound		
Class 11	0.7%	2%	Compound		
Class 12	0.2%	2%	Compound		
Class 13	0.2%	2%	Compound		

Truck Distribution by Hour

Hour	Distribution (%)	Hour	Distribution (%)
12 AM	1.65%	12 PM	6.75%
1 AM	1.37%	1 PM	6.81%
2 AM	1.28%	2 PM	6.83%
3 AM	1.36%	3 PM	6.56%
4 AM	1.66%	4 PM	6.02%
5 AM	2.32%	5 PM	5.23%
6 AM	3.8%	6 PM	4.35%
7 AM	4.95%	7 PM	3.59%
8 AM	5.9%	8 PM	2.98%
9 AM	6.48%	9 PM	2.56%
10 AM	6.83%	10 PM	2.12%
11 AM	6.85%	11 PM	1.75%
		Total	100%

Axle Configuration

Traffic Wander	
Mean wheel location (in)	18.0
Traffic wander standard deviation (in)	10.0
Design lane width (ft)	12.0

		Axle Configuration	า
	18.0	Average axle width (ft)	8.5
	10.0	Dual tire spacing (in)	12.0
	12.0	Tire pressure (psi)	120.0
		\A/III	

Average Axle Spa	cing
Tandem axle spacing (in)	51.6
Tridem axle spacing (in)	49.2
Quad axle spacing (in)	49.2

Wheelbase				
Value Type	Axle Type	Short	Medium	Long
Average spar (ft)	cing of axles	12.0	15.0	18.0
Percent of Tr	ucks (%)	17.0	22.0	61.0

Number of Axles per Truck

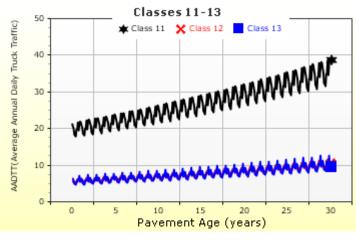
Vehicle Class	Single Axle	Tandem Axle	Tridem Axle	Quad Axle
Class 4	1.53	0.45	0	0
Class 5	2.02	0.16	0.02	0
Class 6	1.12	0.93	0	0
Class 7	1.19	0.07	0.45	0.02
Class 8	2.41	0.56	0.02	0
Class 9	1.16	1.88	0.01	0
Class 10	1.05	1.01	0.93	0.02
Class 11	4.35	0.13	0	0
Class 12	3.15	1.22	0.09	0
Class 13	2.77	1.4	0.51	0.04

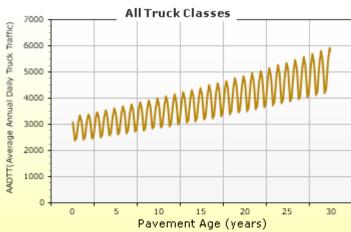
Report generated on: 5/24/2023 6:46 PM

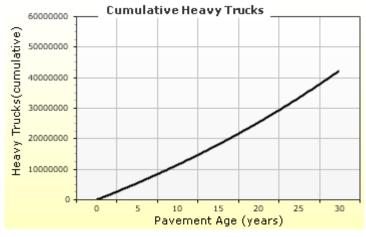
Version: 2.3.1+66

Created^{by:} on: 8/5/2016 12:00 AM

Horizon and G Road Roundabout PCCP Design (No Class 2) ame: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon and G Road Roundabout PCCP Design




AADTT (Average Annual Daily Truck Traffic) Growth

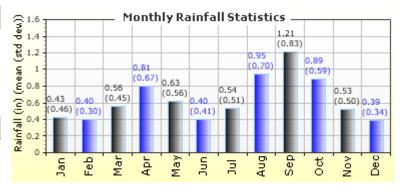

* Traffic cap is not enforced

Horizon and G Road Roundabout PCCP Design (No Class 2) ame: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizon and G Road Roundabout\Horizon and G Road Roundabout PCCP Design

Climate Inputs

Climate Data Sources:

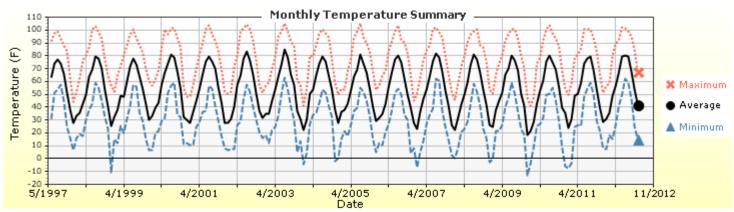
Climate Station Cities: Location (lat lon elevation(ft))
GRAND JUNCTION, CO 39.13400 -108.53800 4839

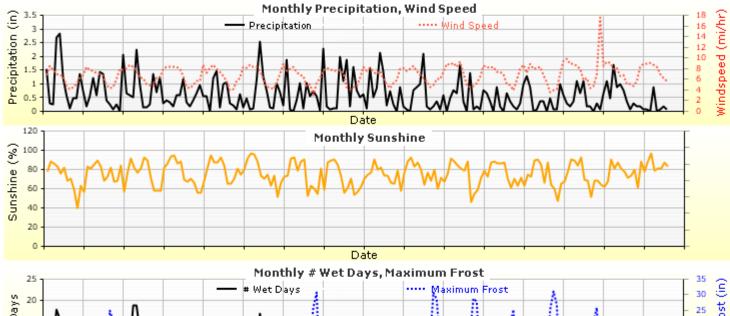


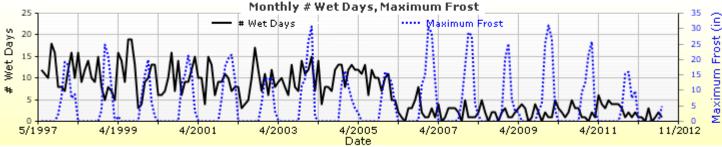
Mean annual air temperature (°F) 53.55

Mean annual precipitation (in) 7.76

Freezing index (°F - days) 398.73

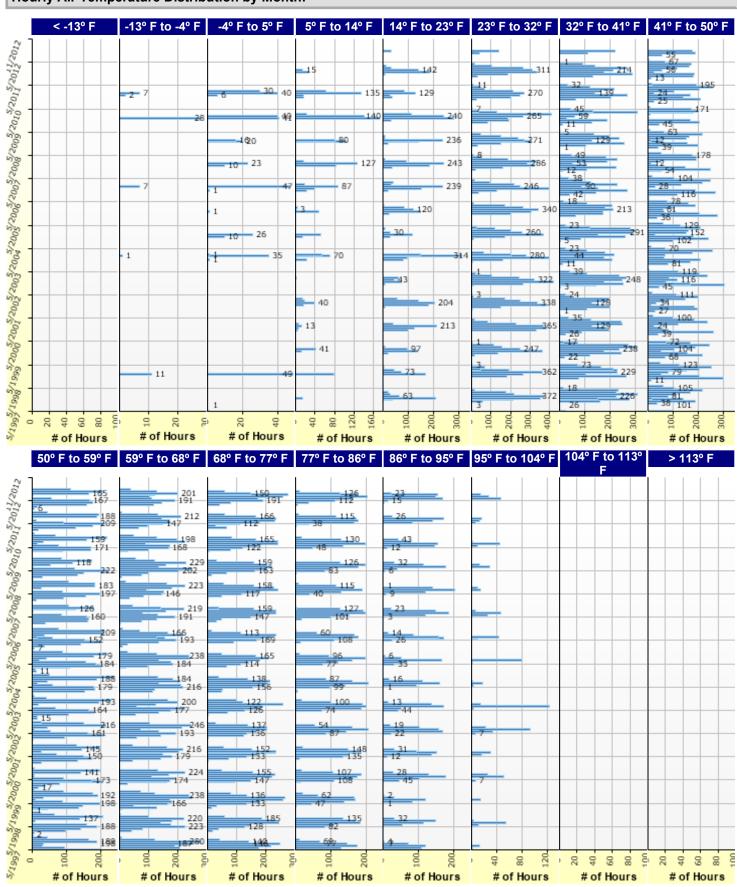

Average annual number of freeze/thaw cycles: 111.77




Water table depth (ft)

4.00

Monthly Climate Summary:



Horizon and G Road Roundabout PCCP Design (No Class 2) Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon and G Road Roundabout PCCP Design (No Class 2)

Hourly Air Temperature Distribution by Month:

Horizon and G Road Roundabout PCCP Design (No Class 2) ame: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon and G Road Roundabout PCCP Design (No G

Design Properties

JPCP Design Properties

Structure - ICM Properties	
PCC surface shortwave absorptivity	0.85

PCC joint spacing (ft)		
Is joint spacing random ?	False	
Joint spacing (ft)	15.00	

Doweled Joints	
Is joint doweled?	True
Dowel diameter (in)	1.50
Dowel spacing (in)	12.00

Widened Slab	
Is slab widened ?	False
Slab width (ft)	12.00

Sealant type	Other(Including No Sealant Liquid Silicone)
--------------	---

True
50.00

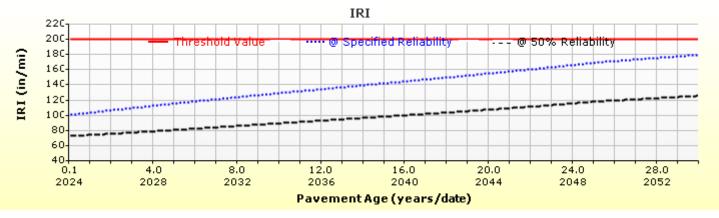
PCC-Base Contact Friction		
True		
360.00		

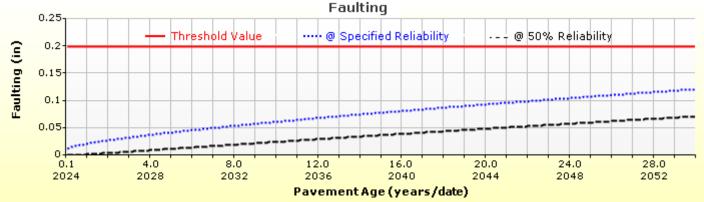
Erodibility index	3

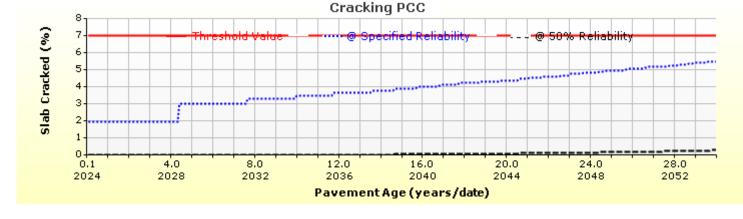
Permanent curl/warp effective temperature difference (°F)	-10.00

Report generated on: 5/24/2023 6:46 PM

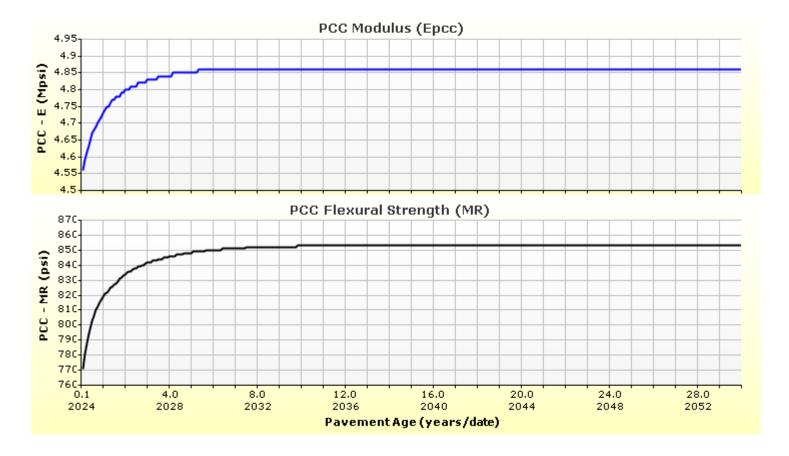
Version: 2.3.1+66 Created^{by:} on: 8/5/2016 12:00 AM

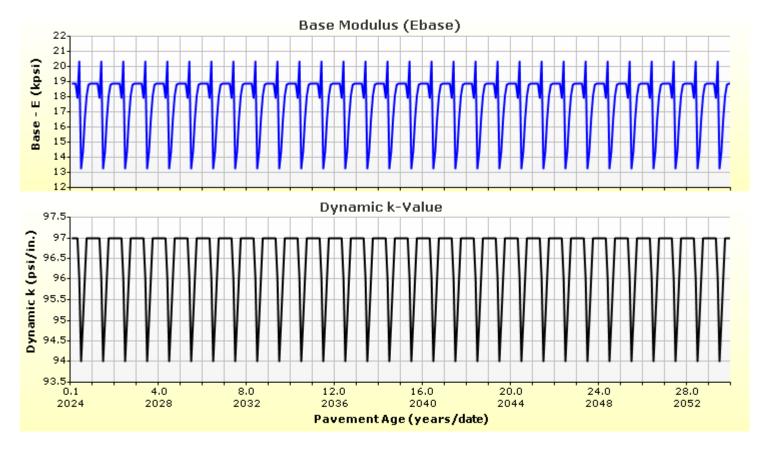

Approved by: on: 8/5/2016 12:00 AM


Page 7 of 15

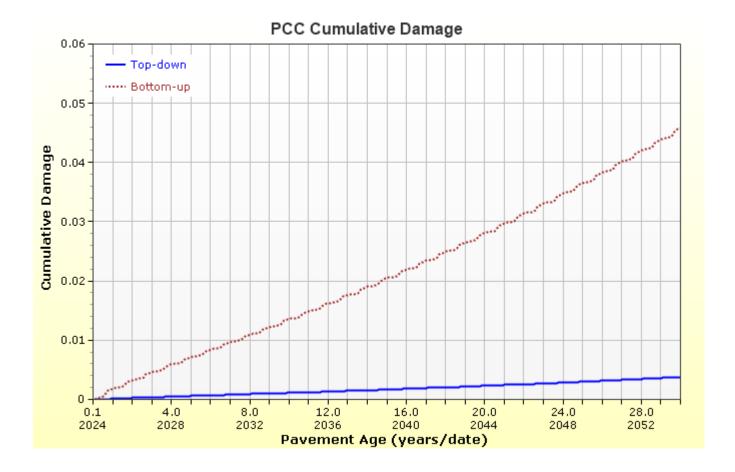


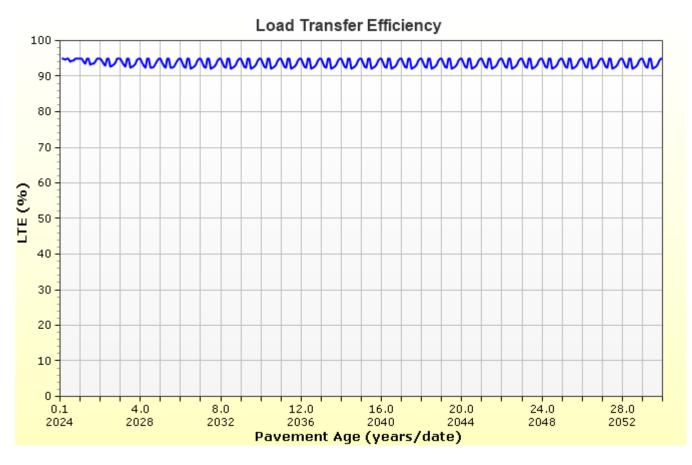
Analysis Output Charts





Horizon and G Road Roundabout PCCP Design (No Class 2) Name: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon and G Road Roundabout PCCP Design





Horizon and G Road Roundabout PCCP Design (No Class 2) ame: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizon and G Road Roundabout\Horizon and G Road Roundabout PCCP Design

Layer Information

Layer 1 PCC : R4 Level 1 Lawson

PCC	
Thickness (in)	10.5
Unit weight (pcf)	140.6
Poisson's ratio	0.2

Thermal	
PCC coefficient of thermal expansion (in/in/°F x 10^-6)	4.86
PCC thermal conductivity (BTU/hr-ft-°F)	1.25
PCC heat capacity (BTU/lb-ºF)	0.28

Mix	Mix		
Cement type		Type I (1)	
Cementitious material co	ontent (lb/yd^3)	563	
Water to cement ratio		0.36	
Aggregate type		Dolomite (2)	
PCC zero-stress	Calculated Internally?	True	
temperature (°F)	User Value	-	
	Calculated Value	90.7	
Ultimate shrinkage	Calculated Internally?	True	
(microstrain)	User Value	-	
	Calculated Value	516.0	
Reversible shrinkage (%)		50	
Time to develop 50% of ultimate shrinkage (days)		35	
Curing method		Curing Compound	

PCC strength and modulus (Input Level: 1)

Time	Modulus of rupture (psi)	Elastic modulus (psi)
7-day	560	3230000
14-day	620	3500000
28-day	710	4030000
90-day	730	4240000
20-year/28-day	1.2	1.2

Identifiers

Field	Value
Display name/identifier	R4 Level 1 Lawson
Description of object	Mix ID # 2009105
Author	CDOT
Date Created	4/3/2013 12:00:00 AM
Approver	CDOT
Date approved	4/3/2013 12:00:00 AM
State	Colorado
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	Region 4/1/6
User defined field 2	
User defined field 3	
Revision Number	0

Report generated on: 5/24/2023 6:46 PM

Version: 2.3.1+66

Created^{by:} on: 8/5/2016 12:00 AM

Horizon and G Road Roundabout PCCP Design (No Class 2) ame: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizion and G Road Roundabout\Horizon and G Road Roundabout PCCP Design (No Class 2)

Layer 2 Non-stabilized Base : Crushed gravel

Unbound	
Layer thickness (in)	8.0
Poisson's ratio	0.35

Layer thickness (in)	8.0
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus (Input Level: 3)		
Analysis Type:	Modify input values by temperature/moisture	
Method:	Resilient Modulus (psi)	

Resilient Modulus (psi)
12000.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	Crushed gravel
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	42

Sieve	
Liquid Limit	6.0
Plasticity Index	1.0
Is layer compacted?	True

	Is User Defined?	Value
]	False	127.7
Saturated hydraulic conductivity (ft/hr)	False	5.054e-02
Specific gravity of solids	False	2.7
Water Content (%)	False	7.4

User-defined Soil Water Characteristic Curve (SWCC)		
Is User Defined? False		
af	7.2555	
bf	1.3328	
cf	0.8242	
hr	117.4000	

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	8.7
#100	
#80	12.9
#60	
#50	
#40	20.0
#30	
#20	
#16	
#10	33.8
#8	
#4	44.7
3/8-in.	57.2
1/2-in.	63.1
3/4-in.	72.7
1-in.	78.8
1 1/2-in.	85.8
2-in.	91.6
2 1/2-in.	
3-in.	
3 1/2-in.	97.6

Report generated on: 5/24/2023 6:46 PM

Version: 2.3.1+66 Created^{by:} on: 8/5/2016 12:00 AM

Horizon and G Road Roundabout PCCP Design (No Class 2) ame: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizon and G Road Roundabout\Horizon and G Road Roundabout PCCP Design (

Layer 3 Subgrade : A-4

Unbound	
Layer thickness (in)	6.0
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus (Input Level: 3)

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi) 6482.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	A-4
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve

Liquid Limit	21.0
Plasticity Index	5.0
Is layer compacted?	True

	Is User Defined?	Value
, , ,	False	119
Saturated hydraulic conductivity (ft/hr)	False	7.589e-06
Specific gravity of solids	False	2.7
Water Content (%)	False	11.8

User-defined Soil Water Characteristic Curve (SWCC)		
Is User Defined? False		
af	68.8377	
bf	0.9983	
cf	0.4757	
hr 500.0000		

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	60.6
#100	
#80	73.9
#60	
#50	
#40	82.7
#30	
#20	
#16	
#10	89.9
#8	
#4	93.0
3/8-in.	95.6
1/2-in.	96.7
3/4-in.	98.0
1-in.	98.7
1 1/2-in.	99.4
2-in.	99.6
2 1/2-in.	
3-in.	
3 1/2-in.	99.8

Report generated on: 5/24/2023 6:46 PM

Version: 2.3.1+66

Created^{by:} on: 8/5/2016 12:00 AM Approved by: on: 8/5/2016 12:00 AM

Page 13 of 15

Horizon and G Road Roundabout PCCP Design (No Class 2) ame: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizon and G Road Roundabout\Horizon and G Road Roundabout PCCP Design (

Layer 4	Subgrade	: A-4
---------	----------	-------

Unbound	
Layer thickness (in)	Semi-infinite
Poisson's ratio	0.35
Coefficient of lateral earth pressure (k0)	0.5

Modulus (Input Level: 3)

Analysis Type:	Modify input values by temperature/moisture
Method:	Resilient Modulus (psi)

Resilient Modulus (psi) 6482.0

Use Correction factor for NDT modulus?	-
NDT Correction Factor:	-

Identifiers

Field	Value
Display name/identifier	A-4
Description of object	Default material
Author	AASHTO
Date Created	1/1/2011 12:00:00 AM
Approver	
Date approved	1/1/2011 12:00:00 AM
State	
District	
County	
Highway	
Direction of Travel	
From station (miles)	
To station (miles)	
Province	
User defined field 1	
User defined field 2	
User defined field 3	
Revision Number	0

Sieve

Liquid Limit	21.0
Plasticity Index	5.0
Is layer compacted?	True

	Is User Defined?	Value
, , ,	False	119
Saturated hydraulic conductivity (ft/hr)	False	7.589e-06
Specific gravity of solids	False	2.7
Water Content (%)	False	11.8

User-defined Soil Water Characteristic Curve (SWCC)		
Is User Defined? False		
af	68.8377	
o.9983		
cf 0.4757		
hr 500.0000		

Sieve Size	% Passing
0.001mm	
0.002mm	
0.020mm	
#200	60.6
#100	
#80	73.9
#60	
#50	
#40	82.7
#30	
#20	
#16	
#10	89.9
#8	
#4	93.0
3/8-in.	95.6
1/2-in.	96.7
3/4-in.	98.0
1-in.	98.7
1 1/2-in.	99.4
2-in.	99.6
2 1/2-in.	
3-in.	
3 1/2-in.	99.8

Report generated on: 5/24/2023 6:46 PM

Version: 2.3.1+66 Created^{by:} on: 8/5/2016 12:00 AM

Horizon and G Road Roundabout PCCP Design (No Class 2) ame: C:\Users\goldbaum\Documents\My PMED Designs\My ME Design\Projects\Horizon and G Road Roundabout\Horizon and G Road Roundabout PCCP Design (No Class 2)

Calibration Coefficients

PCC Faulting				
	$C_{12} = C_1 + (C_2 * FR^{0.25})$			
$C_{34} = C_3 + (C_3)$	•		747 470 3 GE	
$FaultMax_0 =$	$FaultMax_0 = C_{12} * \delta_{curling} * \left[\log(1 + C_5 * 5.0^{EROD}) * \log\left(P_{200} * \frac{WetDays}{p_c}\right) \right]^{1/6}$			
$FaultMax_i = FaultMax_0 + C_7 * \sum_{j=1}^{m} DE_j * \log(1 + C_5 * 5.0^{EROD})^{C_6}$				
	$\Delta Fault_i = C_{34} * (FaultMax_{i-1} - Fault_{i-1})^2 * DE_i$			
$C_8 = DowelDe$	$C_8 = DowelDeterioration$			
C1: 0.5104	C2: 0.00838	C3: 0.00147	C4: 0.008345	
C5: 5999	C6: 0.8404	C7: 5.9293	C8: 400	
PCC Reliability Faulting Standard Deviation				
0.0831*Pow(FAULT,0.3426) + 0.00521				

IRI-jpcp		
C1 - Cracking	C1: 0.8203	C2: 0.4417
C2 - Spalling	C3: 1.4929	C4: 25.24
C3 - Faulting	Reliability Standard Deviation	
C4 - Site Factor	5.4	

PCC Cracking					
MD	Fatigue Coefficients		Cracking Coefficients		
$\log(N) = C1 \cdot (\frac{MR}{L})^{C2}$	C1: 2	C2: 1.22	C4: 0.6	C5: -2.05	
	PCC Reliability Cracking Standard Deviation				
	Pow(57.08*CRACK,0.33) + 1.5				
$\frac{CKK - \frac{1 + C4 FD^{C5}}{1 + C4 FD^{C5}}}{1 + C4 FD^{C5}}$					

Report generated on: 5/24/2023 6:46 PM

Version: 2.3.1+66 Created by: on: 8/5/2016 12:00 AM

APPENDIX L

AASHTO 1993 20 AND 30-YEAR DESIGN LIFE OF FLEXIBLE PAVEMENT OUTPUT SHEETS

Geotechnical Investigation and Pavement Design Report Horizon Drive and G Road Roundabout City of Grand Junction, Colorado

INITIAL VALUES

Initial Serviceability Index= Final Serviceability Index=	2.5 2
,	
Overall Standard Deviation, So=	0.44
Reliability, R (percent)=	90
Standard Normal Deviate (ZR)=	-1.282
Structural Coefficient of HMA=	0.44
Structural Coefficient of ABC=	0.11
Design Life ESALs=	3,050,000
R-Value=	10

INTERMEDIATE CALCULATIONS

Calculated Mr=	6482
Design Mr=	6482
Design Serviceability Loss (ΔPSI)=	2.5

FINAL CALCULATIONS

SN=	3.9795

Such That:

Log₁₀ESAL **Thickness Equation** ≤ 6.4843 6.4843 ≤

Use 5.5 inches

Full HMA: 9.04 Depth= in

HMA over ABC:

Depth ABC= 16 in Depth HMA= 5.04 in

Reliability, R (percent)	$\begin{array}{c} Standard\ Normal \\ Deviate(Z_R) \end{array}$
50	0.000
60	-0.253
70	-0.524
75	-0.674
80	-0.841
85	-1.037
90	-1.282
91	-1.340
92	-1.405
93	-1.476
94	-1.555
95	-1.645
98	-2.054

G Road (30-year Design Life)

Geotechnical Investigation and Pavement Design Report Horizon Drive and G Road Roundabout City of Grand Junction, Colorado

INITIAL VALUES

Initial Serviceability Index=	2.5
Final Serviceability Index=	2
Overall Standard Deviation, So=	0.44
Reliability, R (percent)=	90
Standard Normal Deviate (ZR)=	-1.282
Structural Coefficient of HMA=	0.44
Structural Coefficient of ABC=	0.11
Design Life ESALs=	5,090,000
R-Value=	10

INTERMEDIATE CALCULATIONS

Calculated Mr=	6482
Design Mr=	6482
Design Serviceability Loss (ΔPSI)=	2.5

FINAL CALCULATIONS

SN=	4.2673

Such That:

Log₁₀ESAL ≤ **Thickness Equation** 6.7067 ≤ 6.7071

Full HMA:

Depth= **9.70** in

HMA over ABC:

Depth ABC=	16	in
Depth HMA=	5.70	in

Use 6.0 inches

Reliability, R (percent)	Standard Normal Deviate(Z _R)
50	0.000
60	-0.253
70	-0.524
75	-0.674
80	-0.841
85	-1.037
90	-1.282
91	-1.340
92	-1.405
93	-1.476
94	-1.555
95	-1.645
98	-2.054

Geotechnical Investigation and Pavement Design Report Horizon Drive and G Road Roundabout City of Grand Junction, Colorado

INITIAL VALUES

Initial Serviceability Index=	2.5
Final Serviceability Index=	2
Overall Standard Deviation, So=	0.44
Reliability, R (percent)=	90
Standard Normal Deviate (ZR)=	-1.282
Structural Coefficient of HMA=	0.44
Structural Coefficient of ABC=	0.11
Design Life ESALs=	6,240,000
R-Value=	10

INTERMEDIATE CALCULATIONS

Calculated Mr=	6482
Design Mr=	6482
Design Serviceability Loss (ΔPSI)=	2.5

FINAL CALCULATIONS

SN=	4.3860

Such That:

Log₁₀ESAL ≤ **Thickness Equation** 6.7952 ≤ 6.7956

Full HMA:

Depth= 9.97 in

HMA over ABC:

Depth ABC=	16	in
Depth HMA=	5.97	in

Use 6.0 inches

Reliability, R (percent)	$\begin{array}{c} Standard\ Normal\\ Deviate(Z_R) \end{array}$
50	0.000
60	-0.253
70	-0.524
75	-0.674
80	-0.841
85	-1.037
90	-1.282
91	-1.340
92	-1.405
93	-1.476
94	-1.555
95	-1.645
98	-2.054

27 1/2 Road (30-year Design Life)

Geotechnical Investigation and Pavement Design Report Horizon Drive and G Road Roundabout City of Grand Junction, Colorado

INITIAL VALUES

Initial Serviceability Index= Final Serviceability Index=	2.5 2
,	
Overall Standard Deviation, So=	0.44
Reliability, R (percent)=	90
Standard Normal Deviate (ZR)=	-1.282
Structural Coefficient of HMA=	0.44
Structural Coefficient of ABC=	0.11
Design Life ESALs=	10,410,000
R-Value=	10

INTERMEDIATE CALCULATIONS

Calculated Mr=	6482
Design Mr=	6482
Design Serviceability Loss (ΔPSI)=	2.5

FINAL CALCULATIONS

SN=	4.6950

Such That:

Log10 ESAL≤Thickness Equation7.0175≤7.0175

Full HMA:

Depth= **10.67** in

HMA over ABC:

Depth ABC= 16 in
Depth HMA= 6.67 in Use 7.0 inches

ESAL's = the number of Equivalent 18-kip axle loads for the appropriate design period

Reliability, R (percent)	Standard Normal Deviate(Z _R)
50	0.000
60	-0.253
70	-0.524
75	-0.674
80	-0.841
85	-1.037
90	-1.282
91	-1.340
92	-1.405
93	-1.476
94	-1.555
95	-1.645
98	-2.054

Horizon Drive

Geotechnical Investigation and Pavement Design Report Horizon Drive and G Road Roundabout City of Grand Junction, Colorado

INITIAL VALUES

Initial Serviceability Index=	2.5
Final Serviceability Index=	2
Overall Standard Deviation, So=	0.44
Reliability, R (percent)=	90
Standard Normal Deviate (ZR)=	-1.282
Structural Coefficient of HMA=	0.44
Structural Coefficient of ABC=	0.11
Design Life ESALs=	9,350,000
R-Value=	10

INTERMEDIATE CALCULATIONS

Calculated Mr=	6482
Design Mr=	6482
Design Serviceability Loss (ΛPSI)=	2.5

FINAL CALCULATIONS

SN=	4.6290

Such That:

Log₁₀ESAL ≤ **Thickness Equation** 6.9708 ≤ 6.9711

Full HMA:

Depth= **10.52** in

HMA over ABC:

Depth ABC= 16 in Depth HMA= 6.52 in

Use 7.0 inches

Reliability, R (percent)	Standard Normal Deviate(Z _R)
50	0.000
60	-0.253
70	-0.524
75	-0.674
80	-0.841
85	-1.037
90	-1.282
91	-1.340
92	-1.405
93	-1.476
94	-1.555
95	-1.645
98	-2.054

Horizon Drive (30-year Design Life)

Geotechnical Investigation and Pavement Design Report Horizon Drive and G Road Roundabout City of Grand Junction, Colorado

INITIAL VALUES

Initial Serviceability Index=	2.5
Final Serviceability Index=	2
Overall Standard Deviation, So=	0.44
Reliability, R (percent)=	90
Standard Normal Deviate (ZR)=	-1.282
Structural Coefficient of HMA=	0.44
Structural Coefficient of ABC=	0.11
Design Life ESALs=	16,620,000
R-Value=	10

INTERMEDIATE CALCULATIONS

Calculated Mr=	6482
Design Mr=	6482
Design Serviceability Loss (ΔPSI)=	2.5

FINAL CALCULATIONS

Such That:

Log₁₀ESAL ≤ Thickness Equation 7.2206 ≤ 7.2207

Full HMA:

Depth= 11.35 in

HMA over ABC:

Depth ABC=	16	in	
Denth HMA=	7.35	in	Use 7.5 inches

Reliability, R (percent)	Standard Normal Deviate(Z _R)
50	0.000
60	-0.253
70	-0.524
75	-0.674
80	-0.841
85	-1.037
90	-1.282
91	-1.340
92	-1.405
93	-1.476
94	-1.555
95	-1.645
98	-2.054

Horizon Drive and G Road Roundabout

Geotechnical Investigation and Pavement Design Report
Horizon Drive and G Road Roundabout
City of Grand Junction, Colorado

INITIAL VALUES

Initial Serviceability Index= Final Serviceability Index=	2.5 2
Final Serviceability index-	2
Overall Standard Deviation, So=	0.44
Reliability, R (percent)=	90
Standard Normal Deviate (ZR)=	-1.282
Structural Coefficient of HMA=	0.44
Structural Coefficient of ABC=	0.11
Design Life ESALs=	16,320,000
R-Value=	10

INTERMEDIATE CALCULATIONS

Calculated Mr=	6482	
Design Mr=	6482	
Design Serviceability Loss (APSI)=	2.5	

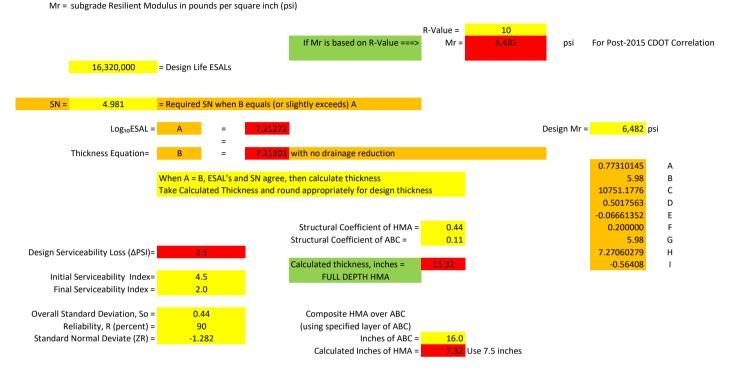
FINAL CALCULATIONS

SN=	4.9810

Such That:

Log₁₀ESAL ≤ Thickness Equation 7.2127 ≤ 7.2130

Full HMA:


Depth= **11.32** ir

HMA over ABC:

Depth ABC=	16	in
Depth HMA=	7.32	in

Use 7.5 inches

ESAL's = the number of Equivalent 18-kip axle loads for the appropriate design period

Reliability, R (percent)	Standard Normal Deviate(Z _R)
50	0.000
60	-0.253
70	-0.524
75	-0.674
80	-0.841
85	-1.037
90	-1.282
91	-1.340
92	-1.405
93	-1.476
94	-1.555
95	-1.645
98	-2.054

Horizon Drive and G Road Roundabout (30-year Design Life)

Geotechnical Investigation and Pavement Design Report Horizon Drive and G Road Roundabout City of Grand Junction, Colorado

INITIAL VALUES

Initial Serviceability Index=	2.5
Final Serviceability Index=	2
Overall Standard Deviation, So=	0.44
Reliability, R (percent)=	90
Standard Normal Deviate (ZR)=	-1.282
Structural Coefficient of HMA=	0.44
Structural Coefficient of ABC=	0.11
Design Life ESALs=	27,250,000
R-Value=	10

INTERMEDIATE CALCULATIONS

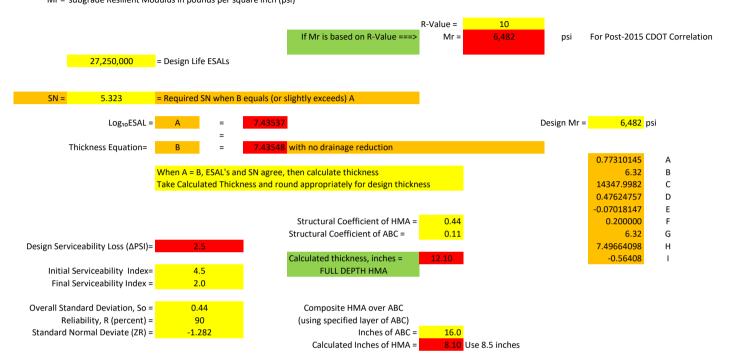
Calculated Mr=	6482
Design Mr=	6482
Design Serviceability Loss (ΔPSI)=	2.5

FINAL CALCULATIONS

SN=	5.3230

Such That:

Log10 ESAL≤Thickness Equation7.4354≤7.4355


Full HMA:

Depth= **12.10** ir

HMA over ABC:

Depth ABC=	16	in
Depth HMA=	8.10	in

Use 8.5 inches

Reliability, R (percent)	Standard Normal Deviate(Z _R)
50	0.000
60	-0.253
70	-0.524
75	-0.674
80	-0.841
85	-1.037
90	-1.282
91	-1.340
92	-1.405
93	-1.476
94	-1.555
95	-1.645
98	-2.054

APPENDIX M

AASHTO 1998 RIGID PAVEMENT DESIGN OUTPUT SHEETS

Rigid Pavement Design - Based on AASHTO Supplemental Guide

Reference: LTPP DATA ANALYSIS - Phase I: Validation of Guidelines for k-Value Selection and Concrete
Pavement Performance Prediction

Results

Project # 599.76

Description: G Road Segment

Location: Grand Junction, CO

Slab Thickness Design

Pavement Type	JPCP	
18-kip ESALs Over Initial Performance Period (million)	6.58	million
Initial Serviceability	4.5	
Terminal Serviceability	2	
28-day Mean PCC Modulus of Rupture	650	psi
Elastic Modulus of Slab	3,400,000	psi
Elastic Modulus of Base	12,000	psi
Base Thickness	8.0	in.
Mean Effective k-Value	125	psi/in
Reliability Level	90	%
Overall Standard Deviation	0.34	
Calculated Design Thickness	8.76	in

Temperature Differential

Maximum Positive Temperature Differential	7.13	°F
Mean Annual Precipitation	15.3	in
Mean Annual Air Temperature	50.3	°F
Mean Annual Wind Speed	8.8	mph

Modulus of Subgrade Reaction

Period Description Subgrade k-Value, psi

Seasonally Adjusted Modulus of Subgrade Reaction	psi/in
Modulus of Subgrade Reaction Adjusted for Rigid Layer and Fill Section	psi/in

Traffic

Criteria Check

FAIL

Performance Period years
Two-Way ADT

Number of Lanes in Design Direction
Percent of All Trucks in Design Lane
Percent Trucks in Design Direction

Vehicle Class	Percent of	Annual	Initial	Annual	Accumulated
	<u>ADT</u>	Growth	Truck Factor	Growth in	18-kip ESALs
				Truck Factor	(millions)

Total Calculated Cumulative ESALs		million
Faulting		
Doweled		
Dowel Diameter Drainage Coefficient	1.25 1.00	in
Average Fault for Design Years with Design Inputs Criteria Check PASS	0.04	in
Nondoweled		
Drainage Coefficient	1	
Average Fault for Design Years with Design Inputs	0.08	in

Rigid Pavement Design - Based on AASHTO Supplemental Guide

Reference: LTPP DATA ANALYSIS - Phase I: Validation of Guidelines for k-Value Selection and Concrete
Pavement Performance Prediction

Results

Project # 599.76

Description: 27 1/2 Road Segment

Location: Grand Junction, CO

Slab Thickness Design

Pavement Type	JPCP	
18-kip ESALs Over Initial Performance Period (million)	13.46	million
Initial Serviceability	4.5	
Terminal Serviceability	2	
28-day Mean PCC Modulus of Rupture	650	psi
Elastic Modulus of Slab	3,400,000	psi
Elastic Modulus of Base	12,000	psi
Base Thickness	8.0	in.
Mean Effective k-Value	125	psi/in
Reliability Level	90	%
Overall Standard Deviation	0.34	
Calculated Design Thickness	9.82	in

Temperature Differential

Mean Annual Precipitation	15.3	in
Maximum Positive Temperature Differential	7.78	°F
Maximum Positive Temperature Differential	/./8	F

Modulus of Subgrade Reaction

Period Description Subgrade k-Value, psi

Seasonally Adjusted Modulus of Subgrade Reaction	psi/in
Modulus of Subgrade Reaction Adjusted for Rigid Layer and Fill Section	psi/in

Traffic

Criteria Check

FAIL

Performance Period years
Two-Way ADT

Number of Lanes in Design Direction
Percent of All Trucks in Design Lane
Percent Trucks in Design Direction

Vehicle Class	Percent of	Annual	Initial	Annual	Accumulated
	<u>ADT</u>	Growth	Truck Factor	Growth in	18-kip ESALs
				Truck Factor	(millions)

Total Calculated Cumulative ESALs		million
Faulting		
Doweled		
Dowel Diameter Drainage Coefficient	1.25 1.00	in
Average Fault for Design Years with Design Inputs Criteria Check PASS	0.05	in
Nondoweled		
Drainage Coefficient	1	
Average Fault for Design Years with Design Inputs	0.09	in

Rigid Pavement Design - Based on AASHTO Supplemental Guide

Reference: LTPP DATA ANALYSIS - Phase I: Validation of Guidelines for k-Value Selection and Concrete
Pavement Performance Prediction

Results

Project # 599.76

Description: Horizon Drive Segment

Location: Grand Junction, CO

Slab Thickness Design

Pavement Type	JPCP	
18-kip ESALs Over Initial Performance Period (million)	20.19	million
Initial Serviceability	4.5	
Terminal Serviceability	2	
28-day Mean PCC Modulus of Rupture	650	psi
Elastic Modulus of Slab	3,400,000	psi
Elastic Modulus of Base	12,000	psi
Base Thickness	8.0	in.
Mean Effective k-Value	125	psi/in
Reliability Level	90	%
Overall Standard Deviation	0.34	
Calculated Design Thickness	10.47	in

Temperature Differential

Maximum Positive Temperature Differential	8.11	°F
Mean Annual Precipitation	15.3	in
Mean Annual Air Temperature	50.3	°F
Mean Annual Wind Speed	8.8	mph

Modulus of Subgrade Reaction

Period Description Subgrade k-Value, psi

Seasonally Adjusted Modulus of Subgrade Reaction	psi/in
Modulus of Subgrade Reaction Adjusted for Rigid Layer and Fill Section	psi/in

Traffic

Criteria Check

FAIL

Performance Period years
Two-Way ADT

Number of Lanes in Design Direction
Percent of All Trucks in Design Lane
Percent Trucks in Design Direction

Vehicle Class	Percent of	Annual	Initial	Annual	Accumulated
	<u>ADT</u>	Growth	Truck Factor	Growth in	18-kip ESALs
				Truck Factor	(millions)

Total Calculated Cumulative ESALs		million
Faulting		
Doweled		
Dowel Diameter Drainage Coefficient	1.25 1.00	in
Average Fault for Design Years with Design Inputs Criteria Check PASS	0.05	in
Nondoweled		
Drainage Coefficient	1	
Average Fault for Design Years with Design Inputs	0.09	in

Rigid Pavement Design - Based on AASHTO Supplemental Guide

Reference: LTPP DATA ANALYSIS - Phase I: Validation of Guidelines for k-Value Selection and Concrete Pavement Performance Prediction

Results

Project # 599.76

Description: Horizon Drive and G Road Roundabout

Location: Grand Junction, CO

Slab Thickness Design

Pavement Type	JPCP	
18-kip ESALs Over Initial Performance Period (million)	35.22	million
Initial Serviceability	4.5	
Terminal Serviceability	2	
28-day Mean PCC Modulus of Rupture	650	psi
Elastic Modulus of Slab	3,400,000	psi
Elastic Modulus of Base	12,000	psi
Base Thickness	8.0	in.
Mean Effective k-Value	125	psi/in
Reliability Level	90	%
Overall Standard Deviation	0.34	
Calculated Design Thickness	11.43	in

Temperature Differential

Maximum Positive Temperature Differential	8.52	°F
Mean Annual Precipitation	15.3	in
Mean Annual Air Temperature	50.3	$^{\mathrm{o}}\mathrm{F}$
Mean Annual Wind Speed	8.8	mph

Modulus of Subgrade Reaction

Period Description Subgrade k-Value, psi

Seasonally Adjusted Modulus of Subgrade Reaction	psi/in
Modulus of Subgrade Reaction Adjusted for Rigid Layer and Fill Section	psi/in

Traffic

Performance Period years
Two-Way ADT

Number of Lanes in Design Direction
Percent of All Trucks in Design Lane
Percent Trucks in Design Direction

Vehicle Class	Percent of	Annual	Initial	Annual	Accumulated
	<u>ADT</u>	Growth	Truck Factor	Growth in	18-kip ESALs
				Truck Factor	(millions)

Total Calculated Cumulative ESALs		million
Faulting		
Doweled		
Dowel Diameter Drainage Coefficient	1.25 1.00	in
Average Fault for Design Years with Design Inputs Criteria Check PASS	0.06	in
Nondoweled		
Drainage Coefficient	1	
Average Fault for Design Years with Design Inputs Criteria Check FAIL	0.10	in