

**Geotechnical Investigation Report  
Materials Recycling Facility  
Grand Junction, Colorado**



Prepared for:

**City of Grand Junction  
244 North 7<sup>th</sup> Street  
Grand Junction, Colorado**

**Attention: Jerod Timothy  
General Services Manager**

Prepared by:



**566 W Crete Circle, #2  
Grand Junction, Colorado 81505**

**RockSol Project No. 803.64  
February 4, 2026**

**Geotechnical Investigation Report  
Materials Recycling Facility  
Grand Junction, Colorado**

Prepared for:

**City of Grand Junction  
244 North 7<sup>th</sup> Street  
Grand Junction, Colorado**

**Attention: Jerod Timothy  
General Services Manager**

Prepared by:



**566 W Crete Circle, #2  
Grand Junction, Colorado 81505**

**RockSol Project No. 803.64  
February 4, 2026**

Reviewed by

A handwritten signature in black ink that appears to read "Alexander Walt".

Alex Walt, E.I.T.  
Staff Engineer

A handwritten signature in black ink that appears to read "Alec Moens".

Alec Moens, P.E.  
Geotechnical Engineer

A handwritten signature in blue ink that appears to read "Donald G. Hunt".

Donald G. Hunt, P.E.  
Senior Engineer



## Table of Contents

|       |                                                                             |    |
|-------|-----------------------------------------------------------------------------|----|
| 1.0   | PROJECT PURPOSE AND DESCRIPTION.....                                        | 1  |
| 2.0   | PROPOSED BUILDING MODIFICATIONS .....                                       | 2  |
| 3.0   | SUBSURFACE EXPLORATION SUMMARY.....                                         | 3  |
| 4.0   | GEOLOGICAL SETTING.....                                                     | 3  |
| 5.0   | LABORATORY TESTING.....                                                     | 4  |
| 6.0   | INTERIOR FLOOR SLAB AND SITE SUBGRADE CHARACTERIZATION .....                | 5  |
| 6.1   | Concrete Slab and Subsurface Materials (Building Location).....             | 5  |
| 6.1.1 | Swell/Collapse Discussion .....                                             | 6  |
| 6.2   | Subsurface Materials (Proposed Circulation Road Location) .....             | 6  |
| 6.2.1 | Proposed Roadway Subgrade Strength Characterization .....                   | 7  |
| 6.3   | Geo-Chemical Discussion.....                                                | 7  |
| 6.3.1 | Cement Type/Sulfate Resistance .....                                        | 7  |
| 6.3.2 | Corrosion Resistance Discussion.....                                        | 8  |
| 7.0   | SEISMICITY DISCUSSION.....                                                  | 8  |
| 7.1   | Seismic Design Parameters .....                                             | 9  |
| 8.0   | GEOTECHNICAL RECOMMENDATIONS – MRF BUILDING RENOVATIONS.....                | 9  |
| 8.1   | Interior Floor Slab Discussion and Shallow Foundation Recommendations ..... | 9  |
| 8.2   | Interior Load Bearing Wall Modifications/Deep Foundation Recommendations .. | 10 |
| 8.3   | Tip Floor Pile Area Discussion and Recommendations .....                    | 11 |
| 8.4   | Loading Docks Discussion and Recommendations .....                          | 12 |
| 8.5   | Interior Below-Grade Equipment Pit Recommendations.....                     | 12 |
| 9.0   | ROADWAY SURFACING AND PAVEMENT DESIGN RECOMMENDATIONS .....                 | 13 |
| 9.1   | Traffic Loading .....                                                       | 13 |
| 9.2   | Pavement Subgrade Characterization.....                                     | 13 |
| 9.3   | Pavement Design Parameter Summary .....                                     | 14 |
| 9.4   | Pavement Section Thickness Evaluation (Circulation Road) .....              | 14 |
| 9.5   | Pavement Section Thickness Recommendations (Circulation Road) .....         | 15 |
| 10.0  | EARTHWORK .....                                                             | 16 |
| 10.1  | Subgrade Preparation .....                                                  | 16 |
| 10.2  | Compaction Specifications .....                                             | 16 |
| 11.0  | OTHER DESIGN AND CONSTRUCTION CONSIDERATIONS.....                           | 16 |
| 12.0  | LIMITATIONS.....                                                            | 17 |

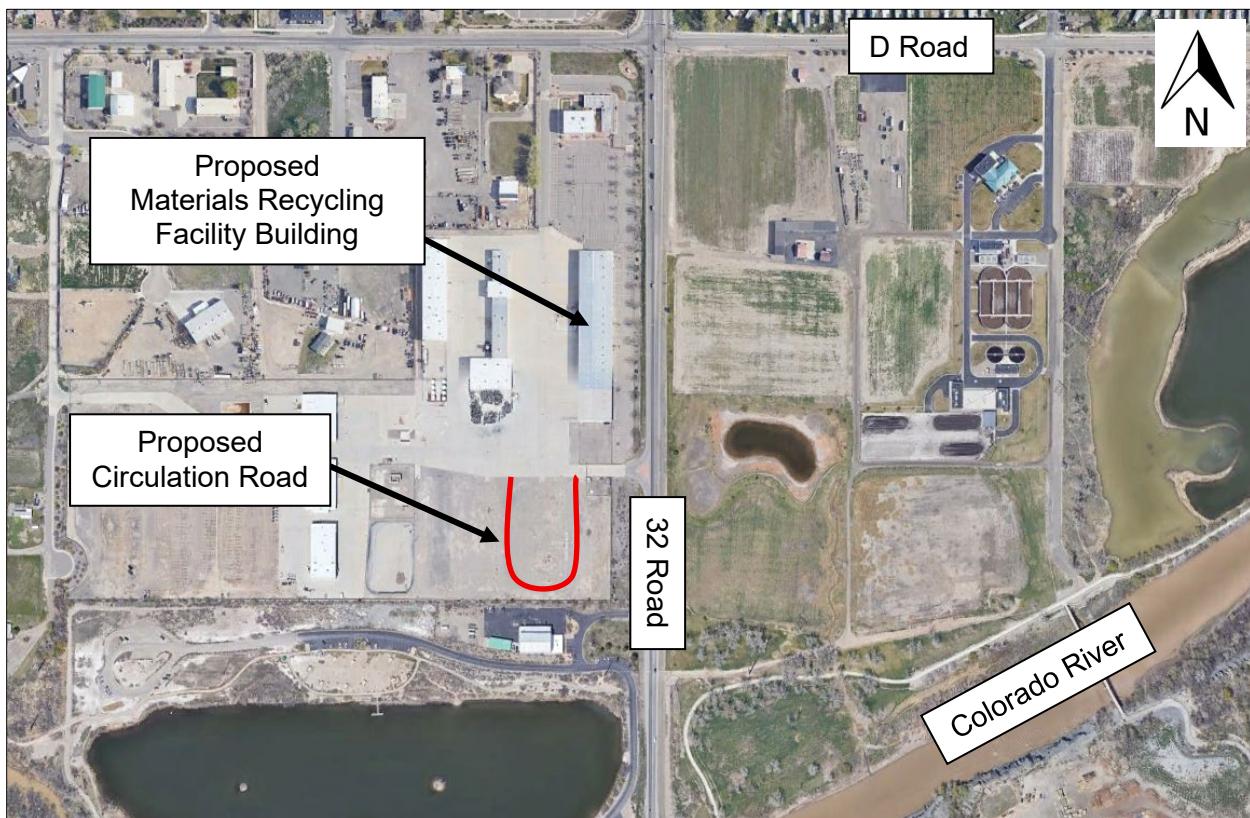

**ATTACHMENTS**

Figure 1A: Building Borehole Location Plan  
Figure 1B: Borehole Location Plan – Circulation Road Pavement Boreholes

Appendix A: Building Renovation Floor Plan – Overall (Sheet A-1-1)  
Appendix B: Bulk Handling Systems Equipment Layout Plans (Sheets G-002-1,2,3)  
Appendix C: Existing Interior Wall and Column Foundation Photographs  
Appendix D: Legend and Individual Borehole Logs  
Appendix E: Laboratory Test Results  
Appendix F: Concrete Slab Core Summary  
Appendix G: CDOT Pipe Materials Selection Guide  
Appendix H: Seismic Coefficients Output Sheet  
Appendix I: Pavement M-E Design Flexible Pavement Output Sheets  
Appendix J: PaveXpress Flexible Pavement Output Sheets  
Appendix K: Pavement M-E Design Rigid Pavement Output Sheets  
Appendix L: PaveXpress Rigid Pavement Output Sheets

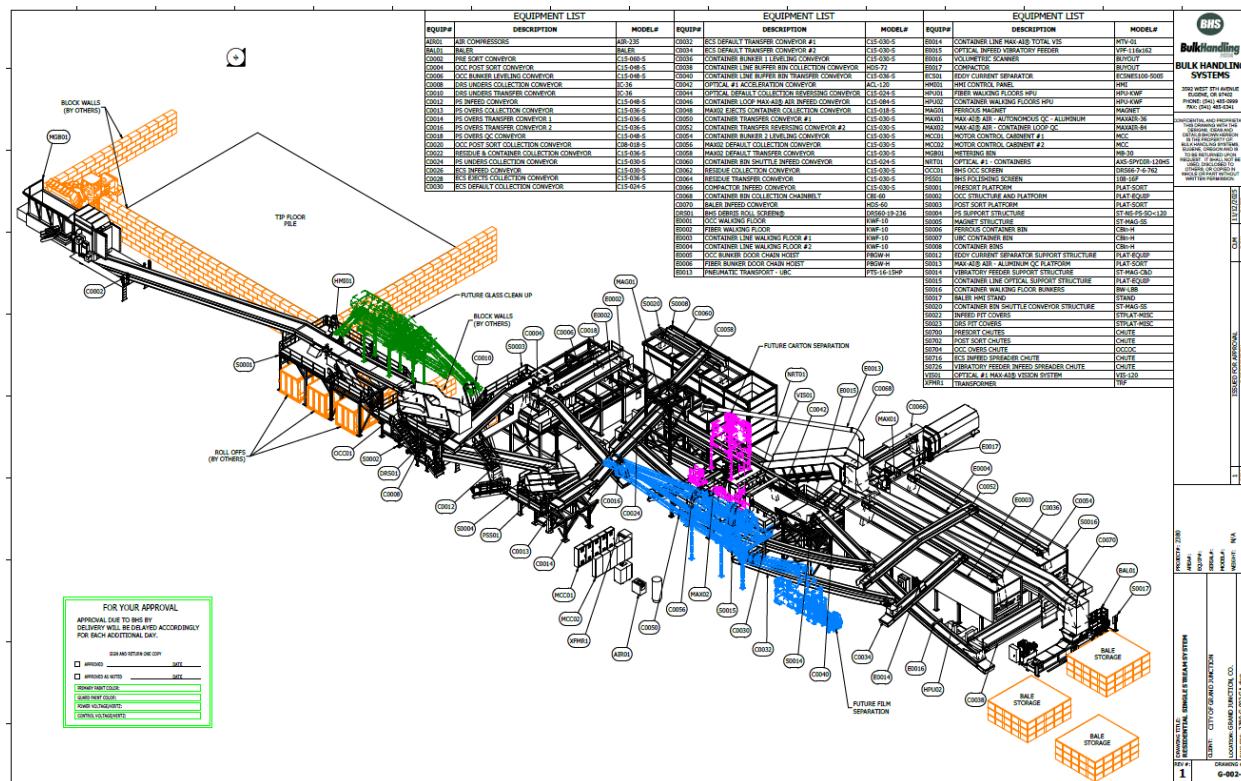
## 1.0 PROJECT PURPOSE AND DESCRIPTION

This report documents the geotechnical engineering investigation performed by RockSol Consulting Group, Inc. (RockSol) to assist with design of the proposed City of Grand Junction Materials Recycling Facility (MRF). The project will re-purpose an existing building located at 365 32 Road in Grand Junction, Colorado. A site vicinity map is presented in Image 1. Proposed construction includes removal of select portions of existing interior walls, installation of industrial equipment, addition of a steel framed mezzanine, and a new exterior truck circulation road pavement. The purpose of this report is to identify existing soil conditions to be used for analysis of foundation design and structural modifications to interior load-bearing walls of the building. A site layout plan for the MRF provided by the design team is included in Appendix A.



**Image 1 – Site Vicinity Map**

The scope of work for this geotechnical investigation included:


- Preparing a drilling program to perform a subsurface investigation and implementing the program to collect soil samples for laboratory testing.
- Preparing a geotechnical report presenting the field and laboratory data obtained, geological conditions, and recommendations for foundation design or modifications,
- Performing pavement design for the proposed circulation road (added in a scope addendum).

Surface and groundwater hydrology, hydraulic engineering, and environmental evaluation of site soils and groundwater for possible contaminant characterization were not included in RockSol's geotechnical scope of work.

Unless otherwise specified in this report, all recommendations presented in this report are based on the Colorado Department of Transportation (CDOT) 2025 Standard Specifications for Road and Bridge Construction; the City of Grand Junction Standard Specifications for Road and Bridge Construction; and the City of Grand Junction Transportation Engineering Design Standards.

## 2.0 PROPOSED BUILDING MODIFICATIONS

The existing building will undergo significant modifications to accommodate recycling facility equipment. Renovations include removal of portions of existing interior wall systems. New foundations to support loading from modifications to the interior load bearing walls and the new equipment are being considered. On the south end of the MRF, it is anticipated that the floor slab will undergo vehicle loading from placing recycling material and loading it into the recycling system. The center portion of the facility will experience static loading from new recycling equipment and dynamic loading while vibratory equipment is in operation. The north end of the facility will experience loading from recycled material bale storage. A 3-dimensional schematic showing the preliminary proposed equipment layout in the renovated MRF prepared by Bulk Handling Systems (BHS) is shown in Image 2 and also in Appendix B.



## Image 2 – Preliminary Recycling Facility Equipment Schematic Layout (BHS)

The existing floor slab will be removed in select areas, and the floor will be lowered by 6-feet to provide vertical space for certain specialized equipment. Based on conditions exposed at two locations within the building, the existing load bearing walls and interior columns appear to be founded on shallow footings. Photographs of the exposed existing foundation systems are shown in Appendix C.

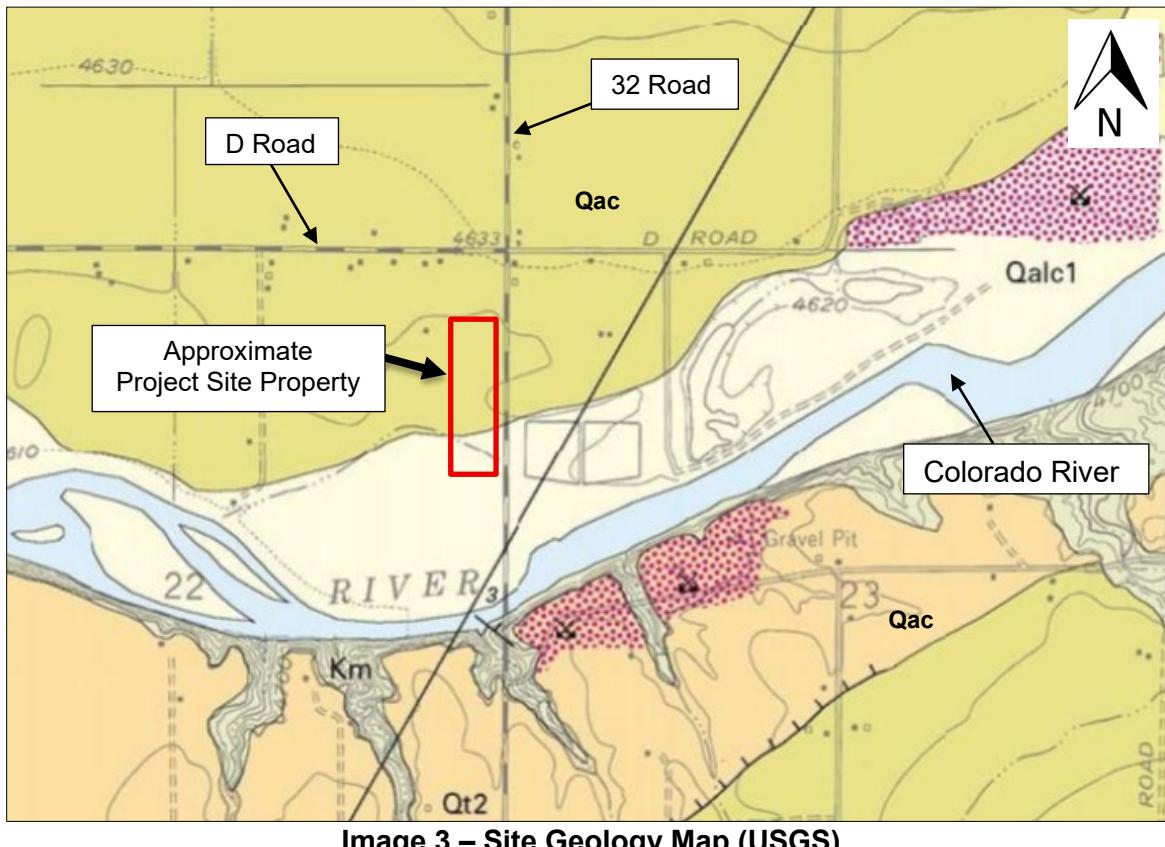
The building has a gridline delineation with Gridline 1 at the south side of the building and going to Gridline 24 at the north side of the building. The west side of the building is designated as Gridline A and the east side of the building is designated as Gridline C.

### 3.0 SUBSURFACE EXPLORATION SUMMARY

On November 10 and 11, 2025, RockSol completed six geotechnical boreholes to evaluate subsurface conditions at the project site. Four boreholes were completed within the existing building and are identified as B-1 through B-4. Two boreholes were completed outside of the building for the purpose of pavement design for a proposed circulation road and are identified as P-1 and P-2. Borehole locations are presented in Figures 1A and 1B.

A truck mounted Simco 2800 drill rig was used for drilling and sampling of all boreholes. The boreholes were advanced using 4-inch outside diameter solid stem augers to maximum depths ranging from approximately 10.5 feet to 36 feet below existing grades. The boreholes were logged in the field by a representative of RockSol with the depth to groundwater, if encountered, noted at the time of drilling. All boreholes were backfilled with pea gravel upon completion of drilling and groundwater level readings.

Subsurface materials were sampled and resistance of the soil to penetration of the sampler was performed using modified California barrel and standard split spoon samplers. The modified California barrel sampler has an outside diameter of approximately 2.5 inches and an inside diameter of 2 inches. The standard split spoon sampler used has an outside diameter of 2 inches and an inside diameter of 1 $\frac{1}{2}$ -inches. Brass tube liners were used with the modified California barrel sampler. Brass tube liners are not used with the standard split spoon sampler. Soils were logged in the field using visual-manual methods as described in ASTM D2488.


Penetration Tests were performed at selected intervals using an automatic hammer lift system. The standard split spoon sampling method is the Standard Penetration Test (SPT) described by ASTM Method D-1586. Penetration Tests were also performed using the modified California barrel sampler with a standard hammer weighing 140 pounds falling 30 inches per ASTM D3550. The modified California Barrel sampling method is similar to the SPT test with the difference being the sampler dimensions and the number of 6-inch intervals driven with the hammer. It is RockSol's experience that blow counts obtained with the modified California sampler tend to be slightly greater than a standard split spoon sampler. Penetration resistance values (blow counts) were recorded for each sampling event. Blow counts, when properly evaluated, indicate the relative density or consistency of the soil.

Depths at which the samples were taken, the type of sampler used, and the blow counts that were obtained are shown on the Boring Logs for each borehole. Borehole locations were not surveyed as part of this project. For the purposes of this evaluation, we have noted a generic borehole elevation of 100 feet and will reference all subgrade materials per depth below existing grade. Individual Borehole Logs are included in Appendix D.

### 4.0 GEOLOGICAL SETTING

Based on information presented in the United States Geological Survey (USGS) Geologic Map (See Image 3, *Site Geology Map*) of the Clifton Quadrangle, Mesa County, Colorado, by P.E. Carrara, dated 2001, the project site is predominantly underlain by alluvium and colluvium (Holocene and late Pleistocene) (Qac). The Qac alluvium generally consists of silt, sand, and gravel and the Qac colluvium generally consists of sandy silt, silty to clayey sand, and sandy clay. Alluvium deposited by the Colorado River (Qalc1) is mapped at the ground surface at the south end of the project site. Mancos Shale bedrock (Km) is mapped at or near the surface to the south of the project site and generally consists of sandy gravel and gravelly sand. The materials identified by the USGS mapping were consistent with native soils and bedrock encountered during our geotechnical investigation. In our borehole logs we describe the Mancos Shale as "Shale."

Of particular note is the project site is underlain by both the Qac and Qalc1 soil deposits with the Qalc1 more prominent in the southern portion of the site.



## 5.0 LABORATORY TESTING

Soil samples retrieved from the borehole locations were examined by the project geotechnical engineer in the RockSol laboratory. Selected samples were tested and classified according to the Unified Soil Classification System (USCS). The following laboratory tests were performed in accordance with the American Society for Testing and Materials (ASTM), American Association of State Highway and Transportation Officials (AASHTO), and current local practices:

- Natural Moisture Content (ASTM D-2216)
- Percent Passing No. 200 Sieve (ASTM D-1140)
- Liquid and Plastic Limits (ASTM D-4318)
- Dry Density (ASTM D-2937)
- Soil Classification (ASTM D-2487 and AASHTO M145)
- Gradation (ASTM C136)
- Water Soluble Sulfate Content (CDOT CP-L 2103)
- Water Soluble Chloride Content (CDOT CP-L 2104)
- Standard Test Method for pH of Soils (ASTM D4972-01)
- Soil Resistivity (ASTM G57 - Soil Box)
- Swell Test (Denver Swell Test, modified from ASTM D-4546)
- Resistance Value (R-Value): (AASHTO T190)

Laboratory test results were used to characterize the engineering properties of the subsurface material. R-Value testing was performed by CMT Technical Services. All other laboratory tests were performed by RockSol. Laboratory test results are presented in Appendix E and are also summarized on the Borehole Logs presented in Appendix D.

## **6.0 INTERIOR FLOOR SLAB AND SITE SUBGRADE CHARACTERIZATION**

### **6.1 Concrete Slab and Subsurface Materials (Building Location)**

Subsurface conditions at Boreholes B-1 through B-4 generally consist of fill material and native soils overlying Mancos Shale sedimentary bedrock. Groundwater was encountered at approximate depths ranging from 10 feet to 13 feet below existing grades during drilling operations. See Table 1 for groundwater and bedrock depths, where encountered. Descriptions of the surface and subsurface conditions encountered in the boreholes are provided below and are also summarized on the Borehole Logs presented in Appendix D.

#### Concrete Slab

Each borehole within the building was drilled through the existing concrete slab. RockSol obtained concrete cores at 8 distinct locations within the existing concrete slab. A summary of concrete slab core locations and concrete cylinder compressive strength data is shown in Appendix F. The slab thickness measured from the recovered concrete cores ranged in thickness from 5.25 to 7.25 inches. At each borehole location the measured slab thickness ranged from 5 inches to 6.75 inches. The borehole slab thicknesses should be considered as approximate. Steel reinforcing rebar or wire mesh was not encountered in any of our concrete cores or at each borehole location. The existing slab was observed to have joints placed at an approximate spacing of 15 feet.

#### Fill Material

Fill material encountered generally consisted of medium dense silty to gravelly sand and dense gravel with cobbles, some of which ranged up to 6 inches in diameter. The fill material is likely associated with site grading during initial building construction.

#### Native Soils

Native soil encountered generally consists of medium dense to dense, silty to gravelly sand. A layer of loose clayey sand and sand was encountered in Borehole B-2 at a depth of 7 feet below the top of slab. A layer of loose clayey sand was also encountered in Borehole B-4 at 9 feet. Clay and sandy clay layers were encountered in Boreholes B-1 and B-3, respectively.

#### Bedrock

Mancos Shale sedimentary bedrock was encountered beneath the native soils at Boreholes B-2 through B-4. The bedrock generally consisted of hard to very hard Mancos Shale. The top of bedrock depths ranged from approximately 19 feet to 26 feet below grade. Borehole B-1 was terminated at a depth of approximately 15 feet and did not reach bedrock.

#### Groundwater

Groundwater was encountered in each of the "B" boreholes at depths ranging from approximately 10 feet to 13 feet below existing grades at the time of exploration. It should be noted that groundwater was encountered in each of the "P" boreholes at depths of 7 feet and 9 feet below existing grade at the time of exploration. All boreholes were backfilled after sampling was completed. Additional long-term groundwater monitoring would be required to establish seasonal variations. See Table 1 for a summary of the depths to groundwater encountered in our "B" boreholes.

**Table 1 - Approximate Bedrock and Groundwater Depth Summary - Building Boreholes**

| Borehole | Depth to Bedrock (ft) | Depth to Groundwater (ft) |
|----------|-----------------------|---------------------------|
| B-1      | NE                    | 10.5                      |
| B-2      | 26.0                  | 10.0                      |
| B-3      | 19.25                 | 12.0                      |
| B-4      | 19.0                  | 13.0                      |

NE = Not Encountered to depth explored.

### 6.1.1 Swell/Collapse Discussion

RockSol performed swell/consolidation tests on two samples, one from Borehole B-2 at 14-foot depth and one at Borehole B-4 at 9-foot depth. Based on the results, the native soil tested exhibited low collapse potential (0.3 to 0.4 percent collapse under 500 pounds per square foot (psf) surcharge pressure). The tests do indicate limitations on allowable bearing pressure for the deeper native soils that are present at this site.

Expansive soil conditions were not encountered within the overburden soils encountered at this site. Mancos Shale can possess swell potential, however, for the proposed construction the Mancos Shale does not pose a swell risk.

## 6.2 Subsurface Materials (Proposed Circulation Road Location)

Boreholes P-1 and P-2 were drilled and sampled to depths of 10.5 feet to assist with pavement design for the new proposed circulation road. Subsurface conditions generally consisted of coarse-grained native soils. Groundwater was encountered at depths ranging from 7 feet to 9 feet below existing grades. Descriptions of the surface and subsurface conditions encountered in the boreholes are provided below and are also summarized on the Borehole Logs presented in Appendix D.

### Surface Materials

At Borehole P-1 approximately 4-inches of coarse gravel material was encountered at the ground surface.

At Borehole P-2 approximately 2-inches of asphalt pavement was encountered at the ground surface.

### Native Soils

Native soils encountered generally consisted of dense, silty to gravelly sand to the total depths drilled.

### Bedrock

Bedrock was not encountered in the pavement boreholes which were terminated at a depth of approximately 10.5 feet below existing grades.

### Groundwater

Groundwater was encountered in each of the pavement boreholes at depths ranging from approximately 7 feet to 9 feet below existing grades at the time of exploration. These boreholes were backfilled after drilling. Additional long-term groundwater monitoring would be required to establish seasonal variations.

### 6.2.1 Proposed Roadway Subgrade Strength Characterization

An R-Value test was conducted on a combined bulk sample obtained from boreholes P-1 and P-2 from 0 to 4 feet depth. The test resulted in an R-Value of 67, which can be characterized as "very good" subgrade support material for pavement construction. Results of the R-Value test performed by CMT are included in Appendix E.

## 6.3 Geo-Chemical Discussion

### 6.3.1 Cement Type/Sulfate Resistance

Cementitious material requirements for concrete in contact with site soil or groundwater are based on the percentage of water-soluble sulfate in either soil or groundwater that will be in contact with concrete constructed for this project. The water-soluble sulfate concentration identifies the Sulfate Exposure Class, as recognized by CDOT and shown in Table 2 below, and in the CDOT Standard Specifications for Road and Bridge Construction, dated 2025 (CDOT Table 601-2). Water-soluble Sulfate Test Results are summarized in Table 3.

**Table 2 – Concrete Sulfate Exposure Class Requirements (CDOT 2025)**

| Water-Soluble Sulfate (SO <sub>4</sub> )<br>in dry soil, percent | Water-Soluble Sulfate (SO <sub>4</sub> )<br>in water, ppm | Sulfate Exposure Class |
|------------------------------------------------------------------|-----------------------------------------------------------|------------------------|
| 0.00 to 0.10                                                     | 0 to 150                                                  | Class 0                |
| 0.11 to 0.20                                                     | 151 to 1,500                                              | Class 1                |
| 0.21 to 2.0                                                      | 1,501 to 10,000                                           | Class 2                |
| 2.01 or greater                                                  | 10,001 or greater                                         | Class 3                |

**Table 3 – Water-Soluble Sulfate Testing Summary**

| Borehole<br>I.D. | Sample Depth<br>(Feet) | Water-Soluble Sulfate (SO <sub>4</sub> )<br>in dry soil, percent | Sulfate Exposure Class |
|------------------|------------------------|------------------------------------------------------------------|------------------------|
| B-1*             | 0.5 – 4                | 0.07                                                             | Class 0                |
| B-2*             | 0.42 – 4               |                                                                  |                        |
| B-3*             | 0.5 – 9                |                                                                  |                        |
| B-4*             | 0.56 – 4               |                                                                  |                        |
| B-1              | 9                      | 0.03                                                             | Class 0                |
| B-2**            | 36                     | 0.12                                                             | Class 1                |
| B-3**            | 24                     |                                                                  |                        |
| B-4**            | 24                     |                                                                  |                        |
| P-1***           | 0 – 4                  | 0.48                                                             | Class 2                |
| P-2***           | 0.17 – 4               |                                                                  |                        |

\* - Combined Into One Sample

\*\* - Combined Into One Sample

\*\*\* - Combined Into One Sample

The concentration of water-soluble sulfates measured in soil samples obtained from RockSol's boreholes ranged from 0.03 percent to 0.48 percent by weight (See Appendices D and E). Based on the results of the water-soluble sulfate testing, Exposure Class 1 cementitious material requirements are considered appropriate for concrete in contact with subgrade materials for the building location and Exposure Class 2 cementitious material requirements are considered appropriate for concrete in contact with subgrade materials for the pavement location. Refer to CDOT's current *Standard Specifications for Road and Bridge Construction Section 601* for concrete mixtures that satisfy appropriate sulfate exposure Class requirements.

### 6.3.2 Corrosion Resistance Discussion

Water soluble sulfate and chloride content, pH and electrical resistivity tests were performed and are summarized in Table 4. The electrical resistivity analyses were performed in the RockSol laboratory using the soil box method (ASTM G-57).

**Table 4 – Corrosion Resistance Summary**

| Borehole Location | Sample Depth (ft) | Water Soluble Chloride (%) | Saturated Resistivity (Ohm-cm) at Moisture content (%) | Water Soluble Sulfate (% by weight) | pH  | CR Level    |
|-------------------|-------------------|----------------------------|--------------------------------------------------------|-------------------------------------|-----|-------------|
| B-1*              | 0.5 – 4           | 0.0366                     | 1,400 @ 11.7                                           | 0.07                                | 8.7 | <b>CR 4</b> |
| B-2*              | 0.42 – 4          |                            |                                                        |                                     |     |             |
| B-3*              | 0.5 – 9           |                            |                                                        |                                     |     |             |
| B-4*              | 0.56 – 4          |                            |                                                        |                                     |     |             |
| B-1               | 9                 | --                         | --                                                     | 0.03                                | --  | CR 0        |
| B-2**             | 36                | 0.0525                     | --                                                     | 0.12                                | 8.9 | <b>CR 4</b> |
| B-3**             | 24                |                            |                                                        |                                     |     |             |
| B-4**             | 24                |                            |                                                        |                                     |     |             |
| P-1***            | 0 – 4             | 0.1080                     | --                                                     | 0.48                                | 8.3 | <b>CR 3</b> |
| P-2***            | 0.17 – 4          |                            |                                                        |                                     |     |             |

\* - Combined Into One Sample

\*\* - Combined Into One Sample

\*\*\* - Combined Into One Sample

Comparison of the test results of the sulfate, chloride, and pH testing performed with *Table 1 - Guidelines for Selection of Corrosion Resistance Levels as presented in the CDOT Pipe Materials Selection Guide*, dated April 30, 2015 (See Appendix G), suggests corrosion resistance (CR) levels of CR 0, CR 3, and CR 4 are present within the project limits. Additional testing at specific structure locations may be performed to provide structure specific corrosion resistance recommendations. Of the three variables (water soluble sulfate, water soluble chloride, and pH) that are used in determining the CR level, pH appears to be the predominant component affecting the CR level selection. In Table 4, we have used “bold” text to identify the test result variable that is contributing to the CR Level above 0. Based on available data, the project site should be considered as a CR 4 category site. Based on the results of the electrical resistivity tests, the soils and bedrock should be considered as “aggressive” to unprotected metals at both building locations.

## 7.0 SEISMICITY DISCUSSION

The City of Grand Junction uses the 2024 International Building Code (IBC-2024) for development of seismic design parameters. The IBC-2021 references the American Society of Civil Engineers 7-22 (ASCE 7-22) seismic design code. Based on the subsurface conditions encountered, it is our opinion that the location of the proposed building meets criteria for Seismic Site Class D. Shear wave velocity testing was not performed by RockSol. Seismic design parameters for Seismic Site Class D are discussed in Section 7.1.

## 7.1 Seismic Design Parameters

Seismic design parameters for the Grand Junction Materials Recycling Center were obtained from the United States Geological Survey (USGS) Earthquake Design Maps using the 2024 International Building Code specifications which reference ASCE 7-22. Values were obtained using the USGS site: [U.S. Seismic Design Maps \(seismicmaps.org\)](https://seismicmaps.org) (See Appendix H). Based on our understanding of the proposed building usage, it is our opinion that the CRC Building satisfies risk category II per Table 1604.5 of the IBC-2024. Interpolated values for Peak Ground Acceleration Coefficient for the geometric-mean maximum considered Earthquake (PGA<sub>M</sub>), Spectral Acceleration Coefficient at Period 0.2 sec (S<sub>s</sub>), and Spectral Acceleration Coefficient at Period 1.0 sec (S<sub>1</sub>) were obtained using the latitude and longitude for the site. The seismic acceleration coefficients obtained (data based on 0.05-degree grid spacing) are presented in Table 5. The seismic design category was determined based on Figure 1613.2(1) in IBC-2024.

**Table 5 – Seismic Acceleration Coefficients (IBC 2024)**

| Materials Recycling Facility<br>(Latitude°/Longitude°) | Peak<br>Ground<br>Acceleration<br>(PGA <sub>M</sub> ) | Spectral<br>Acceleration<br>Coefficient - S <sub>s</sub><br>(Period 0.2 sec) | Spectral<br>Acceleration<br>Coefficient - S <sub>1</sub><br>(Period 1.0 sec) | Seismic<br>Design<br>Category |
|--------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------|
| 39.062 N, 108.460 W                                    | 0.13                                                  | 0.22                                                                         | 0.048                                                                        | B                             |

## 8.0 GEOTECHNICAL RECOMMENDATIONS – MRF BUILDING RENOVATIONS

In this report section RockSol provides geotechnical recommendations to assist with design and construction of the MRF Building renovations. A significant component of the renovation includes placement of many large steel-frame structures that will support several types of equipment, personnel walkways, metal staircases, and conveyor belt systems.

Section 8.1 provides discussion of the existing interior floor slab and the potential, and limitations, for equipment to be placed directly on the slab or on shallow foundations. Section 8.2 provides discussion and recommendations for interior load bearing wall modifications and equipment requiring deep foundations. Section 8.3 provides discussion and recommendations for the Tip Floor Pile area. Section 8.4 provides discussion and recommendations for the exterior loading docks located outside the building. Section 8.5 provides discussion and recommendations for permanent shoring at the proposed equipment pit locations.

### 8.1 Interior Floor Slab Discussion and Shallow Foundation Recommendations

Based on our observations and evaluation, the existing interior floor slab appears to have been designed as an unreinforced, 6-inch-thick slab and during construction, concrete placement thicknesses ranged between 5 to 7 inches. Testing of recovered cores indicates the slab concrete has a compressive strength above 5,000 psi. The lowest compressive strength value obtained was 5,600 psi. No flexural strength testing was performed by RockSol, however using a commonly accepted correlation of 9 times the square root of the compressive strength yields a flexural strength of 673 psi. This suggests a relatively strong floor slab, although likely not reinforced.

Based on the compressive strength of the concrete cores, RockSol does not anticipate punching shear failure through the slab to be a limiting design consideration for placement of the new equipment on the existing floor slab. RockSol considers excessive flexural deformation with cracking and compression/long-term settlement of the subgrade soils beneath the slab will control allowable loading.

The upper 5 to 7 feet of subgrade soil below the slab is dense sand and gravel material with some small cobbles and can be characterized as competent bearing material with a modulus of subgrade reaction (k value) of 300 pci. Based on these conditions, RockSol considers placement of equipment directly on the existing floor slab acceptable, with a maximum allowable bearing pressure of 4,500 psf.

Shallow foundations may be constructed after removal of the existing floor slab, if necessary, and an allowable bearing pressure of 3,500 psf is recommended but only applicable to a maximum depth of 2 feet below the top of the existing floor slab. If a shallow foundation must be placed at a lower elevation, RockSol can provide allowable bearing pressures, however they will decrease with depth below 2 feet. For the lower pit areas (6-foot depth) we recommend an allowable bearing pressure of 1,000 psf due to the underlying soil and groundwater conditions. Heavily loaded equipment in the pit locations may require deep foundations. Deep foundation recommendations are presented in Section 8.2. Lateral earth pressure parameters applicable to the pit walls are presented in Section 8.4.

## **8.2 Interior Load Bearing Wall Modifications/Deep Foundation Recommendations**

Masonry load bearing walls located at Gridlines 5, 6, 11, and 17 will be modified with removal of wall portions to allow placement of equipment and conveyors. The existing walls are founded on strip footings. These wall modifications will require additional foundation support. Depending on the load requirements, shallow or deep foundations will be required. For preliminary consideration, the shallow foundation parameters presented in Section 8.1 are applicable. If deep foundations are required, the following micropile parameters are presented.

Based on the subsurface conditions encountered, micropiles are a feasible deep foundation option for the MRF building renovations. A micropile foundation is recommended for its ability to carry heavier loads and minimize differential foundation movement. A micropile system may be used throughout the building if desired, or in conjunction with a shallow foundation system. Some equipment will impart significant vibration during facility operations. RockSol anticipates the Vibratory Feeder, and associated components, will likely impart significant vibration. Deep foundations are recommended to support such equipment. Depending on the final layout, type of equipment, and magnitude of vibration, further discussion may be needed regarding isolation of vibration as it would affect surrounding foundations.

Micropile foundations are comprised of reinforcing bars grouted into a predrilled suitable bearing substrate. There are 5 types of micropiles, named Type A through Type E, which differ by grouting method and are defined in AASHTO LRFD Article 10.9.1. Different micropile types will result in different resistance values. The preliminary recommendations presented below assume the use of Type A micropiles (gravity placed grout) because they are most appropriate for use in shale bedrock. The final micropile type should be selected by the specialty contractor responsible for micropile installation.

Micropiles will provide support by embedment into the Mancos Shale bedrock encountered at the site. Based on the subsurface conditions encountered, it is anticipated that hard to very hard Mancos Shale bedrock will be encountered between approximate depths 19 feet in the south half of the building and deepening to a depth of 26 feet in the northern portion of the building.

Based on our evaluation, recommended nominal (unfactored) tip resistance and nominal (unfactored) grout-to-ground (side) resistance values for the bedrock material are presented in Table 6.

**Table 6 – Preliminary LRFD Base and Side Resistance Values for Micropiles**

| Bearing Stratum        | Ultimate (Nominal) Resistance, $\alpha_b$ |            | Service Resistance (Note 1) |            |
|------------------------|-------------------------------------------|------------|-----------------------------|------------|
|                        | Tip (ksf)                                 | Side (ksf) | Bearing (ksf)               | Side (ksf) |
| Mancos Shale (Bedrock) | 20 (Note 2)                               | 10.8       | 10.0                        | 5.4        |

Note 1: Service resistance values are based on an estimated total settlement of less than  $\frac{1}{2}$  inch.

Note 2: Tip resistance may only be considered when the grouted micropile is embedded at least 5 feet into bedrock.

The preliminary side resistance is applicable to the portion of the shaft embedded in Mancos Shale bedrock. For LRFD strength limit state evaluation, a resistance factor of 0.50 is recommended for tip resistance and a resistance factor of 0.55 is recommended for side resistance evaluation for preliminary evaluation of single micropiles based on AASHTO LRFD Table 10.5.5.2.5-1. For side and tip resistance for final design based on load testing, resistance values should be taken from AASHTO LRFD Table 10.5.5.2.3-1 but no greater than 0.70.

Micropile diameters, length, and reinforcement shall be sufficient to satisfy axial, bending, and lateral load resistance requirements. A minimum bedrock embedment of 10 feet is recommended to resist uplift forces. Additional embedment may be necessary to satisfy axial bearing requirements and for lateral stability requirements as determined by the structural engineer and micropile specialty contractor.

Additional design and construction considerations for micropiles are presented below:

- (a) The final micropile design should be performed by a specialty contractor qualified to perform micropile design and construction.
- (b) Micropile capacity shall be verified through the performance of micropile load tests as described in AASHTO LRFD Article 10.9.3.5.4.
- (c) Micropiles should be constructed with minimum spacing at least three shaft diameters, or 30 inches, center to center. For closely spaced micropiles, the axial and lateral capacities should be appropriately reduced. Group action of micropiles should be analyzed on an individual basis to assess the appropriate reduction.
- (d) Grout mix, steel reinforcement, and corrosion resistance methods appropriate for the micropiles shall be determined by the specialty contractor.

### 8.3 Tip Floor Pile Area Discussion and Recommendations

The tip floor pile area is planned at the south end of the building. This area will be a staging/storage area for the delivered recycling material. Delivery trucks will back into the area and unload their material. A medium sized “loader” will then manage the pile area and take material to a metering bin which will be the start of the material sorting process.

Preliminary plans call for a concrete block wall system around the tip pile area for containment purposes. Each concrete block is on the order of at least 2 feet wide, 2 feet deep and 3 feet long. The blocks will be vertically stacked to an approximate height of 12 to 15 feet high. Operational stability of the blocks should be considered. For bearing on the existing concrete floor slab, the blocks, if 15 feet high would impose a bearing pressure on the order of 2,250 psf. Based on the slab thickness, compressive strength of the recovered concrete cores, and the subgrade soils encountered in our boreholes, it is RockSol’s opinion that the existing slab is capable of supporting the proposed blocks. Preliminary plans call for a minimum distance of 3 feet between the proposed block wall and the existing column footings. In RockSol’s opinion, this separation is appropriate to not impose adverse loading on the column footings.

If a cast-in-place concrete wall is constructed with a shallow footing foundation, the allowable bearing pressure values presented in Section 8.1 apply.

Based on the slab thickness, compressive strength of the recovered concrete cores, and the subgrade soils encountered in our boreholes, it is RockSol's opinion that the existing slab is also capable of supporting a medium sized loader which will feed tip area recycle material into the metering bin. Discussions with the City and the Design Team have identified the potential risks to the Facility operations as the slab experiences long-term cracking and other fatigue-related distress. The City has recognized that long term maintenance of these slabs will be required.

#### 8.4 Loading Docks Discussion and Recommendations

Two loading docks are proposed on the west side of the building. They will be sloped and recessed in the ground approximately 4 to 5 feet deep and will have concrete walls. Lateral earth pressures imposed on the walls will be affected by the subgrade soils and groundwater conditions. Groundwater is not expected to be a design or construction issue, provided an appropriate drainage system is provided to collect and dispose of water that is collected in the recessed loading dock. After excavation for the loading dock and construction of the walls and approach pavement, the existing site soils are suitable for backfill of the walls, or use of CDOT Structure Backfill Class 1 is also suitable. For the proposed loading docks lateral earth pressures will also be influenced by the width of the backfill zone adjacent to the structure walls. For narrow backfill zones, lateral earth pressures will be influenced by the existing in-place soils. For relatively wide backfill zones, lateral earth pressures will be influenced by the backfill soil. Recommended lateral earth pressure parameters are provided in Table 7.

**Table 7 – Lateral Earth Pressure Parameters**

| Soil Type                                                                 | Soil Unit Weight (pcf) | Effective Friction Angle, $\phi'$ (degrees) | Cohesion (psf) | Lateral Earth Pressure Coefficients (Notes 1 and 2) |                   |                            |
|---------------------------------------------------------------------------|------------------------|---------------------------------------------|----------------|-----------------------------------------------------|-------------------|----------------------------|
|                                                                           |                        |                                             |                | Active ( $k_a$ )                                    | At-Rest ( $k_o$ ) | Passive ( $k_p$ ) (Note 3) |
| CDOT Class 1 Structure Backfill (CDOT Section 703.08)                     | 130                    | 34                                          | 0              | 0.28                                                | 0.44              | 3.54                       |
| On-Site Soil Obtained within 5 feet of the Ground Surface (gravelly sand) | 125                    | 32                                          | 0              | 0.31                                                | 0.47              | 3.26                       |

Note 1: Based on Rankine Theory of earth pressure.

Note 2: For horizontal backslope and foreslope.

Note 3: Full value, no reduction applied.

#### 8.5 Interior Below-Grade Equipment Pit Recommendations

Due to height constraints within the existing building, some equipment and conveyor systems will need to be at elevations lower than the existing interior floor slab. At three locations within the building, recessed "pit" areas are proposed. The depth of the pits is proposed to be 6 feet below the top of the existing floor slab. Existing shallow footings that support interior columns are located close to the proposed pits. Where column footings are in close proximity to the proposed pits, RockSol recommends the use of permanent shoring to allow construction of the pits and maintain the stability of the existing footings.

## 9.0 ROADWAY SURFACING AND PAVEMENT DESIGN RECOMMENDATIONS

The Materials Recycling Facility renovations will include the construction of a paved circulation road on the south side of the property. In this report Hot Mix Asphalt (HMA) pavement is identified as flexible pavement. Portland Cement Concrete (PCC) pavement is identified as rigid pavement.

For the flexible pavement designs, RockSol used CDOT's 2021 M-E Pavement Design Manual, as modified in 2025, which uses Version 2.3.1 of AASHTO's Pavement Mechanistic-Empirical Design (PMED) software, and the PaveXpress software which uses the 1993 AASHTO flexible pavement design equations as recommended in Municipal Code 29.32.040(a).

For the rigid pavement designs, RockSol used CDOT's 2021 M-E Pavement Design Manual, as modified in 2025, which uses Version 2.3.1 of AASHTO's Pavement Mechanistic-Empirical Design (PMED) software, and the PaveXpress software which uses the 1998 AASHTO rigid pavement design equations as recommended in Municipal Code 29.32.040(b).

### 9.1 Traffic Loading

The Average Annual Daily Truck Traffic (AADTT) has a significant effect on the predicted pavement performance as compared to cars and pick-up trucks to closely match the design ESAL's in PaveXpress. RockSol after discussion with the City of Grand Junction estimates Average Annual Daily Traffic (AADTT) for the Materials Recycling Facility to be 40 trucks comprised of 30% FHWA Class 6 and 70% FHWA Class 9 vehicles per CDOT's vehicle classification.

Primary vehicle usage of the proposed circulation road will be for heavy duty trucks delivering the material for recycling. For pavement design purposes, RockSol recommends the use of 18,000-pound Equivalent Single Axle Loads (18-kip ESAL's) for a 30-year design life in accordance with Subsection 29.32.030 of the City of Grand Junction Transportation Engineering Design Standards (TEDS) for the circulation road. A compound growth rate of 0.5 percent over a 30-year design life was used to develop the flexible and rigid pavement 18,000-pound ESAL's for the input into PaveXpress. The 30-year flexible pavement 18-kip ESAL's were estimated to be 514,000 and the 30-year rigid pavement 18-kip ESAL's were estimated to be 796,000 for the PaveXpress design output. The 30-year flexible pavement 18-kip ESAL's were estimated to be 540,000 and the 30-year rigid pavement 18-kip ESAL's were estimated to be 790,000 for the PMED design output.

### 9.2 Pavement Subgrade Characterization

To assist with pavement design recommendations, RockSol obtained bulk samples of on-site soils at the P-1 and P-2 borehole locations. Classification testing indicates that the subgrade soils generally consist of non-plastic silty sand with an AASHTO soil classification of A-1-b (0).

To evaluate the subgrade support characteristics, one R-Value laboratory test was performed in accordance with AASHTO T-190 on a combined sample of material obtained within 0 to 4 feet of the surface from Boreholes P-1 and P-2. An R-Value of 67 was obtained. The R-Value test results are attached to this report in Appendix E. Based on R-Value testing, a conservative R-Value of 60 will be used for new pavement constructed on the existing site soils. The R-Value of 60 converts to a resilient modulus of 18,259 psi when using equation 3-2 from CAPA's Guideline for the Design and Use of Asphalt Pavements for Colorado Roadways and 10,615 psi when using equation 4-1 from CDOT's 2021 Mechanistic-Empirical Pavement Design Manual as modified in 2025.

### 9.3 Pavement Design Parameter Summary

A summary of the pavement design input parameters used to evaluate the pavement thickness requirements for the proposed circulation road are presented below.

**Table 8 – PMED Pavement Design Parameters**

| Pavement Design Parameter              | Value   |
|----------------------------------------|---------|
| PMED 30-Year HMA Design Life ESAL's    | 540,000 |
| PMED 30-Year PCC Design Life ESAL's    | 790,000 |
| PMED Subgrade Resilient Modulus, $M_R$ | 10,615  |
| Reliability, (R)                       | 90%     |

**Table 9 – AASHTO 93/98 Pavement Design Parameters**

| Pavement Design Parameter                | Value   |
|------------------------------------------|---------|
| AASHTO 93 30-Year HMA Design Life ESAL's | 514,000 |
| AASHTO 98 30-Year PCC Design Life ESAL's | 796,000 |
| CAPA Subgrade Resilient Modulus, $M_R$   | 18,259  |
| Serviceability Loss, ( $\Delta$ PSI)     | 2.5     |
| Overall Standard Deviation, $S_o$        | 0.44    |
| Reliability, (R)                         | 90%     |
| Structural Coefficient of HMA            | 0.44    |
| Structural Coefficient of Class 6 ABC    | 0.12    |

### 9.4 Pavement Section Thickness Evaluation (Circulation Road)

A summary of the pavement section thicknesses obtained from PaveXpress and PMED is presented in Table 10. The pavement design calculation sheets are presented in Appendices I, J, K, and L.

**Table 10 – Circulation Road Section Thickness Summary**

| Pavement Location | Design ESALs (30 year) | Pavement Section (inches)                                                                               | Appendix       |
|-------------------|------------------------|---------------------------------------------------------------------------------------------------------|----------------|
| Circulation Road  | 514,000                | 4.0 HMA Grading SX(75) PG 64-28<br>6.0 Class 6 Aggregate Base Course                                    | J (PaveXpress) |
|                   | 796,000                | 6.50 Class P Portland Cement Concrete<br>6.0 Class 6 Aggregate Base Course                              | L (PaveXpress) |
|                   | 540,000                | 2.0 HMA Grading SX(75) PG 64-28<br>2.0 HMA Grading SX(75) PG 64-22<br>6.0 Class 6 Aggregate Base Course | I (PMED)       |
|                   | 790,000                | 7.0 Class P Portland Cement Concrete<br>6.0 Class 6 Aggregate Base Course                               | K (PMED)       |

HMA shall be placed in lifts not exceeding 2 inches in thickness.

## 9.5 Pavement Section Thickness Recommendations (Circulation Road)

A summary of the PMED minimum pavement section thickness using a 30-year design life for flexible pavement is presented in Table 11 and the pavement design output sheets are included in Appendix I.

**Table 11 – PMED Flexible Pavement Section Minimum Thickness Recommendations**

| Pavement Location | Material Type                 | 30-Year Design Life Pavement Thickness (in) |
|-------------------|-------------------------------|---------------------------------------------|
| Circulation Road  | HMA SX(75) PG 64-28           | 2.0                                         |
|                   | HMA SX(75) PG 64-22           | 2.0                                         |
|                   | Aggregate Base Course Class 6 | 6.0                                         |

A summary of the AASHTO 93 minimum pavement section thickness using a 30-year design life for flexible pavement is presented in Table 12 and the pavement design output sheets are included in Appendix J.

**Table 12 – AASHTO 93 Flexible Pavement Section Minimum Thickness Recommendations**

| Pavement Location | Material Type                 | 30-Year Design Life Pavement Thickness (in) |
|-------------------|-------------------------------|---------------------------------------------|
| Circulation Road  | HMA SX(75) PG 64-28           | 4.0 (Two lifts)                             |
|                   | Aggregate Base Course Class 6 | 6.0                                         |

A summary of the PMED minimum pavement section thickness using a 30-year design life for rigid pavement is presented in Table 13 and the pavement design output sheets are included in Appendix K.

**Table 13 – PMED Rigid Pavement Section Minimum Thickness Recommendations**

| Pavement Location | Material Type                 | Thickness (inches) |
|-------------------|-------------------------------|--------------------|
| Circulation Road  | CDOT Class P PCC              | 7.0                |
|                   | Aggregate Base Course Class 6 | 6.0                |

A summary of the AASHTO 98 minimum pavement section thickness using a 30-year design life for rigid pavement is presented in Table 14 and the pavement design output sheets are included in Appendix L.

**Table 14 – AASHTO 98 Rigid Pavement Section Minimum Thickness Recommendations**

| Pavement Location | Material Type                 | Thickness (inches) |
|-------------------|-------------------------------|--------------------|
| Circulation Road  | CDOT Class P PCC              | 6.5                |
|                   | Aggregate Base Course Class 6 | 6.0                |

If flexible pavement is selected for the circulation road, RockSol recommends the pavement thicknesses shown in Table 11 be used since the PMED software accounts for site specific variables that AASHTO 1993 does not. Flexible or rigid pavement shall consist of CDOT-approved mix designs. The top layer of HMA should consist of Grading SX(75) PG 64-28. The bottom layer

of HMA should consist of Grading SX(75) PG 64-22. HMA shall be placed in lifts not exceeding 2 inches in thickness. Aggregate base course should consist of material meeting CDOT Class 6 Aggregate Base per CDOT 703.03.

Based on the traffic loading, a Grading SX with 75-gyration mix is appropriate for the Recycle Center. However, the CDOT library does not currently contain a 75 gyration mix with a PG 64-28 binder for use in the PMED software, therefore, the ME Pavement Design output sheets, included in Appendix I used a 100 gyration mix with PG 64-28.

If rigid pavement is selected for the circulation road, RockSol recommends the pavement thicknesses shown in Table 13 be used since the PMED software accounts for site specific variables that AASHTO 1998 does not. If rigid pavement is selected for the circulation road, RockSol recommends a CDOT Class P concrete meeting the requirements for Class 2 sulfate resistance. A 12-ft slab width is recommended with joint spacing of 12-ft or less, 1-inch dowel bars, and tied shoulders.

## 10.0 EARTHWORK

### 10.1 Subgrade Preparation

Unless otherwise specified in this report, RockSol recommends moisture conditioning of the upper twelve inches of the existing soil in areas where pavement and slab-on-grade will be constructed. Vegetation, brush, sod, trash, and other deleterious substances shall not be placed in embankment, excavation backfill, or structural backfill.

### 10.2 Compaction Specifications

All embankment, backfill placement and subgrade preparation shall be performed in accordance with City of Grand Junction requirements, or as specified by recommendations in this report, and project specification when developed. The minimum compaction recommended for all soil classifications for this project by RockSol is presented in Table 15.

**Table 15 – Compaction Specifications**

| AASHTO Classification (AASHTO M 145)                 | Relative Compaction Percent of Maximum        | Moisture Content Deviation from Optimum |
|------------------------------------------------------|-----------------------------------------------|-----------------------------------------|
| Clay Soils A-6 and A-7                               | 95% Min. ASTM D698 (Standard Proctor Method)  | 0% to +3%                               |
| Sands, Gravels and Silts A-1, A-2, A-3, A-4, and A-5 | 90% Min. ASTM D1557 (Modified Proctor Method) | -2% to +2%                              |

The soils encountered at this site are primarily A-1-b in the upper 7 feet and A-6 type soils below that, extending to the Mancos Shale. The purpose of the moisture content requirements shown in Table 15 for A-6 and A-7 soils is to reduce and control swell potential of the subgrade soils. A representative of the geotechnical engineer shall observe and test fill placement operations.

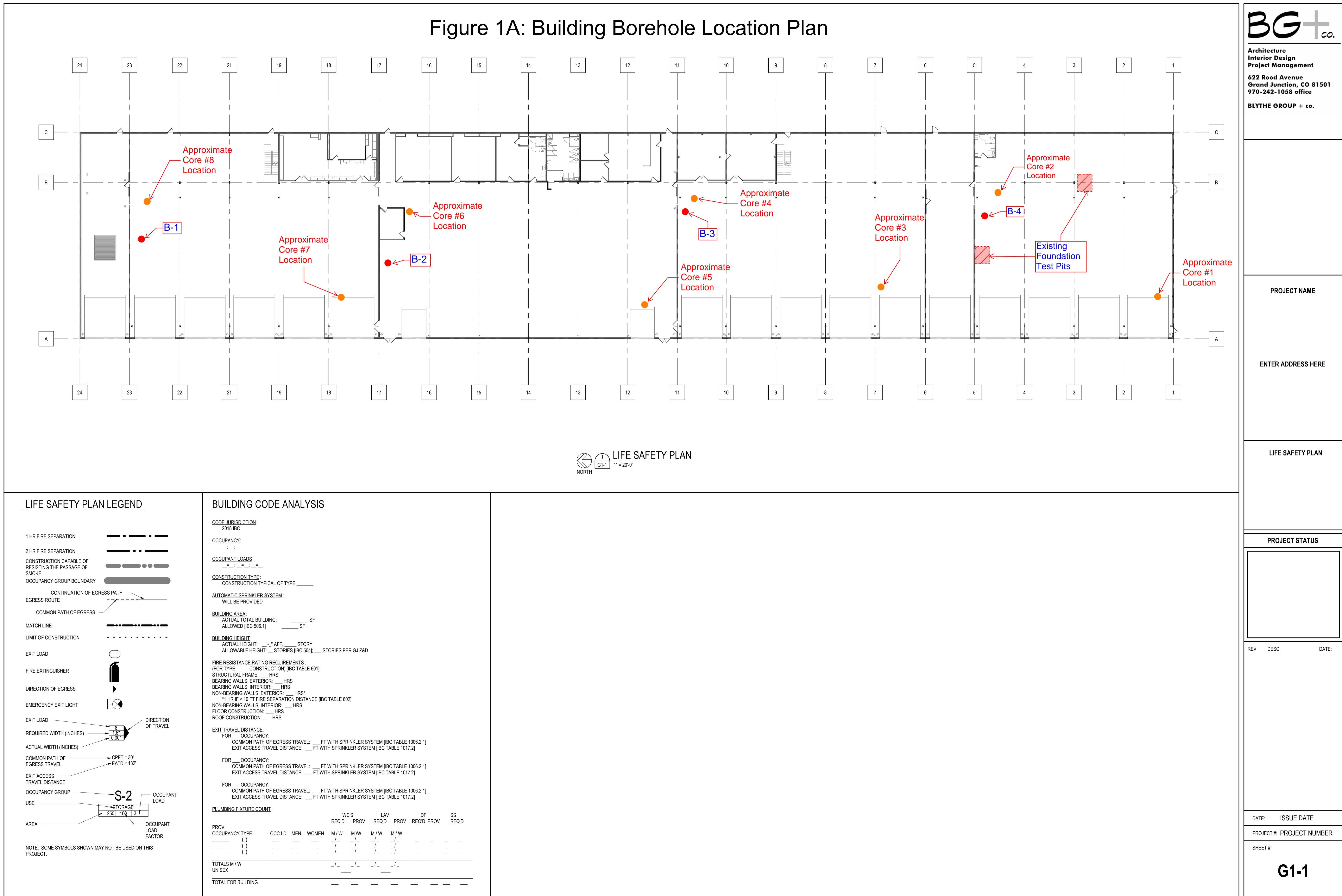
## 11.0 OTHER DESIGN AND CONSTRUCTION CONSIDERATIONS

Proper construction practices and adherence to project plans and specifications should be followed during site preparation, earthwork, excavations, and construction of utilities, pavements, and structures for the suitable long-term performance of the proposed improvements. Excavation

support should be provided to maintain onsite safety and the stability of excavations and slopes. Excavations shall be constructed in accordance with local, state, and federal regulations including OSHA guidelines. The contractor must provide a competent person to determine compliance with OSHA excavation requirements. For preliminary planning, existing site soils should be considered as OSHA Type C soils, and the Mancos Shale as OSHA Type B soils.

The actual subsurface conditions between boring locations may vary from the information obtained at specific boring locations and described in this report.

Surface drainage patterns may be altered during construction and surface drainage must be controlled to prevent water ponding and excessive moisture infiltration into the subgrade soils during and after construction.


## **12.0 LIMITATIONS**

This geotechnical investigation was conducted in general accordance with the scope of work. The geotechnical practices are similar to that used in Colorado with similar soil conditions and our understanding of the proposed work.

The subsurface investigation program was conducted to obtain information on the subsurface soil, groundwater, and bedrock conditions at the proposed Materials Recycling Facility. Surface and groundwater hydrology, hydraulic engineering, and environmental studies including contaminant characterization were not included in RockSol's geotechnical scope of work.

This report has been prepared by RockSol for the City of Grand Junction exclusively for the project described in this report. The report is based on our exploratory boreholes, recovered floor slab cores, our site observations and does not take into account variations in the subsurface conditions that may exist between boreholes. Additional investigation is required to address such variation. If during construction activities, materials or groundwater conditions appear to be different from those described herein, RockSol should be advised at once so that a re-evaluation of the recommendations presented in this report can be made. RockSol is not responsible for liability associated with interpretation of subsurface data by others. This report shall not be reproduced without written consent from RockSol.

Figure 1A: Building Borehole Location Plan



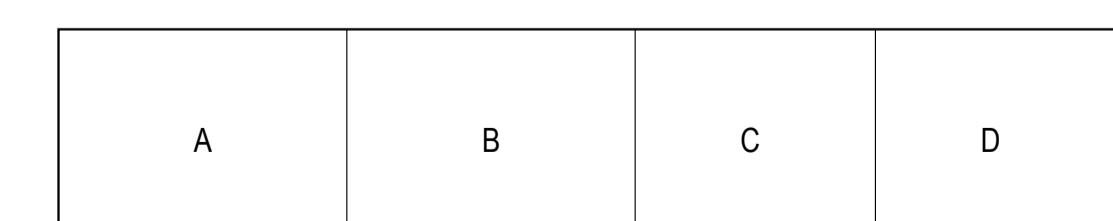

## Figure 1B

## **Borehole Location Plan – Circulation Road Pavement Boreholes (Google Earth, 2025)**



## **APPENDIX A**

### **BUILDING RENOVATION FLOOR PLAN – OVERALL (SHEET A-1-1)**


**RENOVATION LEGEND****GENERAL NOTES**

1. ALL INTERIOR PARTITIONS ARE TYPE J UNO. REFERENCE ASSEMBLIES DRAWING FOR ADDITIONAL INFORMATION.
2. WALLS LOCATED ON GRID LINES ARE CENTERED ON THE GRID LINE UNO.
3. INTERIOR DIMENSIONS ARE TO F.O. STUD, UNO.
4. EXTERIOR DIMENSIONS ARE TO F.O. STUD, MASONRY, OR CONC, UNO.
5. REFERENCE FINISH DRAWINGS FOR INTERIOR FINISHES.
6. DIMENSIONS TO EXISTING WALLS ARE TO FINISH FACE, UNO.
7. ALL ITEMS ARE NEW UNLESS NOTED AS EXISTING

**RENOVATION FLOOR PLAN - OVERALL****CONSTRUCTION DOCUMENTS**

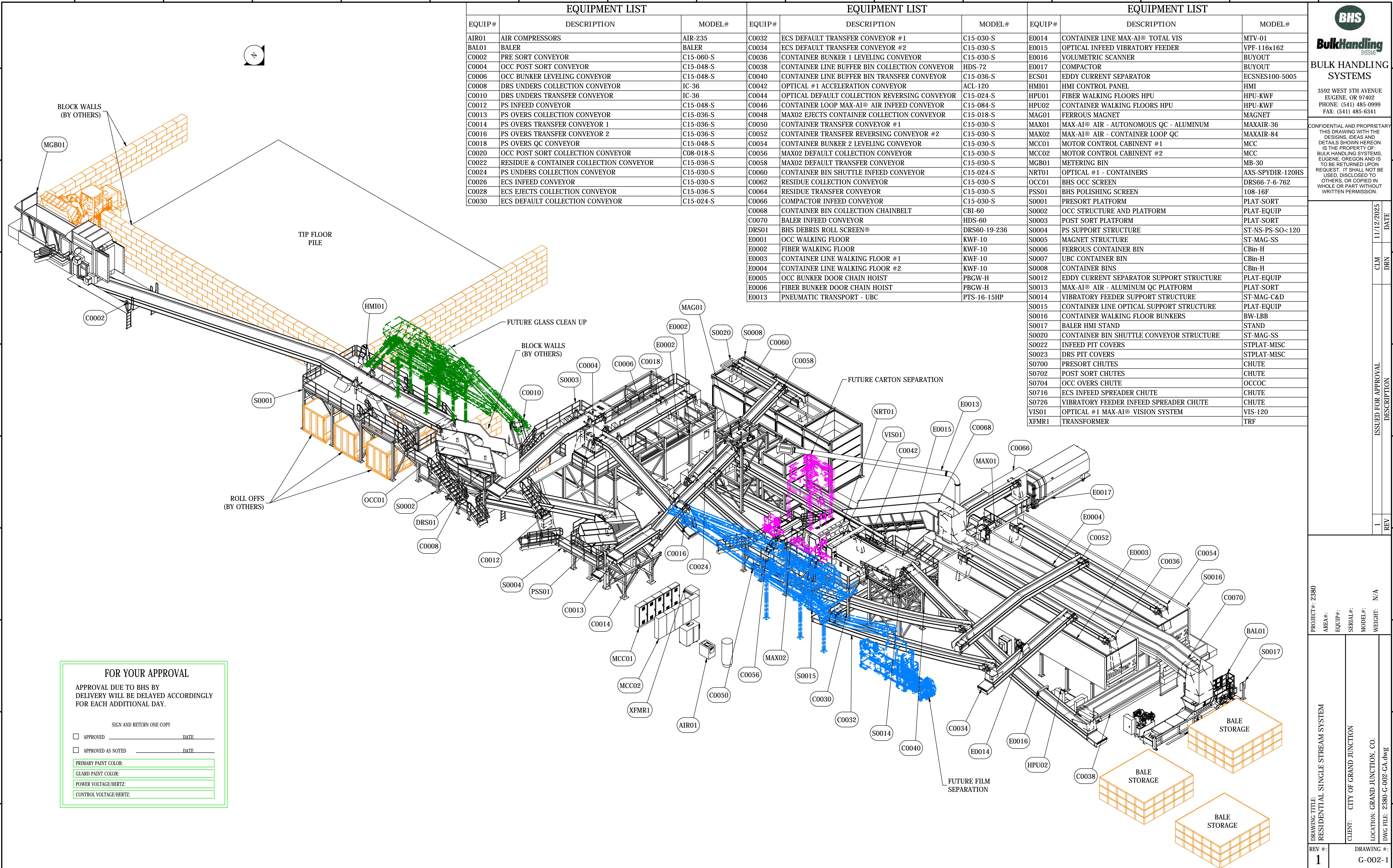
**NOT FOR CONSTRUCTION**

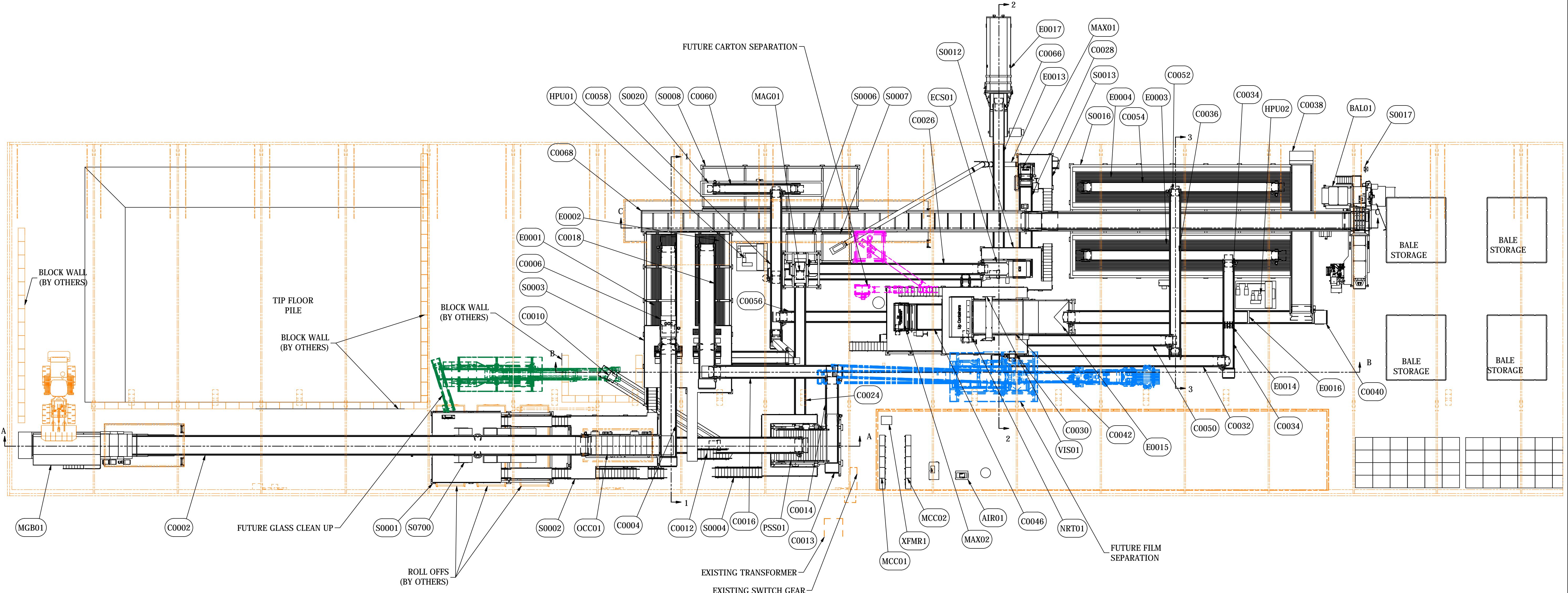
REV. DESC. DATE:

**KEYPLAN**

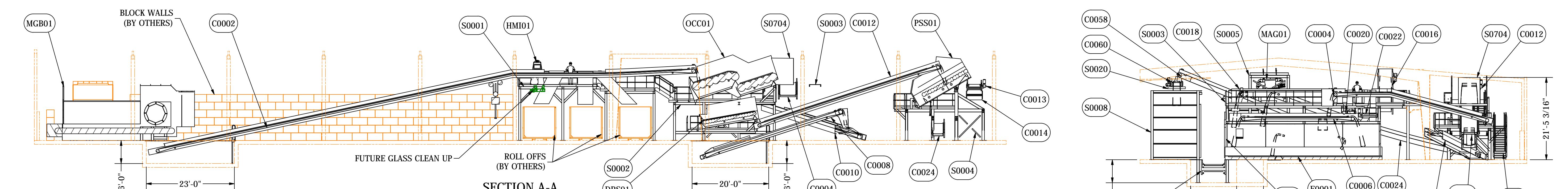
PROJECT NORTH TRUE NORTH

DATE: 10/30/2025

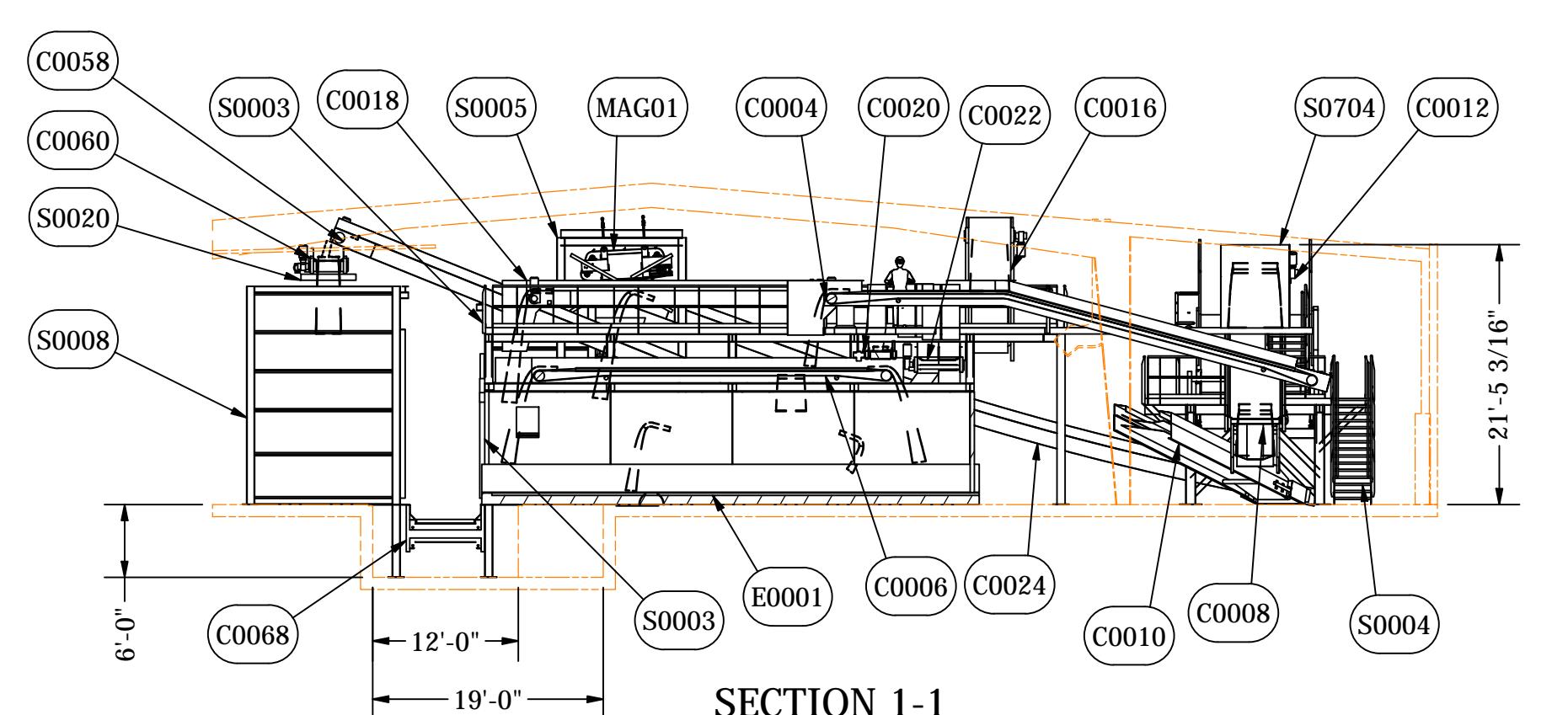

PROJECT #: 25034


SHEET #:

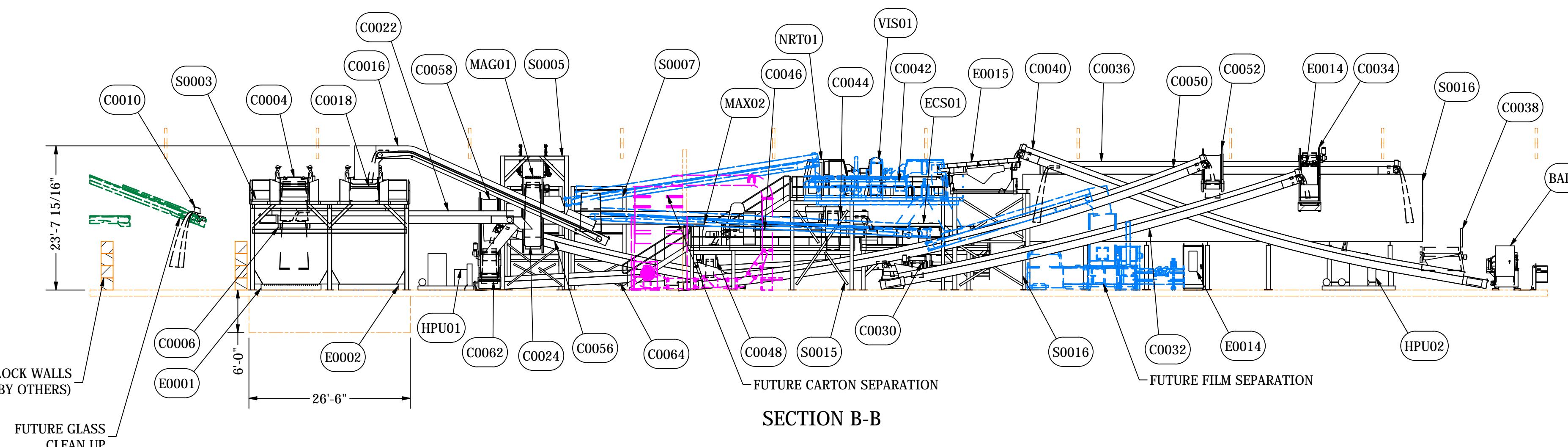
**A1-1**


## **APPENDIX B**

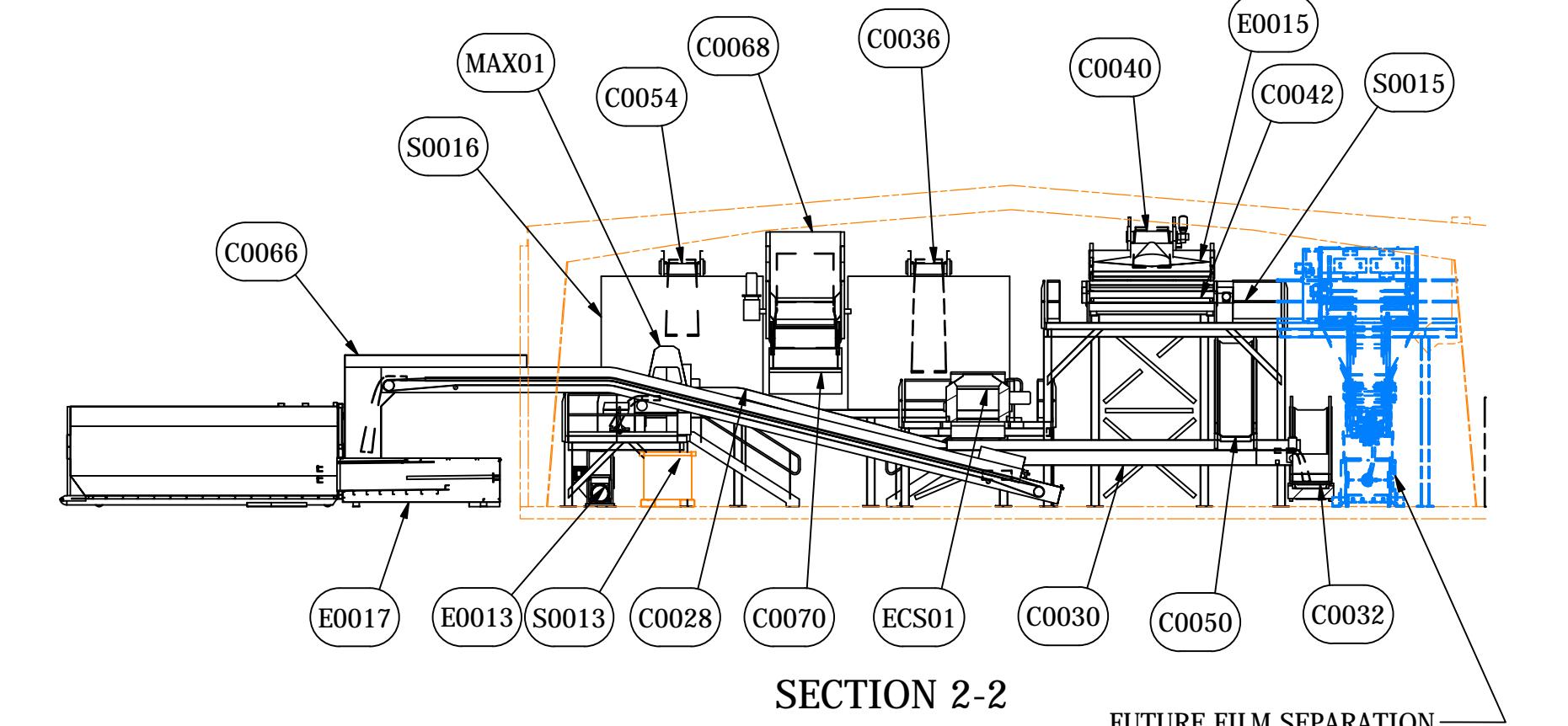
### **BULK HANDLING SYSTEMS EQUIPMENT LAYOUT PLANS (SHEETS G-002-1,2,3)**



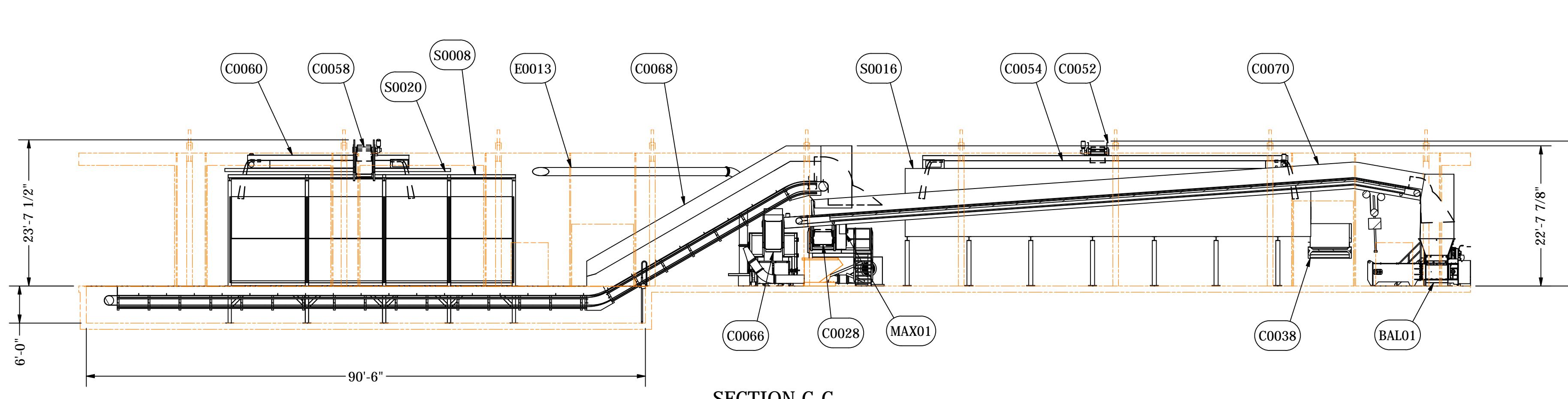




| REV #: | DRAWING #: | LOCATION: GRAND JUNCTION, CO. | CLIENT: CITY OF GRAND JUNCTION | DRAWING TITLE: RESIDENTIAL SINGLE STREAM SYSTEM | PROJECT #: 2380 |
|--------|------------|-------------------------------|--------------------------------|-------------------------------------------------|-----------------|
|        |            |                               |                                |                                                 | AREA#:          |
|        |            |                               |                                |                                                 | EQUIP#:         |
|        |            |                               |                                |                                                 | SERIAL#:        |
|        |            |                               |                                |                                                 | MODEL#:         |
|        |            |                               |                                |                                                 | WEIGHT: N/A     |
| 1      | G-002-2    | DWG FILE: 2380.G-002-2.dwg    |                                |                                                 |                 |

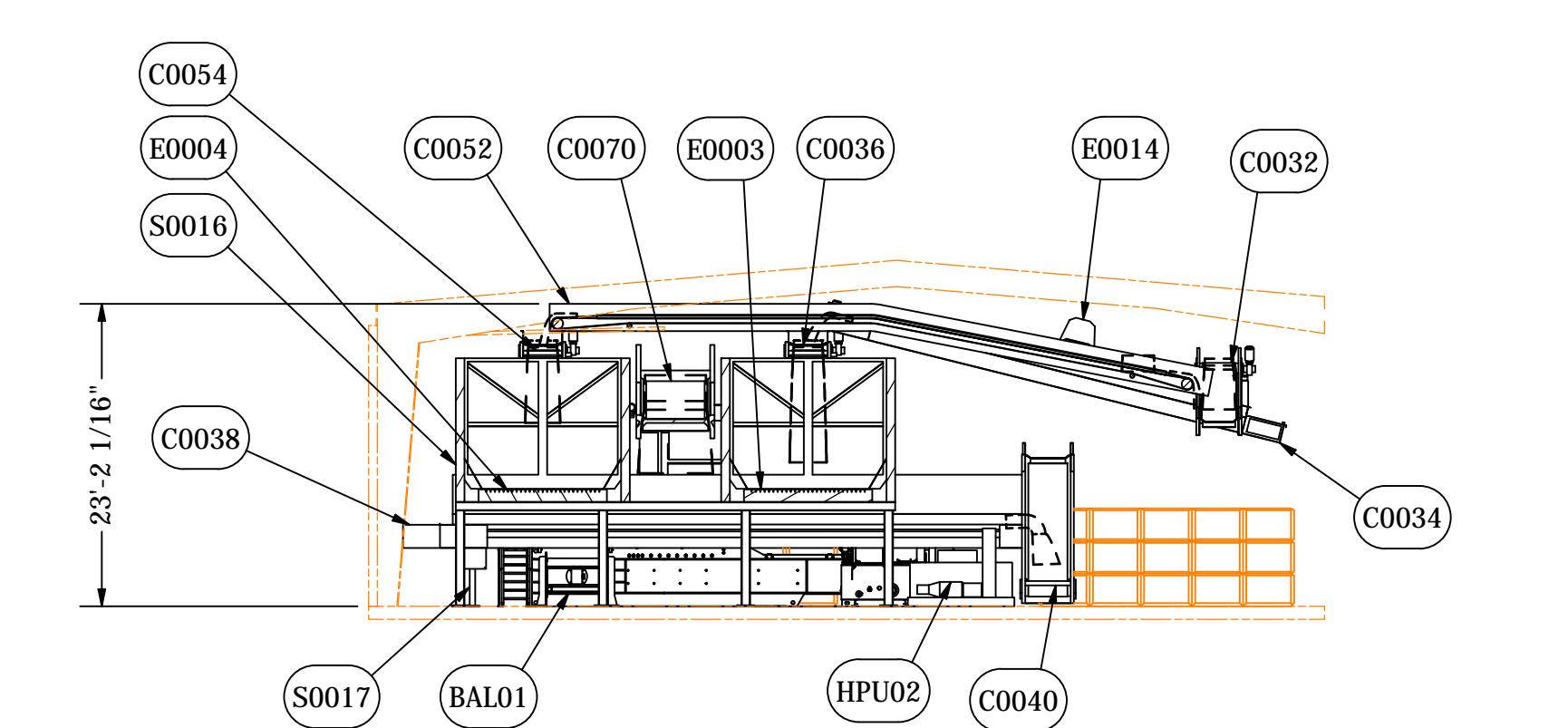



SECTION A-A




SECTION 1-1




SECTION B-B



SECTION 2-2



SECTION C-C



SECTION 3-3

| REV #: | DRAWING TITLE:                   | PROJECT #: | AREA #: | EQUIP #: | SERIAL #: | MODEL #: | WEIGHT: | REV: |
|--------|----------------------------------|------------|---------|----------|-----------|----------|---------|------|
| 1      | RESIDENTIAL SINGLE STREAM SYSTEM | 2380       |         |          |           |          | N/A     |      |

CLIENT: CITY OF GRAND JUNCTION  
LOCATION: GRAND JUNCTION, CO.  
DWG FILE: 2380-G-002-GA.dwg

## **APPENDIX C**

### **EXISTING INTERIOR WALL AND COLUMN FOUNDATION PHOTOGRAPHS**

**Interior Column Isolated Spread Footing**

Dimensions: 4' x 4' x 12" thickness



**Interior Wall Continuous Strip Footing**  
Dimensions: 12" thick strip footing



## **APPENDIX D**

### **LEGEND AND INDIVIDUAL BOREHOLE LOGS**

**CLIENT** City of Grand Junction

**PROJECT NUMBER** 803.64

**PROJECT NAME** Materials Recycling Facility

**PROJECT LOCATION** 365 32 Road, Grand Junction, Colorado

## LITHOLOGY

|                                                                                   |                                |                                                                                   |                              |
|-----------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------|------------------------------|
|  | <b>Asphalt Pavement</b>        |  | <b>Concrete Slab</b>         |
|  | <b>Fill - GRAVEL, sandy</b>    |  | <b>Fill - SAND, gravelly</b> |
|  | <b>Native - SAND</b>           |  | <b>Native - SAND, silty</b>  |
|  | <b>Native - SAND, gravelly</b> |  | <b>Native - SAND, clayey</b> |
|  | <b>Native - CLAY</b>           |  | <b>Native - CLAY, sandy</b>  |
|  | <b>Bedrock - SHALE</b>         |                                                                                   |                              |

## SAMPLE TYPE

|                                                                                     |                                                                    |                                                                                     |                                                                                           |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
|  | <b>BULK SAMPLE</b> (Auger Cuttings)                                |  | <b>MODIFIED CALIFORNIA SAMPLER</b><br>2.5" O.D. AND 2" I.D.<br>WITH BRASS LINERS INCLUDED |
|  | <b>SPLIT SPOON SAMPLER</b><br>2" O.D. AND 1 3/8" I.D.<br>NO LINERS |                                                                                     |                                                                                           |

Fines Content indicates amount of material, by weight, passing the US No 200 Sieve (%)

15/12 Indicates 15 blows of a 140 pound hammer falling 30 inches was required to drive the sampler 12 inches.

50/11 Indicates 50 blows of a 140 pound hammer falling 30 inches was required to drive the sampler 11 inches.

5,5,5 Indicates 5 blows, 5 blows, 5 blows of a 140 pound hammer falling 30 inches was required to drive the sampler 18 inches.

Material descriptions based on ASTM D2488 Visual-Manual Procedure

 **GROUND WATER AT TIME OF DRILLING**

**CLIENT** City of Grand Junction  
**PROJECT NUMBER** 803.64  
**DATE STARTED** 11/10/25      **COMPLETED** 11/10/25  
**DRILLING CONTRACTOR** Colorado Drilling and Sampling  
**DRILLING METHOD** Solid Stem Auger      **HOLE SIZE** 4.25"  
**LOGGED BY** R. Lepro      **HAMMER TYPE** Automatic  
**NOTES**

**PROJECT NAME** Materials Recycling Facility  
**PROJECT LOCATION** 365 32 Road, Grand Junction, Colorado  
**GROUND ELEVATION** 100.0 ft      **STATION NO.** \_\_\_\_\_  
**NORTH** \_\_\_\_\_      **EAST** \_\_\_\_\_  
**BORING LOCATION:** Bay 2 Approx 50' East of Door  
**GROUND WATER LEVELS:**  
 ▼ **WATER DEPTH** 10.5 ft on 11/10/25

| ELEVATION<br>(ft) | DEPTH<br>(ft) | GRAPHIC<br>LOG | MATERIAL DESCRIPTION                                                                                                                                                                                                                                     | SAMPLE TYPE | BLOW<br>COUNTS | SWELL<br>POTENTIAL (%) | SULFATE (%) | DRY UNIT WT.<br>(pcf) | MOISTURE<br>CONTENT (%) | ATTERBERG<br>LIMITS |               |                  |
|-------------------|---------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|------------------------|-------------|-----------------------|-------------------------|---------------------|---------------|------------------|
|                   |               |                |                                                                                                                                                                                                                                                          |             |                |                        |             |                       |                         | Liquid Limit        | Plastic Limit | Plasticity Index |
| 100.0             | 0.0           |                | CONCRETE SLAB, approximately 6-inches thick                                                                                                                                                                                                              |             |                |                        |             |                       |                         |                     |               |                  |
| 97.5              | 2.5           |                | (Fill) GRAVEL, sandy with cobbles at approximately 6-inches in diameter, slightly moist, gray, dense<br><br><u>Approximate Bulk Depth 0.5-4</u><br>Liquid Limit= NP<br>Plastic Limit= NP<br>Plasticity Index= NP<br>Fines Content= 21.2<br>Sulfate= 0.07 | BULK        |                |                        |             | 0.07                  |                         | NP                  | NP            | NP               |
| 95.0              | 5.0           |                | (Native) SAND, silty to gravelly, slightly moist, gray to tan, medium dense                                                                                                                                                                              | SS          | 67/12          |                        |             |                       |                         |                     |               |                  |
| 92.5              | 7.5           |                | (Native) CLAY, very moist, gray, medium stiff                                                                                                                                                                                                            | SS          | 14/12/16       |                        |             |                       |                         |                     |               |                  |
| 90.0              | 10.0          |                |                                                                                                                                                                                                                                                          | SS          | 2/3/3          |                        |             | 0.03                  |                         | 36                  | 16            | 20               |
| 87.5              | 12.5          |                | (Native) CLAY, wet, gray, soft                                                                                                                                                                                                                           |             |                |                        |             |                       |                         |                     |               |                  |
| 85.0              | 15.0          |                | Bottom of hole at 15.0 feet.                                                                                                                                                                                                                             | MC          | 3/12           |                        |             |                       |                         |                     |               |                  |

**CLIENT** City of Grand Junction  
**PROJECT NUMBER** 803.64  
**DATE STARTED** 11/10/25      **COMPLETED** 11/10/25  
**DRILLING CONTRACTOR** Colorado Drilling and Sampling  
**DRILLING METHOD** Solid Stem Auger      **HOLE SIZE** 4.25"  
**LOGGED BY** R. Lepro      **HAMMER TYPE** Automatic  
**NOTES**

**PROJECT NAME** Materials Recycling Facility  
**PROJECT LOCATION** 365 32 Road, Grand Junction, Colorado  
**GROUND ELEVATION** 100.0 ft      **STATION NO.** \_\_\_\_\_  
**NORTH** \_\_\_\_\_      **EAST** \_\_\_\_\_  
**BORING LOCATION:** Bay 7, 6' from North Wall  
**GROUND WATER LEVELS:**  
**▼ WATER DEPTH** 10.0 ft on 11/10/25

| ELEVATION<br>(ft) | DEPTH<br>(ft) | GRAPHIC<br>LOG | MATERIAL DESCRIPTION                                                                                                                                                                                 | SAMPLE TYPE | BLOW<br>COUNTS | SWELL<br>POTENTIAL (%) | SULFATE (%) | DRY UNIT WT.<br>(pcf) | MOISTURE<br>CONTENT (%) | ATTERBERG<br>LIMITS |               |                  | FINES<br>CONTENT<br>(%) |
|-------------------|---------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|------------------------|-------------|-----------------------|-------------------------|---------------------|---------------|------------------|-------------------------|
|                   |               |                |                                                                                                                                                                                                      |             |                |                        |             |                       |                         | Liquid Limit        | Plastic Limit | Plasticity Index |                         |
| 100.0             | 0             |                | CONCRETE SLAB, approximately 5-inches thick<br>(Fill) SAND, silty to gravelly, moist, brown, medium dense                                                                                            | BULK        |                |                        |             |                       |                         | NP                  | NP            | NP               | 21.2                    |
| 95.0              | 5             |                | (Native) SAND, gravelly, slightly moist, tan, dense<br><b>Approximate Bulk Depth 0.42-4</b><br>Liquid Limit= NP<br>Plastic Limit= NP<br>Plasticity Index= NP<br>Fines Content= 21.2<br>Sulfate= 0.07 | SS          | 58/12          |                        |             |                       |                         |                     |               |                  | 19.2                    |
| 90.0              | 10            |                | (Native) SAND, clayey, moist, gray, loose                                                                                                                                                            | MC          | 9/12           |                        |             |                       |                         |                     |               |                  | 41.6                    |
| 85.0              | 15            |                | (Native) SAND, wet, brown, very loose                                                                                                                                                                | MC          | 3/12           | -0.4                   |             | 93.5                  | 26.4                    |                     |               |                  | 6.5                     |
| 80.0              | 20            |                | (Native) SAND, silty with cobbles in parts, wet, brown, dense                                                                                                                                        | SS          | 54/14          |                        |             |                       |                         | NP                  | NP            | NP               | 15.0                    |
| 75.0              | 25            |                | (Bedrock) SHALE, moist, black to dark gray, very hard                                                                                                                                                | SS          | 50/2           |                        |             |                       |                         |                     |               |                  |                         |
| 70.0              | 30            |                |                                                                                                                                                                                                      | SS          | 50/1           |                        |             |                       |                         |                     |               |                  |                         |
| 65.0              | 35            |                | Bottom of hole at 36.1 feet.                                                                                                                                                                         |             |                |                        |             |                       |                         |                     |               |                  |                         |

**CLIENT** City of Grand Junction  
**PROJECT NUMBER** 803.64  
**DATE STARTED** 11/10/25      **COMPLETED** 11/10/25  
**DRILLING CONTRACTOR** Colorado Drilling and Sampling  
**DRILLING METHOD** Solid Stem Auger      **HOLE SIZE** 4.25"  
**LOGGED BY** R. Lepro      **HAMMER TYPE** Automatic  
**NOTES**

**PROJECT NAME** Materials Recycling Facility  
**PROJECT LOCATION** 365 32 Road, Grand Junction, Colorado  
**GROUND ELEVATION** 100.0 ft      **STATION NO.** \_\_\_\_\_  
**NORTH** \_\_\_\_\_      **EAST** \_\_\_\_\_  
**BORING LOCATION:** Bay 9  
**GROUND WATER LEVELS:**  
**▼ WATER DEPTH** 12.0 ft on 11/10/25

| ELEVATION<br>(ft) | DEPTH<br>(ft) | GRAPHIC<br>LOG | MATERIAL DESCRIPTION                                                                                                                                                                                                                               | SAMPLE TYPE | BLOW<br>COUNTS | SWELL<br>POTENTIAL (%) | SULFATE (%) | DRY UNIT WT.<br>(pcf) | MOISTURE<br>CONTENT (%) | ATTERBERG<br>LIMITS |               |                  |
|-------------------|---------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|------------------------|-------------|-----------------------|-------------------------|---------------------|---------------|------------------|
|                   |               |                |                                                                                                                                                                                                                                                    |             |                |                        |             |                       |                         | Liquid Limit        | Plastic Limit | Plasticity Index |
| 100.0             | 0             |                | CONCRETE SLAB, approximately 6-inches thick<br>(Native) SAND, gravelly, slightly moist, tan, dense<br><b>Approximate Bulk Depth 0.5-9</b><br>Liquid Limit= NP<br>Plastic Limit= NP<br>Plasticity Index= NP<br>Fines Content= 21.2<br>Sulfate= 0.07 | BULK        |                |                        |             |                       |                         | NP                  | NP            | NP               |
| 95.0              | 5             |                | (Native) CLAY, sandy, slightly moist, brown, very stiff                                                                                                                                                                                            | SS          | 25/30/31       | 0.07                   |             |                       |                         |                     |               |                  |
| 90.0              | 10            |                | (Native) SAND, gravelly with silt, moist to wet, brown, dense                                                                                                                                                                                      | MC          | 21/12          |                        |             |                       |                         | 34                  | 14            | 20               |
| 85.0              | 15            |                |                                                                                                                                                                                                                                                    | SS          | 50/12          |                        |             |                       |                         |                     |               |                  |
| 80.0              | 20            |                | (Bedrock) SHALE, moist, gray, very hard                                                                                                                                                                                                            | SS          | 50/6           |                        |             |                       |                         |                     |               |                  |
|                   |               |                | Bottom of hole at 24.2 feet.                                                                                                                                                                                                                       | SS          | 50/2           | 0.12                   |             |                       |                         |                     |               |                  |

**CLIENT** City of Grand Junction  
**PROJECT NUMBER** 803.64  
**DATE STARTED** 11/11/25 **COMPLETED** 11/11/25  
**DRILLING CONTRACTOR** Colorado Drilling and Sampling  
**DRILLING METHOD** Solid Stem Auger **HOLE SIZE** 4.25"  
**LOGGED BY** R. Lepro **HAMMER TYPE** Automatic  
**NOTES**

**PROJECT NAME** Materials Recycling Facility  
**PROJECT LOCATION** 365 32 Road, Grand Junction, Colorado  
**GROUND ELEVATION** 100.0 ft **STATION NO.** \_\_\_\_\_  
**NORTH** \_\_\_\_\_ **EAST** \_\_\_\_\_  
**BORING LOCATION:** Bay 15 Approx 65' E of Garage Bay Door  
**GROUND WATER LEVELS:**  
**▼ WATER DEPTH** 13.0 ft on 11/11/25

| ELEVATION<br>(ft) | DEPTH<br>(ft) | GRAPHIC<br>LOG | MATERIAL DESCRIPTION                                                                                                                                                                                                              | SAMPLE TYPE | BLOW<br>COUNTS | SWELL<br>POTENTIAL (%) | SULFATE (%) | DRY UNIT WT.<br>(pcf) | MOISTURE<br>CONTENT (%) | ATTERBERG<br>LIMITS |               |                  |
|-------------------|---------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|------------------------|-------------|-----------------------|-------------------------|---------------------|---------------|------------------|
|                   |               |                |                                                                                                                                                                                                                                   |             |                |                        |             |                       |                         | Liquid Limit        | Plastic Limit | Plasticity Index |
| 100.0             | 0             |                | CONCRETE SLAB, approximately 6.75-inches thick<br>(Fill) SAND, gravelly to silty, moist, brown, medium dense                                                                                                                      | BULK        |                |                        |             |                       |                         | NP                  | NP            | NP               |
| 95.0              | 5             |                | (Native) SAND, gravelly to silty, cobbles in parts, slightly moist, brown, dense<br><b>Approximate Bulk Depth 0.56-4</b><br>Liquid Limit= NP<br>Plastic Limit= NP<br>Plasticity Index= NP<br>Fines Content= 21.2<br>Sulfate= 0.07 | SS          | 13/14/15       |                        |             |                       |                         |                     |               |                  |
| 90.0              | 10            |                | (Native) SAND, clayey, very moist, brown, loose                                                                                                                                                                                   | SS          | 15/41/27       |                        |             |                       |                         |                     |               |                  |
| 85.0              | 15            |                | (Native) SAND, gravelly, wet, brown, dense                                                                                                                                                                                        | MC          | 9/12           | -0.3                   |             | 103.3                 | 21.3                    |                     |               |                  |
| 80.0              | 20            |                | (Bedrock) SHALE, moist, dark gray, very hard                                                                                                                                                                                      | SS          | 55/9           |                        |             |                       |                         | NP                  | NP            | NP               |
| 75.0              | 25            |                |                                                                                                                                                                                                                                   | SS          | 50/2           |                        |             |                       |                         |                     |               |                  |
|                   |               |                | Bottom of hole at 29.1 feet.                                                                                                                                                                                                      | SS          | 100/1          | 0.12                   |             |                       |                         |                     |               |                  |

**CLIENT** City of Grand Junction  
**PROJECT NUMBER** 803.64  
**DATE STARTED** 11/10/25      **COMPLETED** 11/10/25  
**DRILLING CONTRACTOR** Colorado Drilling and Sampling  
**DRILLING METHOD** Solid Stem Auger      **HOLE SIZE** 4.25"  
**LOGGED BY** R. Lepro      **HAMMER TYPE** Automatic  
**NOTES**

**PROJECT NAME** Materials Recycling Facility  
**PROJECT LOCATION** 365 32 Road, Grand Junction, Colorado  
**GROUND ELEVATION** 100.0 ft      **STATION NO.** \_\_\_\_\_  
**NORTH** \_\_\_\_\_      **EAST** \_\_\_\_\_  
**BORING LOCATION:** West portion of gravel lot  
**GROUND WATER LEVELS:**  
**▼ WATER DEPTH** 7.0 ft on 11/10/25

| ELEVATION<br>(ft) | DEPTH<br>(ft) | GRAPHIC<br>LOG | MATERIAL DESCRIPTION                                                                                                                                                                                      | SAMPLE TYPE | BLOW<br>COUNTS | SWELL<br>POTENTIAL (%) | SULFATE (%) | DRY UNIT WT.<br>(pcf) | MOISTURE<br>CONTENT (%) | ATTERBERG<br>LIMITS |               |                  | FINE CONTENT<br>(%) |
|-------------------|---------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|------------------------|-------------|-----------------------|-------------------------|---------------------|---------------|------------------|---------------------|
|                   |               |                |                                                                                                                                                                                                           |             |                |                        |             |                       |                         | Liquid Limit        | Plastic Limit | Plasticity Index |                     |
| 100.0             | 0.0           |                | (Fill) GRAVEL, sandy, light gray, gravel lot surfacing material, approximately 4-inches thick<br><br>(Native) SAND, gravelly slightly silty, traces of clay in parts 5-7ft, moist, dense Cobbles in parts | B-BULK      |                |                        |             |                       |                         |                     |               |                  |                     |
| 97.5              | 2.5           |                | <b>Approximate Bulk Depth 0-4</b><br>Liquid Limit= 15<br>Plastic Limit= 13<br>Plasticity Index= 2<br>Fines Content= 22.1<br>Sulfate= 0.48                                                                 | SS          | 50/8           | 0.48                   |             |                       |                         | 15                  | 13            | 2                | 22.1                |
| 95.0              | 5.0           |                | (Native) SAND, gravelly with clay in parts, moist, tan to brown, dense                                                                                                                                    | SS          | 41/17/14       |                        |             |                       |                         | NP                  | NP            | NP               | 21.8                |
| 92.5              | 7.5           |                | (Native) SAND, gravelly, wet, brown, dense                                                                                                                                                                | SS          | 15/16/25       |                        |             |                       |                         | NP                  | NP            | NP               | 2.9                 |
| 90.0              | 10.0          |                | Bottom of hole at 10.5 feet.                                                                                                                                                                              |             |                |                        |             |                       |                         |                     |               |                  |                     |

**CLIENT** City of Grand Junction  
**ROCKSOL PROJECT NUMBER** 803.64  
**DATE STARTED** 11/10/25    **COMPLETED** 11/10/25  
**DRILLING CONTRACTOR** Colorado Drilling and Sampling  
**DRILLING METHOD** Solid Stem Auger    **HOLE SIZE** 4.25"  
**LOGGED BY** R. Lepro  
**NOTES**

**PROJECT NAME** Materials Recycling Facility  
**CLIENT PROJECT NUMBER** 365 32 Road, Grand Junction, Colorado  
**GROUND ELEVATION** 100.0 ft  
**NORTH** \_\_\_\_\_    **EAST** \_\_\_\_\_  
**BORING LOCATION:** Southeast portion of gravel lot  
**GROUND WATER LEVELS:**  
 ▼ **WATER DEPTH** 9.0 ft on 11/10/25

| ELEVATION<br>(ft) | DEPTH<br>(ft) | GRAPHIC<br>LOG | MATERIAL DESCRIPTION                                                                                                                         | SAMPLE TYPE<br>NUMBER | BLOW<br>COUNTS<br>(N VALUE) | SWELL<br>POTENTIAL (%) | SULFATE (%) | DRY UNIT WT.<br>(pcf) | MOISTURE<br>CONTENT (%) | ATTERBERG<br>LIMITS |               |                  |
|-------------------|---------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------|------------------------|-------------|-----------------------|-------------------------|---------------------|---------------|------------------|
|                   |               |                |                                                                                                                                              |                       |                             |                        |             |                       |                         | Liquid Limit        | Plastic Limit | Plasticity Index |
| 100.0             | 0.0           |                | ASPHALT PAVEMENT, approximately 2-inches thick<br>(Native) SAND, gravelly, moist, brown to gray, dense                                       |                       |                             |                        |             |                       |                         |                     |               |                  |
| 97.5              | 2.5           |                | <b>Approximate Bulk Depth 0.17-4</b><br>Liquid Limit= 15<br>Plastic Limit= 13<br>Plasticity Index= 2<br>Fines Content= 22.1<br>Sulfate= 0.48 | BULK                  | 64/12                       |                        | 0.48        |                       |                         | 15                  | 13            | 2                |
| 95.0              | 5.0           |                | (Native) SAND, clayey, moist, brown                                                                                                          | SS                    | 58/12                       |                        |             |                       |                         | 22.0                |               | 22.1             |
| 92.5              | 7.5           |                | (Native) SAND, gravelly, wet, brown to grey, dense                                                                                           |                       |                             |                        |             |                       |                         |                     |               |                  |
| 90.0              | 10.0          |                | Bottom of hole at 10.5 feet.                                                                                                                 | SS                    | 38/21/27                    |                        |             |                       |                         |                     |               |                  |

## **APPENDIX E**

### **LABORATORY TEST RESULTS**

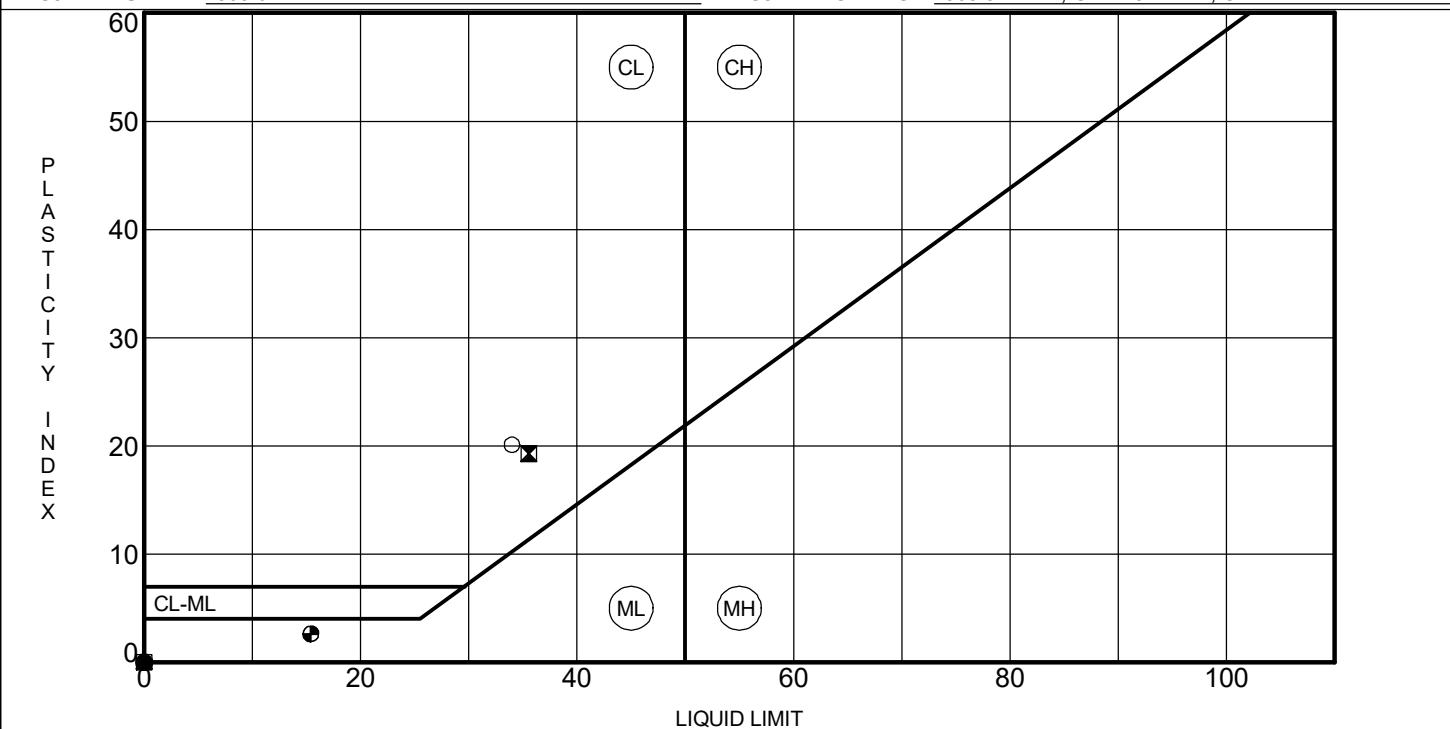
**CLIENT** City of Grand Junction  
**PROJECT NUMBER** 803.64

**PROJECT NAME** Materials Recycling Facility  
**PROJECT LOCATION** 365 32 Road, Grand Junction, Colorado

| Borehole | Depth (ft) | Liquid Limit | Plastic Limit | Plasticity Index | Swell Potential (%) | %<#200 Sieve | Classification |           | Water Content (%) | Dry Density (pcf) | Unconfined Compressive Strength (psi) | Sulfate (%) | Resistivity (ohm-cm) | pH  | Proctor    |            |     |     |
|----------|------------|--------------|---------------|------------------|---------------------|--------------|----------------|-----------|-------------------|-------------------|---------------------------------------|-------------|----------------------|-----|------------|------------|-----|-----|
|          |            |              |               |                  |                     |              | USCS           | AASHTO    |                   |                   |                                       |             |                      |     | S=Standard | M=Modified | MDD | OMC |
| B-1      | 0.5-4      | NP           | NP            | NP               |                     | 21           | SM             | A-1-b (0) |                   |                   |                                       | 0.07        | 1,400 @ 11.7%        | 8.7 | 0.0366     |            |     |     |
| B-1      | 9          | 36           | 16            | 20               |                     | 98           | CL             | A-6 (20)  |                   |                   |                                       | 0.03        |                      |     |            |            |     |     |
| B-2      | 0.42-4     | NP           | NP            | NP               |                     | 21           | SM             | A-1-b (0) |                   |                   |                                       | 0.07        | 1,400@11.7%          | 8.7 | 0.0366     |            |     |     |
| B-2      | 4          |              |               |                  |                     | 19           |                |           |                   |                   |                                       |             |                      |     |            |            |     |     |
| B-2      | 9          |              |               |                  |                     | 42           |                |           |                   |                   |                                       |             |                      |     |            |            |     |     |
| B-2      | 14         |              |               |                  | -0.4                | 7            |                |           | 26.4              | 93.5              |                                       |             |                      |     |            |            |     |     |
| B-2      | 19         | NP           | NP            | NP               |                     | 15           | SM             | A-1-b (0) |                   |                   |                                       |             |                      |     |            |            |     |     |
| B-2      | 36         |              |               |                  |                     |              |                |           |                   |                   |                                       | 0.12        |                      | 8.9 | 0.0525     |            |     |     |
| B-3      | 0.5-9      | NP           | NP            | NP               |                     | 21           | SM             | A-1-b (0) |                   |                   |                                       | 0.07        | 1,400@11.7%          | 8.7 | 0.0366     |            |     |     |
| B-3      | 4          | NP           | NP            | NP               |                     | 17           | GM             | A-1-b (0) |                   |                   |                                       |             |                      |     |            |            |     |     |
| B-3      | 9          | 34           | 14            | 20               |                     | 70           | CL             | A-6 (11)  |                   |                   |                                       |             |                      |     |            |            |     |     |
| B-3      | 24         |              |               |                  |                     |              |                |           |                   |                   |                                       | 0.12        |                      | 8.9 | 0.0525     |            |     |     |
| B-4      | 0.56-4     | NP           | NP            | NP               |                     | 21           | SM             | A-1-b (0) |                   |                   |                                       | 0.07        | 1,400@11.7%          | 8.7 | 0.0366     |            |     |     |
| B-4      | 4          |              |               |                  |                     | 16           |                |           |                   |                   |                                       |             |                      |     |            |            |     |     |
| B-4      | 9          |              |               |                  | -0.3                | 38           |                |           | 21.3              | 103.3             |                                       |             |                      |     |            |            |     |     |
| B-4      | 14         | NP           | NP            | NP               |                     | 5            | GP             | A-1-a (0) |                   |                   |                                       |             |                      |     |            |            |     |     |
| B-4      | 24         |              |               |                  |                     |              |                |           |                   |                   |                                       | 0.12        |                      | 8.9 | 0.0525     |            |     |     |
| P-1      | 0-4        | 15           | 13            | 2                |                     | 22           | SM             | A-1-b (0) |                   |                   |                                       | 0.48        |                      | 8.3 | 0.1080     |            |     |     |
| P-1      | 5          | NP           | NP            | NP               |                     | 22           | SM             | A-2-4 (0) |                   |                   |                                       |             |                      |     |            |            |     |     |
| P-1      | 9          | NP           | NP            | NP               |                     | 3            | GP             | A-1-a (0) |                   |                   |                                       |             |                      |     |            |            |     |     |
| P-2      | 0.17-4     | 15           | 13            | 2                |                     | 22           | SM             | A-1-b (0) |                   |                   |                                       | 0.48        |                      | 8.3 | 0.1080     |            |     |     |
| P-2      | 2          |              |               |                  |                     | 22           |                |           |                   |                   |                                       |             |                      |     |            |            |     |     |



## Consulting Group, Inc.


## ATTERBERG LIMITS RESULTS AASHTO T89 Method A/T90

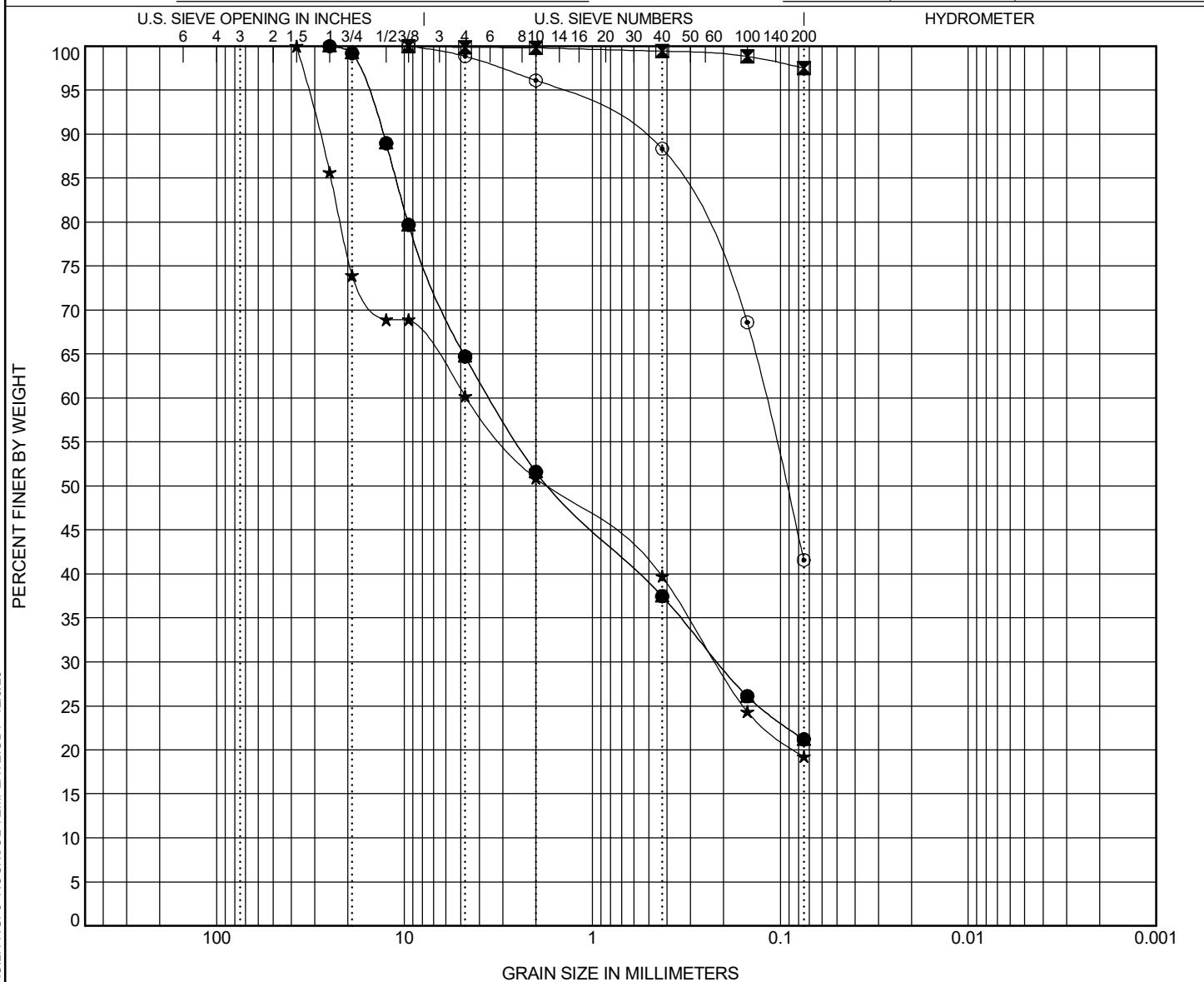
**CLIENT** City of Grand Junction

**PROJECT NAME** Materials Recycling Facility

**PROJECT NUMBER** 803.64

**PROJECT LOCATION** 365 32 Road, Grand Junction, Colorado




## GRAIN SIZE DISTRIBUTION

CLIENT City of Grand Junction

PROJECT NAME Materials Recycling Facility

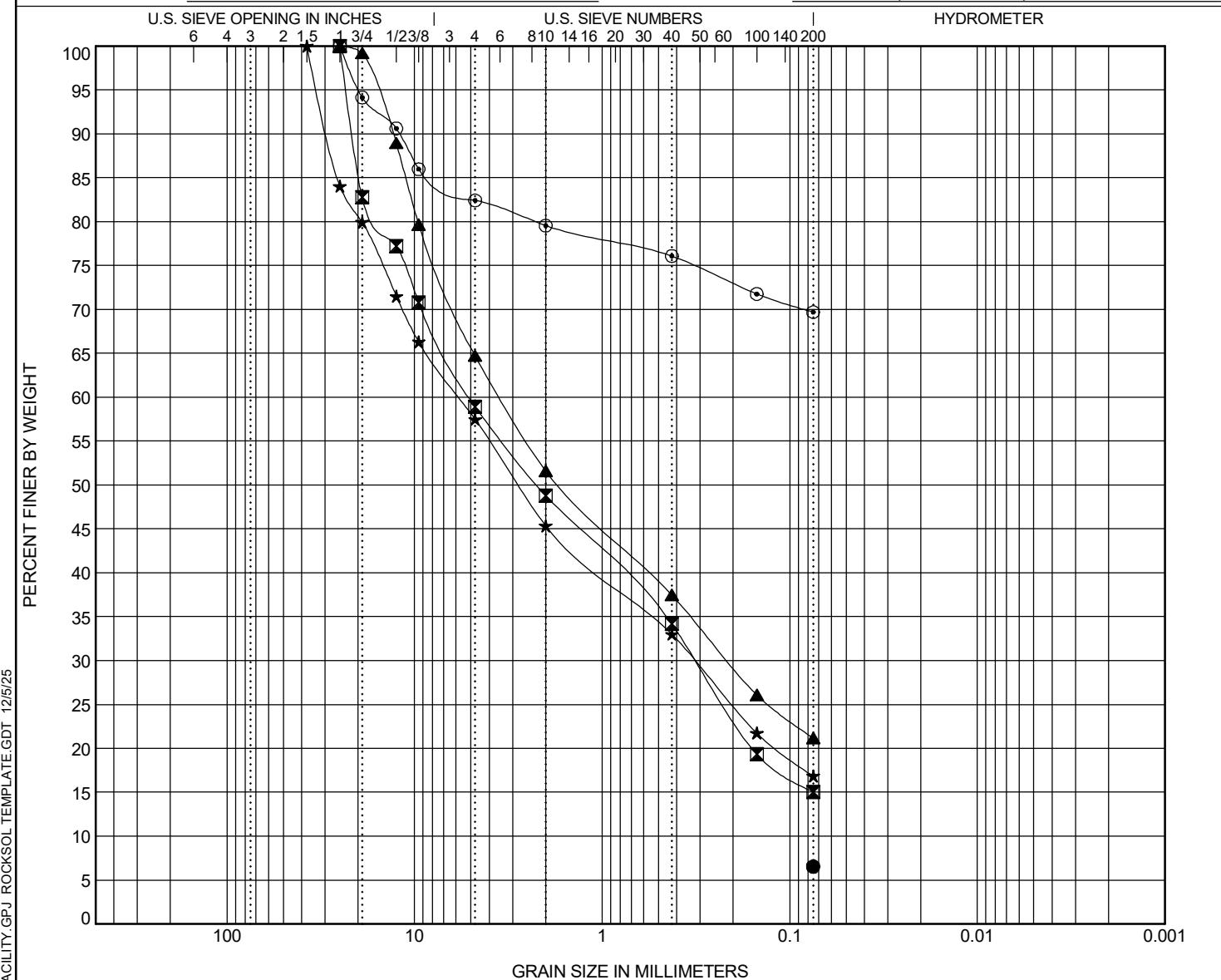
PROJECT NUMBER 803.64

PROJECT LOCATION 365 32 Road, Grand Junction, Colorado



| COBBLES | GRAVEL |      | SAND   |        |      | SILT OR CLAY |  |  |
|---------|--------|------|--------|--------|------|--------------|--|--|
|         | coarse | fine | coarse | medium | fine |              |  |  |

| Specimen Identification |                    | Classification                             |              |              |     |             |              | LL          | PL        | PI          | Cc | Cu |
|-------------------------|--------------------|--------------------------------------------|--------------|--------------|-----|-------------|--------------|-------------|-----------|-------------|----|----|
| ●                       | <b>B-1 0.5-4.0</b> | <b>SILTY SAND with GRAVEL (SM) (A-1-b)</b> |              |              |     |             |              | <b>NP</b>   | <b>NP</b> | <b>NP</b>   |    |    |
| ■                       | <b>B-1 9.0</b>     | <b>LEAN CLAY (CL) (A-6)</b>                |              |              |     |             |              | <b>36</b>   | <b>16</b> | <b>20</b>   |    |    |
| ▲                       | <b>B-2 0.4-4.0</b> | <b>SILTY SAND with GRAVEL (SM) (A-1-b)</b> |              |              |     |             |              | <b>NP</b>   | <b>NP</b> | <b>NP</b>   |    |    |
| ★                       | <b>B-2 4.0</b>     | <b>GRAVELLY SAND</b>                       |              |              |     |             |              |             |           |             |    |    |
| ◎                       | <b>B-2 9.0</b>     | <b>CLAYEY SAND</b>                         |              |              |     |             |              |             |           |             |    |    |
| Specimen Identification |                    | D100                                       | D60          | D30          | D10 | %Gravel     | %Coarse Sand | %Fine Sand  | %Silt     | %Clay       |    |    |
| ●                       | <b>B-1 0.5-4.0</b> | <b>25</b>                                  | <b>3.479</b> | <b>0.214</b> |     | <b>48.4</b> | <b>14.1</b>  | <b>16.3</b> |           | <b>21.2</b> |    |    |
| ■                       | <b>B-1 9.0</b>     | <b>9.5</b>                                 |              |              |     | <b>0.2</b>  | <b>0.4</b>   | <b>1.9</b>  |           | <b>97.5</b> |    |    |
| ▲                       | <b>B-2 0.4-4.0</b> | <b>25</b>                                  | <b>3.479</b> | <b>0.214</b> |     | <b>48.4</b> | <b>14.1</b>  | <b>16.3</b> |           | <b>21.2</b> |    |    |
| ★                       | <b>B-2 4.0</b>     | <b>37.5</b>                                | <b>4.657</b> | <b>0.22</b>  |     | <b>49.1</b> | <b>11.1</b>  | <b>20.5</b> |           | <b>19.2</b> |    |    |
| ◎                       | <b>B-2 9.0</b>     | <b>9.5</b>                                 | <b>0.12</b>  |              |     | <b>3.9</b>  | <b>7.8</b>   | <b>46.8</b> |           | <b>41.6</b> |    |    |


## GRAIN SIZE DISTRIBUTION

CLIENT City of Grand Junction

PROJECT NAME Materials Recycling Facility

PROJECT NUMBER 803.64

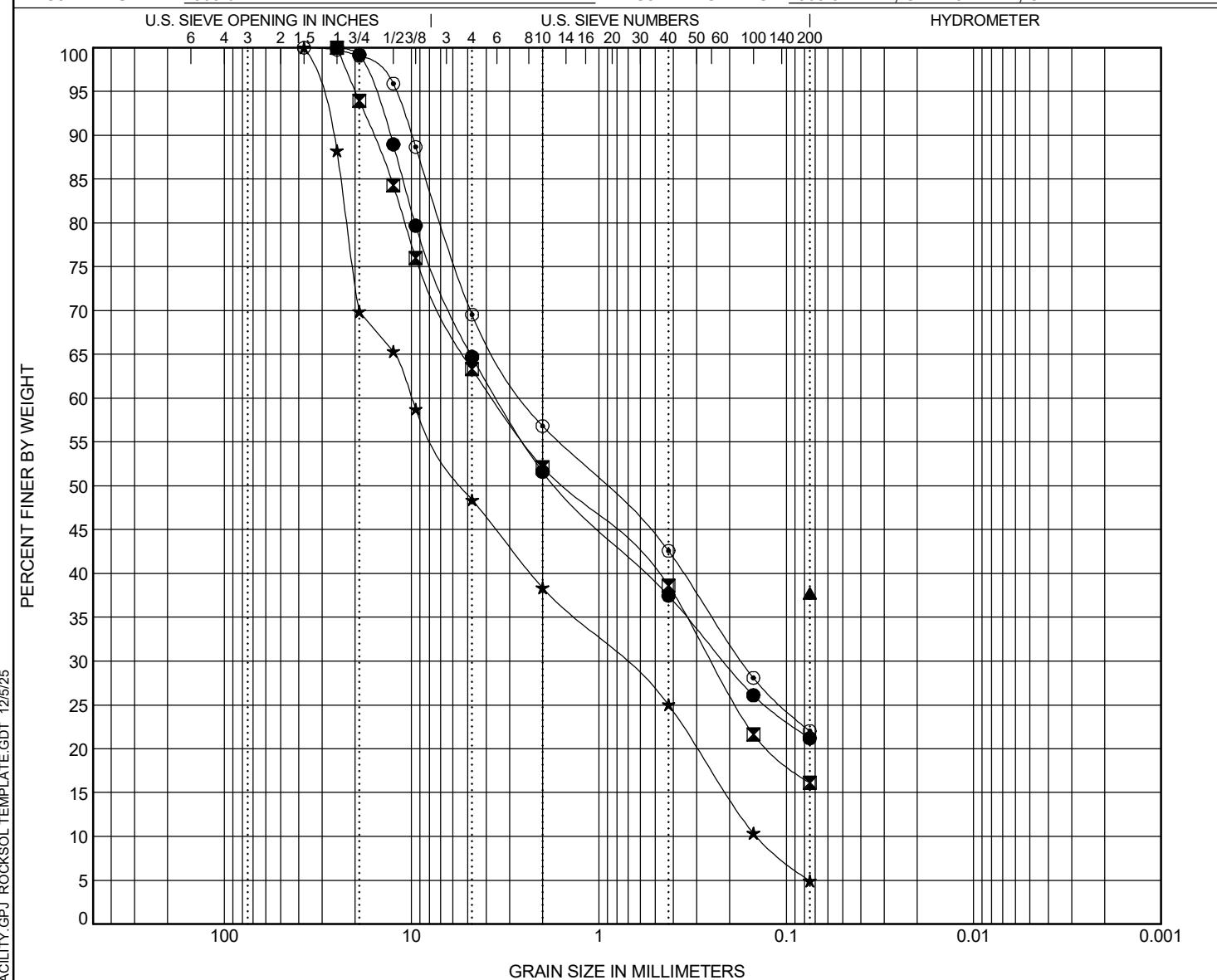
PROJECT LOCATION 365 32 Road, Grand Junction, Colorado



| COBBLES | GRAVEL |      | SAND   |        |      | SILT OR CLAY |  |  |
|---------|--------|------|--------|--------|------|--------------|--|--|
|         | coarse | fine | coarse | medium | fine |              |  |  |

| Specimen Identification |                    | Classification                             |  |  |  |  |  | LL        | PL        | PI        | Cc | Cu |
|-------------------------|--------------------|--------------------------------------------|--|--|--|--|--|-----------|-----------|-----------|----|----|
| ●                       | <b>B-2 14.0</b>    | <b>SAND</b>                                |  |  |  |  |  |           |           |           |    |    |
| ■                       | <b>B-2 19.0</b>    | <b>SILTY SAND with GRAVEL (SM) (A-1-b)</b> |  |  |  |  |  | <b>NP</b> | <b>NP</b> | <b>NP</b> |    |    |
| ▲                       | <b>B-3 0.5-9.0</b> | <b>SILTY SAND with GRAVEL (SM) (A-1-b)</b> |  |  |  |  |  | <b>NP</b> | <b>NP</b> | <b>NP</b> |    |    |
| ★                       | <b>B-3 4.0</b>     | <b>SILTY GRAVEL with SAND (GM) (A-1-b)</b> |  |  |  |  |  | <b>NP</b> | <b>NP</b> | <b>NP</b> |    |    |
| ○                       | <b>B-3 9.0</b>     | <b>GRAVELLY LEAN CLAY (CL) (A-6)</b>       |  |  |  |  |  | <b>34</b> | <b>14</b> | <b>20</b> |    |    |

| Specimen Identification |                    | D100         | D60          | D30          | D10 | %Gravel     | %Coarse Sand | %Fine Sand  | %Silt | %Clay       |
|-------------------------|--------------------|--------------|--------------|--------------|-----|-------------|--------------|-------------|-------|-------------|
| ●                       | <b>B-2 14.0</b>    | <b>0.075</b> |              |              |     |             |              |             |       | <b>6.5</b>  |
| ■                       | <b>B-2 19.0</b>    | <b>25</b>    | <b>5.057</b> | <b>0.317</b> |     | <b>51.2</b> | <b>14.6</b>  | <b>19.1</b> |       | <b>15.0</b> |
| ▲                       | <b>B-3 0.5-9.0</b> | <b>25</b>    | <b>3.479</b> | <b>0.214</b> |     | <b>48.4</b> | <b>14.1</b>  | <b>16.3</b> |       | <b>21.2</b> |
| ★                       | <b>B-3 4.0</b>     | <b>37.5</b>  | <b>5.784</b> | <b>0.322</b> |     | <b>54.7</b> | <b>12.3</b>  | <b>16.2</b> |       | <b>16.8</b> |
| ○                       | <b>B-3 9.0</b>     | <b>25</b>    |              |              |     | <b>20.4</b> | <b>3.5</b>   | <b>6.4</b>  |       | <b>69.7</b> |


## GRAIN SIZE DISTRIBUTION

CLIENT City of Grand Junction

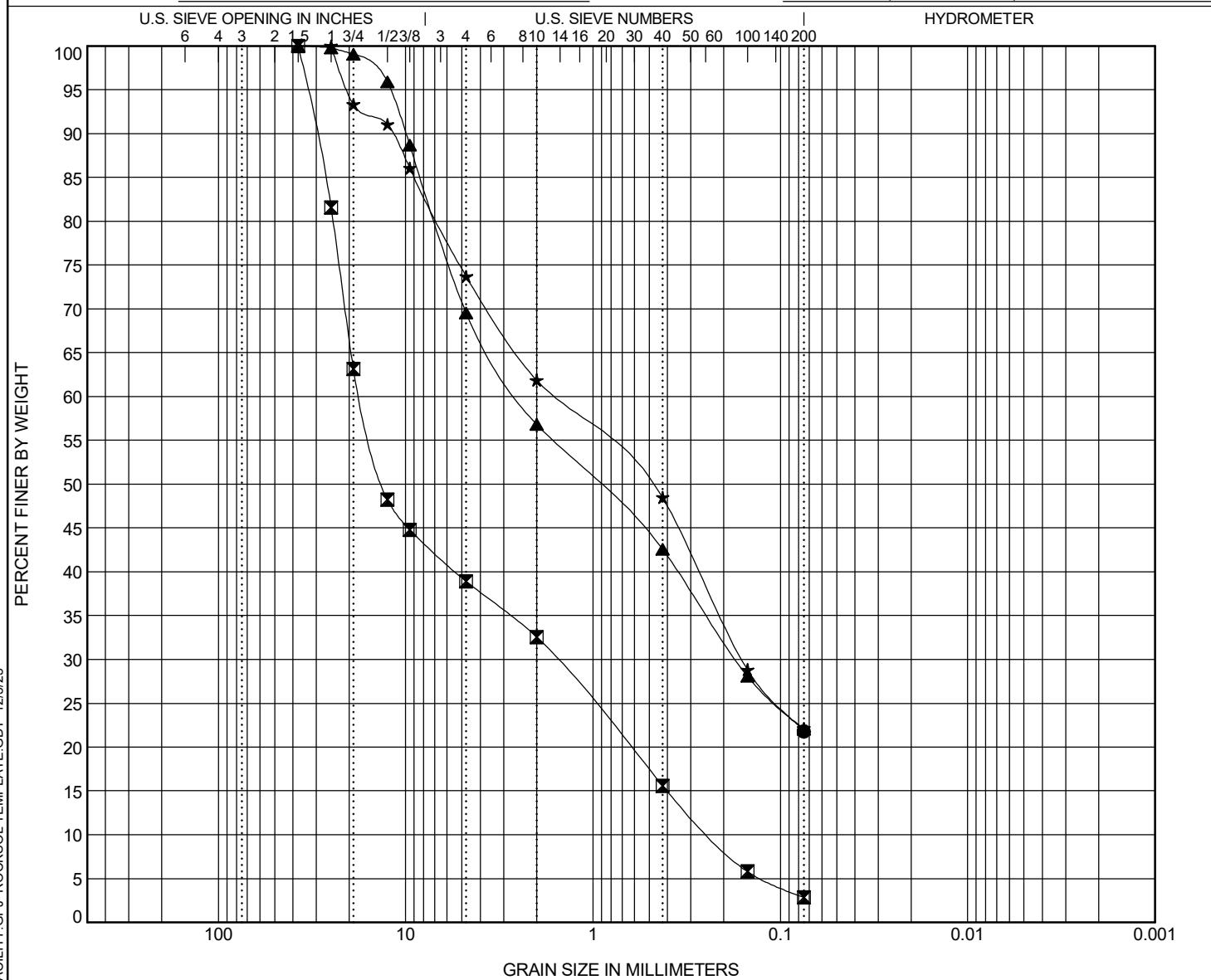
PROJECT NAME Materials Recycling Facility

PROJECT NUMBER 803.64

PROJECT LOCATION 365 32 Road, Grand Junction, Colorado



| Specimen Identification | Classification                              |        |       |       |         |              |            | LL    | PL    | PI | Cc   | Cu    |
|-------------------------|---------------------------------------------|--------|-------|-------|---------|--------------|------------|-------|-------|----|------|-------|
| ● B-4 0.6-4.0           | SILTY SAND with GRAVEL (SM) (A-1-b)         |        |       |       |         |              |            | NP    | NP    | NP |      |       |
| ◻ B-4 4.0               | SILTY SAND with GRAVEL                      |        |       |       |         |              |            |       |       |    |      |       |
| ▲ B-4 9.0               | CLAYEY SAND                                 |        |       |       |         |              |            |       |       |    |      |       |
| ★ B-4 14.0              | POORLY GRADED GRAVEL with SAND (GP) (A-1-a) |        |       |       |         |              |            | NP    | NP    | NP | 0.40 | 69.85 |
| Specimen Identification | D100                                        | D60    | D30   | D10   | %Gravel | %Coarse Sand | %Fine Sand | %Silt | %Clay |    |      |       |
| ● B-4 0.6-4.0           | 25                                          | 3.479  | 0.214 |       | 48.4    | 14.1         | 16.3       |       |       |    |      | 21.2  |
| ◻ B-4 4.0               | 25                                          | 3.678  | 0.25  |       | 47.9    | 13.5         | 22.5       |       |       |    |      | 16.1  |
| ▲ B-4 9.0               | 0.075                                       |        |       |       |         |              |            |       |       |    |      | 37.7  |
| ★ B-4 14.0              | 37.5                                        | 10.004 | 0.757 | 0.143 | 61.6    | 13.3         | 20.1       |       |       |    |      | 4.9   |
| ○ P-1 0.0-4.0           | 37.5                                        | 2.482  | 0.172 |       | 43.2    | 14.2         | 20.6       |       |       |    |      | 22.0  |


## GRAIN SIZE DISTRIBUTION

CLIENT City of Grand Junction

PROJECT NAME Materials Recycling Facility

PROJECT NUMBER 803.64

PROJECT LOCATION 365 32 Road, Grand Junction, Colorado

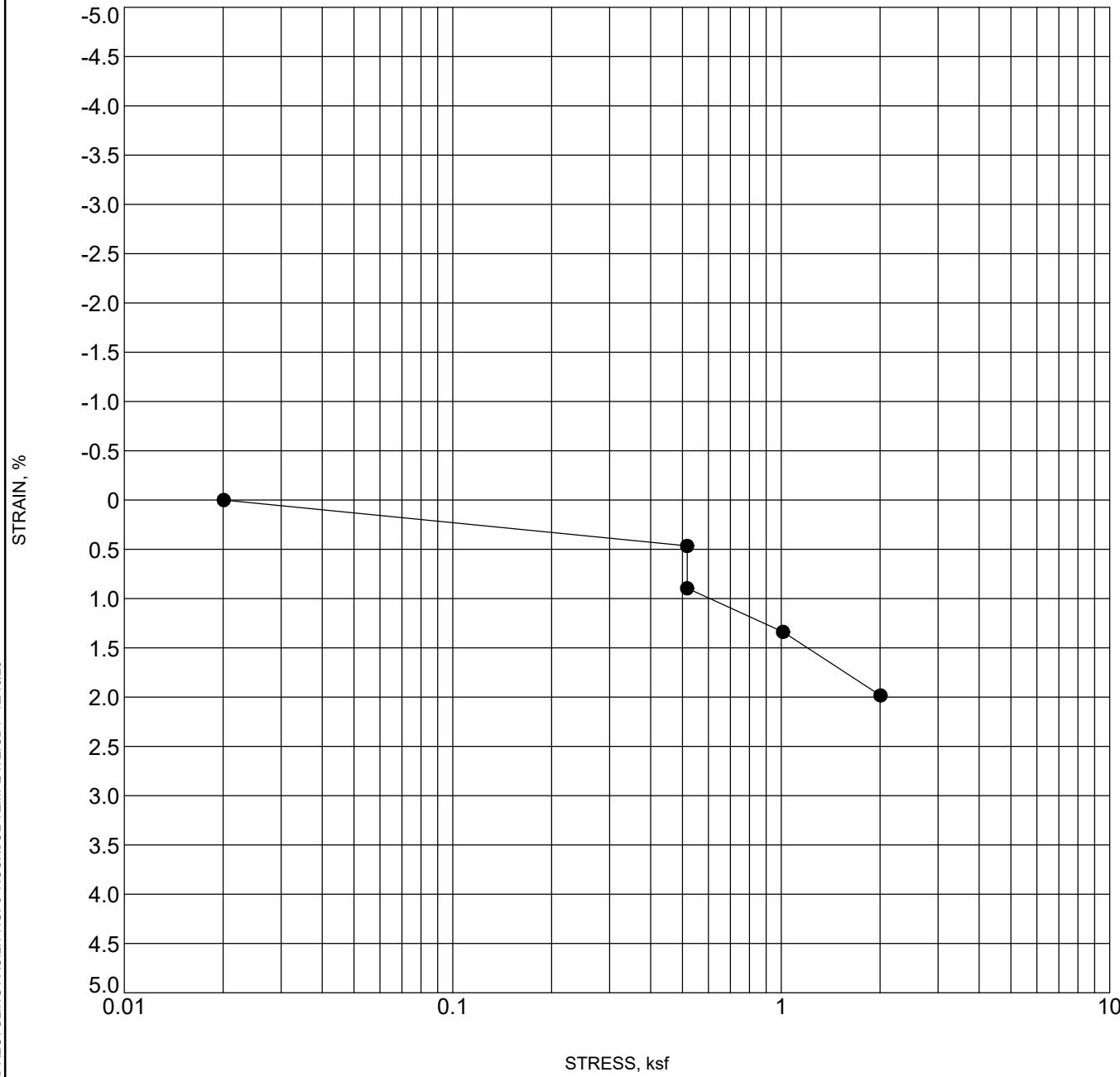


| COBBLES | GRAVEL |      | SAND   |        |      | SILT OR CLAY |  |  |
|---------|--------|------|--------|--------|------|--------------|--|--|
|         | coarse | fine | coarse | medium | fine |              |  |  |

| Specimen Identification |     |         | Classification                              |  |  |  |  |  | LL | PL | PI | Cc   | Cu    |
|-------------------------|-----|---------|---------------------------------------------|--|--|--|--|--|----|----|----|------|-------|
| ●                       | P-1 | 5.0     | SILTY SAND (SM) (A-2-4)                     |  |  |  |  |  | NP | NP | NP |      |       |
| ☒                       | P-1 | 9.0     | POORLY GRADED GRAVEL with SAND (GP) (A-1-a) |  |  |  |  |  | NP | NP | NP | 0.61 | 74.17 |
| ▲                       | P-2 | 0.2-4.0 | SILTY SAND with GRAVEL (SM) (A-1-b)         |  |  |  |  |  | 15 | 13 | 2  |      |       |
| ★                       | P-2 | 2.0     | GRAVELLY SAND                               |  |  |  |  |  |    |    |    |      |       |

| Specimen Identification |     |         | D100  | D60    | D30   | D10   | %Gravel | %Coarse Sand | %Fine Sand | %Silt | %Clay |
|-------------------------|-----|---------|-------|--------|-------|-------|---------|--------------|------------|-------|-------|
| ●                       | P-1 | 5.0     | 0.075 |        |       |       |         |              |            |       | 21.8  |
| ☒                       | P-1 | 9.0     | 37.5  | 17.383 | 1.582 | 0.234 | 67.4    | 17.0         | 12.7       |       | 2.9   |
| ▲                       | P-2 | 0.2-4.0 | 37.5  | 2.482  | 0.172 |       | 43.2    | 14.2         | 20.6       |       | 22.0  |
| ★                       | P-2 | 2.0     | 25    | 1.611  | 0.16  |       | 38.1    | 13.4         | 26.4       |       | 22.1  |




## **SWELL - CONSOLIDATION TEST**

**CLIENT** City of Grand Junction

**PROJECT NUMBER** 803.64

**PROJECT NAME** Materials Recycling Facility

**PROJECT LOCATION** 365 32 Road, Grand Junction, Colorado



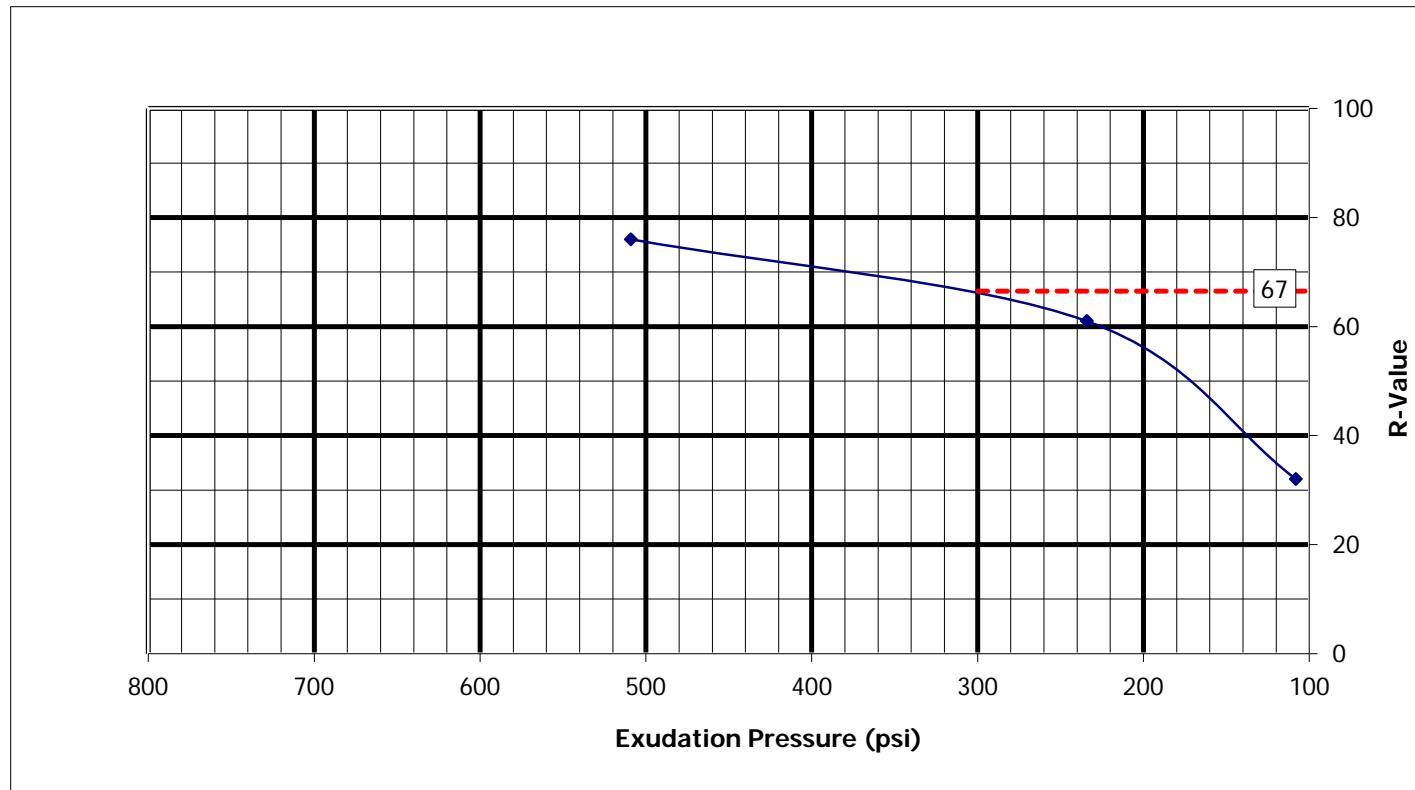
| Specimen Identification | Classification | Swell/Consol. (%) | $\gamma_d$ (pcf) | MC% |
|-------------------------|----------------|-------------------|------------------|-----|
| ● B-2                   | 14             | SAND              | -0.4             |     |
|                         |                |                   |                  |     |
|                         |                |                   |                  |     |
|                         |                |                   |                  |     |
|                         |                |                   |                  |     |
|                         |                |                   |                  |     |


**CLIENT** City of Grand Junction

**PROJECT NAME** Materials Recycling Facility

**PROJECT NUMBER** 803.64

**PROJECT LOCATION** 365 32 Road, Grand Junction, Colorado


SWELL - STANDARD 803.64 CITY OF GJ MATERIALS RECYCLING FACILITY.GPJ ROCKSOL TEMPLATE.GDT 12/10/2025



| Specimen Identification | Classification | Swell/Consol. (%) | $\gamma_d$ (pcf) | MC% |
|-------------------------|----------------|-------------------|------------------|-----|
| ● B-4                   | 9              | CLAYEY SAND       | -0.3             |     |
|                         |                |                   |                  |     |
|                         |                |                   |                  |     |
|                         |                |                   |                  |     |
|                         |                |                   |                  |     |
|                         |                |                   |                  |     |

**R-VALUE TEST GRAPH (AASHTO T190)**

|                    |                                                      |            |            |
|--------------------|------------------------------------------------------|------------|------------|
| Project number     | 25.022; Rocksol Consulting                           | Date       | 11/20/25   |
| Project name       | GJ Recycling Facilities (RockSol Project No. 803.64) | Technician | J. Holiman |
| Lab ID number      | 255313                                               | Reviewer   | G. Hoyos   |
| Sample location    | P-1 and P-2 at 0 to 4.0 feet - SB Washington         |            |            |
| Visual description | SAND, silty, with gravel, light brown                |            |            |



**R-Value @ Exudation Pressure 300 psi:** 67  
**Specification:**

CDOT Pavement Design Manual, 2011.

Eq. 2.1 & 2.2, page 2-3.

$$S_1 = [(R-5)/11.29] + 3$$

$$M_R = 10^{[(S_1 + 18.72)/6.24]}$$

$M_R$  = Resilient Modulus, psi

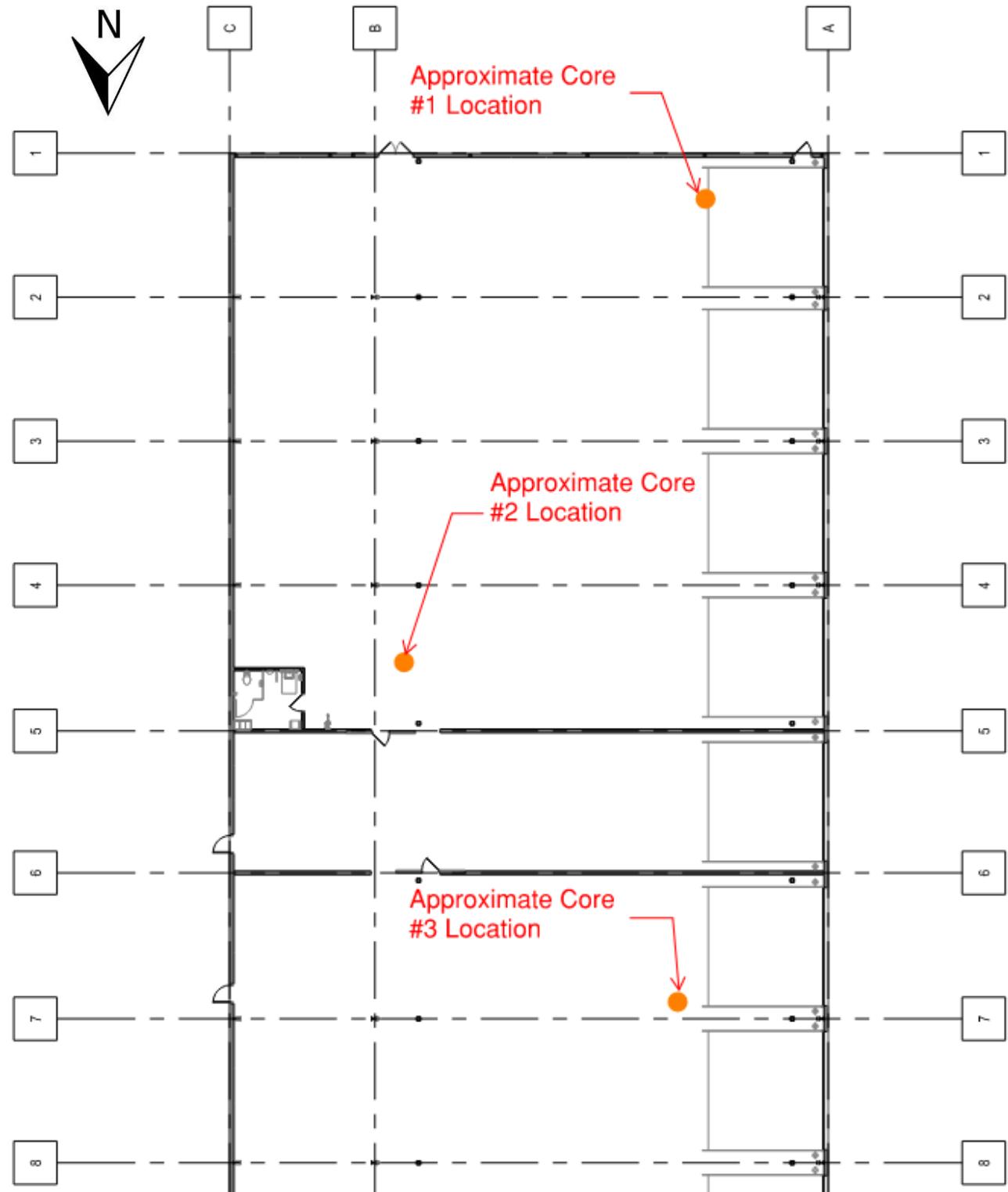
$S_1$  = the Soil Support Value

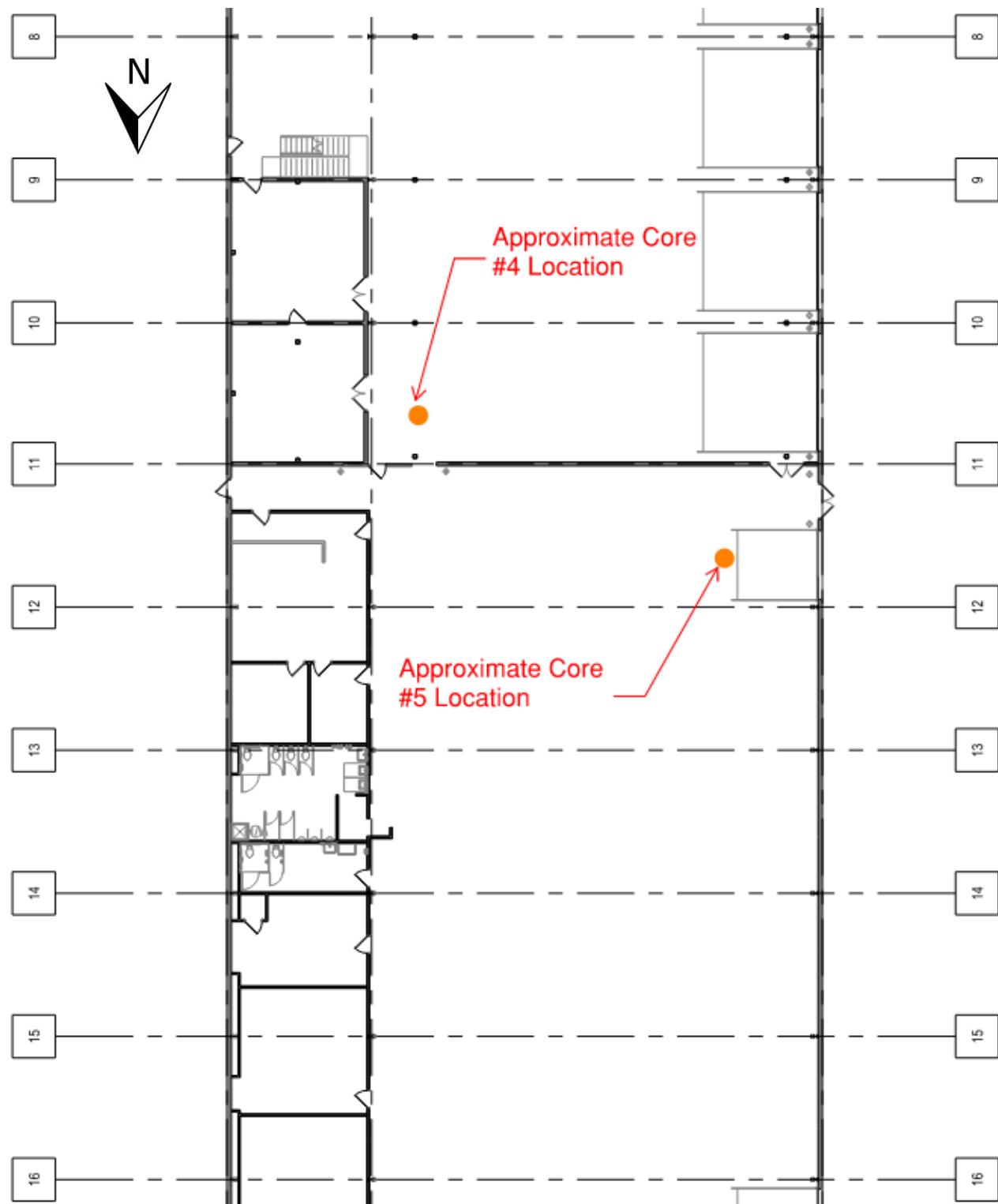
R = the R-Value obtained

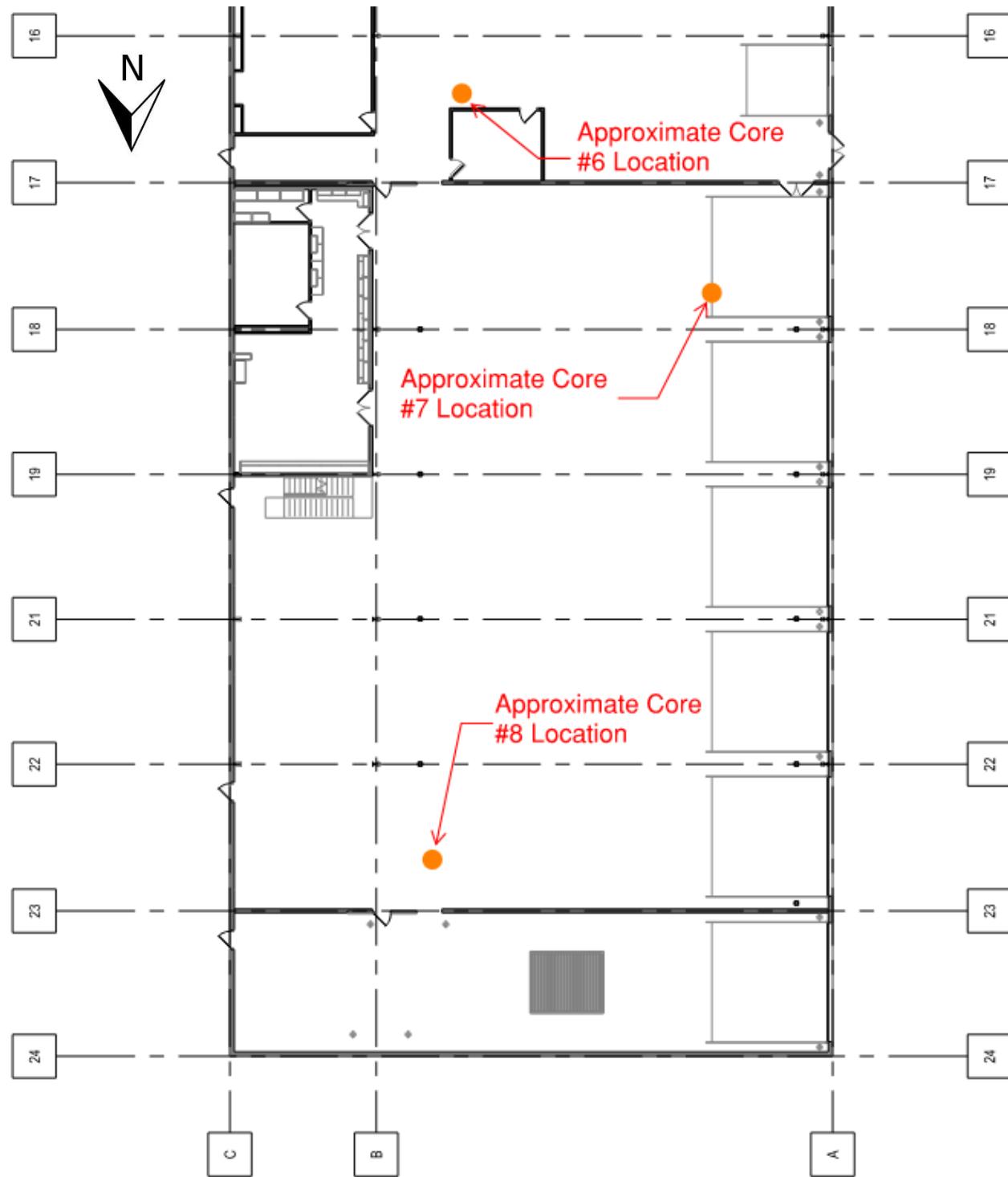
**Note:** The R-Value is measured; the  $M_R$  is an approximation from correlation formulas.

$$S_1 = 8.49$$

$$M_R = 22,953$$


| Test Specimen:           | 1     | 2     | 3     |
|--------------------------|-------|-------|-------|
| Moisture Content, %:     | 6.0   | 6.4   | 7.4   |
| Expansion Pressure, psi: | -0.15 | -0.33 | -0.49 |
| Dry Density, pcf:        | 140.7 | 139.7 | 139.0 |
| R-Value:                 | 76    | 61    | 32    |
| Exudation Pressure, psi: | 509   | 234   | 108   |


## **APPENDIX F**


### **CONCRETE SLAB CORE SUMMARY**

# Existing Floor Slab Core Summary

Core Locations relative to the building layout plan shown in Figure 1A are shown below. Photographs of the recovered cores are shown on the following pages.







| Existing Floor Slab Core Summary                                                                               |                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Core Photograph:</b><br>  | <b>Core ID:</b> 1<br><b>Date Cored:</b> 10/14/2025<br><b>Slab Thickness:</b> 7 inches<br><b>Core Diameter:</b> 4"<br><b>Description:</b> No reinforcing steel encountered.<br><b>Approximate Location:</b><br>West half of building, between gridlines 1 and 2.    |
| <b>Core Photograph:</b><br> | <b>Core ID:</b> 2<br><b>Date Cored:</b> 10/14/2025<br><b>Slab Thickness:</b> 6.75 inches<br><b>Core Diameter:</b> 4"<br><b>Description:</b> No reinforcing steel encountered.<br><b>Approximate Location:</b><br>East half of building, between gridlines 4 and 5. |

| Existing Floor Slab Core Summary                                                                               |                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Core Photograph:</b><br>  | <b>Core ID:</b> 3<br><b>Date Cored:</b> 10/14/2025<br><b>Slab Thickness:</b> 7.25 inches<br><b>Core Diameter:</b> 4"<br><b>Description:</b> No reinforcing steel encountered.<br><b>Approximate Location:</b><br>West half of building, between gridlines 6 and 7.   |
| <b>Core Photograph:</b><br> | <b>Core ID:</b> 4<br><b>Date Cored:</b> 10/14/2025<br><b>Slab Thickness:</b> 5.75 inches<br><b>Core Diameter:</b> 4"<br><b>Description:</b> No reinforcing steel encountered.<br><b>Approximate Location:</b><br>East half of building, between gridlines 10 and 11. |

| Existing Floor Slab Core Summary                                                                               |                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Core Photograph:</b><br>  | <b>Core ID:</b> 5<br><b>Date Cored:</b> 10/14/2025<br><b>Slab Thickness:</b> 6.0 inches<br><b>Core Diameter:</b> 4"<br><b>Description:</b> No reinforcing steel encountered.<br><b>Approximate Location:</b><br>West half of building, between gridlines 11 and 12.  |
| <b>Core Photograph:</b><br> | <b>Core ID:</b> 6<br><b>Date Cored:</b> 10/14/2025<br><b>Slab Thickness:</b> 5.25 inches<br><b>Core Diameter:</b> 4"<br><b>Description:</b> No reinforcing steel encountered.<br><b>Approximate Location:</b><br>East half of building, between gridlines 16 and 17. |

| Existing Floor Slab Core Summary                                                                               |                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Core Photograph:</b><br>  | <b>Core ID:</b> 7<br><b>Date Cored:</b> 10/14/2025<br><b>Slab Thickness:</b> 6.5 inches<br><b>Core Diameter:</b> 4"<br><b>Description:</b> No reinforcing steel encountered.<br><b>Approximate Location:</b><br>West half of building, between gridlines 17 and 18. |
| <b>Core Photograph:</b><br> | <b>Core ID:</b> 8<br><b>Date Cored:</b> 10/14/2025<br><b>Slab Thickness:</b> 6.0 inches<br><b>Core Diameter:</b> 4"<br><b>Description:</b> No reinforcing steel encountered.<br><b>Approximate Location:</b><br>East half of building, between gridlines 22 and 23. |



### ***City of Grand Junction Materials Recycling Facility Concrete Floor Slab Core Data***

| <b>Core #</b> | <b>Pre-Cut Length (in)</b> | <b>Post-Cut Length (in)</b> | <b>Diameter 1 &amp; 2 (in)</b> | <b>Area (in<sup>2</sup>)</b> | <b>L/D Correction Factor</b> | <b>Peak Load (lbs)</b> | <b>Compressive Strength (psi)</b> |
|---------------|----------------------------|-----------------------------|--------------------------------|------------------------------|------------------------------|------------------------|-----------------------------------|
| 1             | 7"                         | 6.75"                       | 3.71" x 3.72"                  | 10.87                        | 0.00                         | 63440                  | 5840                              |
| 2             | 6.75"                      | 6.25"                       | 3.72" x 3.72"                  | 10.87                        | 0.98                         | 62385                  | 5620                              |
| 3             | 7.25"                      | 6.75"                       | 3.71" x 3.71"                  | 10.81                        | 0.00                         | 74500                  | 6890                              |
| 4             | 5.75"                      | 5.25"                       | 3.71" x 3.72"                  | 10.87                        | 0.96                         | 110655                 | 9770                              |
| 5             | 6.00"                      | 5.50"                       | 3.72" x 3.71"                  | 10.87                        | 0.96                         | 63370                  | 5600                              |
| 6             | 5.25"                      | 4.50"                       | 3.72" x 3.72"                  | 10.87                        | 0.93                         | 75650                  | 6470                              |
| 7             | 6.5"                       | 5.50"                       | 3.71" x 3.71"                  | 10.81                        | 0.96                         | 74520                  | 6620                              |
| 8             | 6"                         | 5.50"                       | 3.72" x 3.72"                  | 10.87                        | 0.96                         | 63410                  | 5600                              |

## **APPENDIX G**

### **CDOT PIPE MATERIALS SELECTION GUIDE**

# **CDOT PIPE MATERIAL SELECTION GUIDE**

Revised April 30, 2015

## **Implementation**

The *CDOT Pipe Material Selection Policy* was initially developed by the Project Development Branch for approval by the Chief Engineer. However, this document is no longer required to be a separate policy document that requires the Chief Engineer's approval. Therefore, it will now be referred to as the *CDOT Pipe Material Selection Guide* and when the Drainage Design Manual is updated this guide will be incorporated as a design procedure in the Drainage Design Manual. Until such time it will continue to be "stored" on the Bulletins and Manuals webpage as a "stand alone" document ([https://www.codot.gov/business/designsupport/bulletins\\_manuals](https://www.codot.gov/business/designsupport/bulletins_manuals)).

These Procedures for Pipe Material Selection (as updated April 30, 2015) supersede and replace all previous procedures, guidelines, and policies regarding the selection of pipe materials used by CDOT.

These procedures also replace the CDOT Chief Engineer memo dated February 8, 1984, *Pipe to be Used in Storm Drains*.

# **CDOT PIPE MATERIAL SELECTION GUIDE**

Revised April 30, 2015

## **Introduction**

This guide will enable Project Managers (PMs) to select the allowable pipe material options for each installation on a specific project. The Contractor will choose the final pipe material from the list of options provided in the Contract and as specified in applicable sections of the CDOT *Standard Specifications for Road and Bridge Construction*. Any pipe that meets the corrosion and abrasion criteria in this guide and is installed per the plans and specifications is assumed to have a 50-year service life.

## **Background**

This policy/guide was originally developed to comply with the provisions of the Final Rule published in 23 CFR 635.411 (b) published in the Federal Register on November 15, 2006. On July 6, 2012 the Moving Ahead for Progress in the 21<sup>st</sup> Century Act (MAP-21) was signed into law, with the passage MAP-21 the federal requirement for this policy/guide was nullified. The Colorado Department of Transportation (CDOT) has determined the additional performance criteria outlined in the original policy (now guide) is beneficial to the state. Therefore this revised guide retains much of the original policy and is to be incorporated into all CDOT design projects. CDOT will follow its standard practices for the hydraulic and structural design of pipes. This guide replaces all previous policies regarding the selection of pipe material for Storm Drains, Cross Drains, and Side Drains.

## **Selection Considerations**

CDOT will evaluate the risk associated with the performance of the pipe materials. Risk will be considered to the extent that it is influenced by the pipe, other materials, or installation techniques as they are used in construction.

The CDOT Pipe Material Selection Guide identifies the specific engineering and performance criteria used to evaluate the acceptability of alternative pipe materials. CDOT will allow alternative pipe materials where appropriate. A record of the determination of abrasion and corrosion levels will be documented and maintained in the project design files.

The following exemptions are not intended to be covered by this guide.

- A. Subsurface Drains and Embankment Protector Type 3 (M-Standard 615).
- B. Pipe extensions of existing pipes or systems shall be completed using similar material and sizes. Exceptions to this may be made when conditions and engineering justifications merit otherwise.
- C. Local agencies and other organizations that will own and maintain the new pipe should be consulted for guidance on pipe material type selection. Only pipe material types that have been evaluated and approved for use by CDOT shall be used. In the event a local agency or organization will own and maintain the new pipe and the guidance provided differs from this guide, the guidance from the local agency or organization shall govern.

## **Definitions**

Cross Drain –Pipes or culverts that convey flows from one side of the road to the other, and are typically open on each end. Also known as a Cross Culvert.

Side Drain – A pipe or culvert which is typically parallel to the roadway and under a driveway or a road approach to the mainline roadway.

Storm Drain – A network of pipes that connects inlets, manholes, and other drainage features to an outfall.

# **CDOT PIPE MATERIAL SELECTION GUIDE**

Revised April 30, 2015

Subsurface Drain – A network of piping used to collect ground water, or relieve water pressure from a wall or structure, and transport it to a location where it will not harm the roadway features, or where it can be conveyed by another system, often a storm sewer. A common example is a French Drain.

Type III Embankment Protector – See M-Standard 615-1

Durability - A pipe or culverts ability to resist wear and tear or decay. Although structural condition is a very important element in the performance of pipes, durability problems are a common cause for replacement. Pipes are more likely to “wear away” than fail structurally. Durability is affected by two mechanisms: corrosion and abrasion. Each is discussed in the following sections.

Corrosion – Corrosion is the deterioration of material due to chemical or electrochemical reaction with the environment. Corrosion of pipe materials may occur in many different types of soils and waters. Corrosive types of soil and water may contain acids, alkalis, dissolved salts, organics, industrial wastes or chemicals, mine drainage, sanitary effluents, and dissolved or free gases. Pipe corrosion is generally related to water and the chemicals that have reacted to, become dissolved in, or been transported by the water.

Abrasion – Abrasion is the process of wearing down or grinding away the surface material of pipes, as water laden with sand, gravel, or stones flow through a pipe. The abrasive force increases with rising pipe velocity.

Alternative Materials – Alternative materials are the various pipe materials that will meet the project requirements. The alternative materials will be identified in the Contract, and the Contractor may select any one of them for use on the project.

**Selection Process/Responsibility** – All decisions regarding pipe material type will be based on best engineering practices and judgments. The PM is responsible for all aspects of the design of the project and for ensuring timely completion of tasks associated with project advertisement. The PM will schedule work associated with this procedure to ensure compliance with the project schedule. The PM will consider such factors as durability, environmental considerations, soil conditions, fill heights, need for water tight joints, pipe minimum and maximum slope (i.e. pipe velocity), hydraulic characteristics of pipe material inside surfaces, and other factors relevant to the project and or specific pipe location.

The PM will specify on the plans or in the special provisions when water tight joints are required. Siphons, irrigation systems, and storm drain systems require water tight joints.

In some cases the results of the material type selection process may produce alternative materials types in differing pipe diameters. In such cases the PM may specify the appropriate diameter for each material type or specify only the largest pipe diameter (produced by the selection process regardless of the material type) in the plans.

When a specific manning's “n” value is critical to the pipe's performance, the maximum/minimum value shall be shown on the plans. If the larger diameter will not meet the minimum cover requirements, or the material will not meet the Manning's “n” value range, then that material type shall be disqualified at those location(s). Any Material type disqualified at a location during design should be stated as such on the plans.

**Step I: Determine Application** – The PM will use the latest version of CDOT's *Drainage Design Manual* and CDOT's *Project Development Manual*. The pipe selection process begins when the PM determines the location of the new pipe. The PM will then determine and document the specific use of the pipe:

- Cross Drain
- Side Drain
- Storm Drain

**Step II: Determine Abrasion Level** – An estimate of the potential for abrasion is required to determine acceptable pipe types and whether there is a need for invert protection.

The PM with concurrence of the project hydraulics engineer will estimate and document the abrasive forces that will have an effect on the pipe material; and document the following items:

- Measure or estimate the velocity of the water based upon 2-year flow and less.
- Estimate the bed-loading as:
  - No bed load
  - Minor bed load – silt and sand
  - Moderate bed load – silt, sand, and gravel
  - Heavy bed load – silt, sand, gravel, and rock
- Determine whether the abrasion level is 1, 2, 3, or 4 as defined below.
  - Abrasion Level 1 – This level applies where the conditions are nonabrasive. Nonabrasive conditions exist in areas of no bed load and very low velocities. This is the level assumed for the soil side of drainage pipes. This is also the level assumed for the inverts of cross drains and side drains installed in typically dry drainages.
  - Abrasion Level 2 – This level applies where low abrasive conditions exist. Low abrasive conditions exist in areas of minor bed loads of sand and velocities of 5 fps or less.
  - Abrasion Level 3 – This level applies where moderately abrasive conditions exist. Moderately abrasive conditions exist in areas of moderate bed loads of sand and gravel and velocities between 5 fps and 15 fps.
  - Abrasion Level 4 – This level applies where severely abrasive conditions exist. Severely abrasive conditions exist in areas of heavy bed loads of sand, gravel, and rock and velocities exceeding 15 fps.

Abrasion levels are intended to help the PM consider the impacts of bed-load wear on the invert of pipe materials. The PM will determine the expected level of abrasion through visual examination and documentation of the size of the materials in the stream bed and the average slope of the channel. In some case sampling of the streambed material may be required to assist the PM in determining the level of abrasion.

Where existing pipes are in place in the same drainage, the conditions of their inverts should be documented and used as guidance. The expected stream velocity should be based upon 2-year flow and less.

**Step III: Determine Corrosion Level** – The station of each proposed pipe will be determined by the PM. The PM will schedule the soil and water testing to ensure compliance with the project advertisement date. Resistivity, PH, and moisture levels will be determined in the field by the Region as these tests are most efficiently and effectively conducted at the time of sampling. The CDOT Materials and Geotechnical group is available to perform sulfate and chloride testing, however, the PM will schedule this work appropriately to avoid project delays. The Region should develop their ability to perform these simple tests in the Region to expedite project design. The resulting sample testing information will be used in flow charts (Figures 1 and 2) to select appropriate material.

# **CDOT PIPE MATERIAL SELECTION GUIDE**

Revised April 30, 2015

The PM will document the following properties of the soil and water using the designated test procedure:

- Sulfate Levels - **CPL 2103**
- Chloride Levels - **CPL 2104**
- Resistivity - **ASTM G57**
- pH - **ASTM G51**
- Moisture Levels

This information will be obtained at all pipe locations supplied by the PM and documented in the project records by the PM. If the alluvium of the area is sufficiently homogeneous, a reduced sampling schedule will be acceptable. This determination should only be made with input from the Region Materials Engineers (or Staff Materials) and the Region Hydraulics Engineer.

**Table 1**  
**Guidelines for selection of corrosion resistance levels**

| CR Level | SOIL                          |                  |            | WATER                         |                  |            |
|----------|-------------------------------|------------------|------------|-------------------------------|------------------|------------|
|          | Sulfate<br>(SO <sub>4</sub> ) | Chloride<br>(Cl) | pH         | Sulfate<br>(SO <sub>4</sub> ) | Chloride<br>(Cl) | pH         |
|          | % max                         | % max            |            | ppm (max)                     | ppm (max)        |            |
| *CR 0    | 0.05                          | 0.05             | 6.0-8.5    | 50                            | 50               | 6.0-8.5    |
| CR 1     | 0.10                          | 0.10             | 6.0-8.5    | 150                           | 150              | 6.0-8.5    |
| CR 2     | 0.20                          | 0.20             | 6.0-8.5    | 1,500                         | 1,500            | 6.0-8.5    |
| CR 3     | 0.50                          | 0.50             | 6.0-8.5    | 5,000                         | 5,000            | 6.0-8.5    |
| CR 4     | 1.00                          | 1.00             | 5.0-9.0    | 7,500                         | 7,500            | 5.0-9.0    |
| CR 5     | 2.00                          | 2.00             | 5.0-9.0    | 10,000                        | 10,000           | 5.0-9.0    |
| CR 6     | >2.00                         | >2.00            | <5** or >9 | >10,000                       | >10,000          | <5** or >9 |

\*No special corrosion protection recommended when values are within these limits. \*\*Concrete pipe used when the pH of either the soil or water is less than 5 shall be coated in accordance with subsection 706.07. When needed, specify the coating in a special provision or plan note.

**Table 2**  
**Minimum Pipe Thickness for Metal Pipes Based on the Resistivity and pH of the Adjacent Soil**

| SOIL SIDE                 |  | pH       | MINIMUM REQUIRED GAUGE THICKNESS FOR METAL PIPE MATERIAL |
|---------------------------|--|----------|----------------------------------------------------------|
| Resistivity, R (Ohm – cm) |  |          |                                                          |
| ≥1,500                    |  | 5.0-9.0  | 0.052 in (18 Gauge) Aluminized Type 2                    |
| ≥250                      |  | 3.0-12.0 | 0.052 in (18 Gauge) Polymer Coated                       |

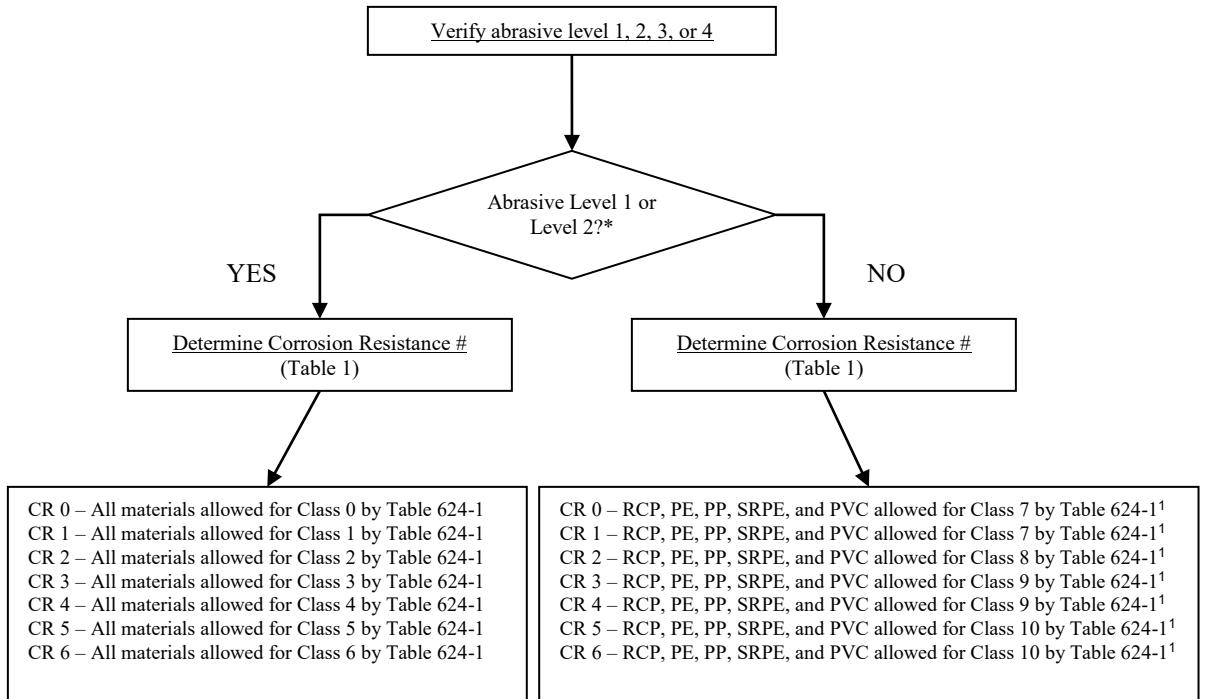
# **CDOT PIPE MATERIAL SELECTION GUIDE**

Revised April 30, 2015

For Storm Drains use Standard Specification 603, and write a Project Special Provision stating the required corrosion classification as determined by this guide. (i.e., sulfate class). Use appropriate pay items in these cases.

**Step IV: Selection of Pipe Material Type** – Use the flowcharts in this document to identify acceptable pipe material types. Use Figure 1 to determine if metal pipe is an allowable material type, and then use, Table 2 to determine whether there are additional requirements for metal pipes.

**Step V: Verify Fill Height** – Check Fill Height tables in the Standard Plans. Determine if Project Special Provisions are required and/or if any other Standard Special Provisions are applicable. Use the latest versions of these specifications, found at:  
<http://www.coloradodot.info/business/designsupport/construction-specifications/2011-Specs>


**Step VI: Address Exceptions to CDOT Pipe Materials Selection Guide** – When sound engineering judgment justifies an exception to this guide, the PM shall document this in a justification letter. All justification letters shall be approved by the Region Program Engineer (PE III) or their designee prior to final design.

**Step VII: Documentation** – All design decisions regarding pipe material type selection must be documented and a letter placed in the project file. Copies of all selection letters are to be sent to the Region Program Engineer or their designee prior to final design decisions being made, for guidance and to verify consistency.

# CDOT PIPE MATERIAL SELECTION GUIDE

Revised April 30, 2015

**Figure 1**  
**CROSS – DRAINS and SIDE – DRAINS**

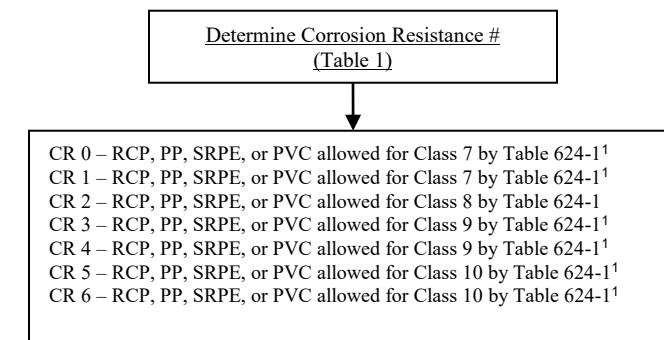


\*Aluminum alloy pipe not allowed in environments with an Abrasion Level higher than 1.

**1 When concrete pipe is selected the sulfate content dictates the CR level.** Cementitious requirements for Sulfate Protection Classes are listed in 601.04. A higher level of protection may be used. Concrete shall have a minimum compressive strength of 4,500 psi and maximum water to cementitious ratio (w/cm) listed in 601.04. Concrete may be used when the pH and chlorides exceed the levels listed in Table 1

For Metal pipes, see “Minimum Pipe Thickness for Metal Pipes Based on the Resistivity and pH Of the Adjacent Soil” (Table 2) in this document.

When extending an existing pipe, the same size and type of material must be specified. If conditions are Abrasive level 1 or 2 and CR 0, specify material type from Section 603 pay items.


# **CDOT PIPE MATERIAL SELECTION GUIDE**

Revised April 30, 2015

## **Figure 2**

### **STORM-DRAINS**

CDOT will only allow the use of reinforced concrete pipe (RCP), Polypropylene (PP), Steel Reinforced Polyethylene (SRPE), or Polyvinyl Chloride Pipe (PVC) in accordance with Standard Plans M-603-2 and M-603-5 for storm drains



<sup>1</sup> – If abrasion level is 3 or 4, concrete shall have a minimum compressive strength of 4,500 psi. Cementitious requirements for Sulfate Protection Classes are listed in 601.04. A higher level of protection may be used.

When extending an existing pipe, the same size and type of material must be specified. If conditions are Abrasive level 1 or 2 and CR 0, specify material type from Section 603 pay items.

### **TRIAL INSTALLATIONS & EVALUATION PROCESS FOR NEW PIPE MATERIAL**

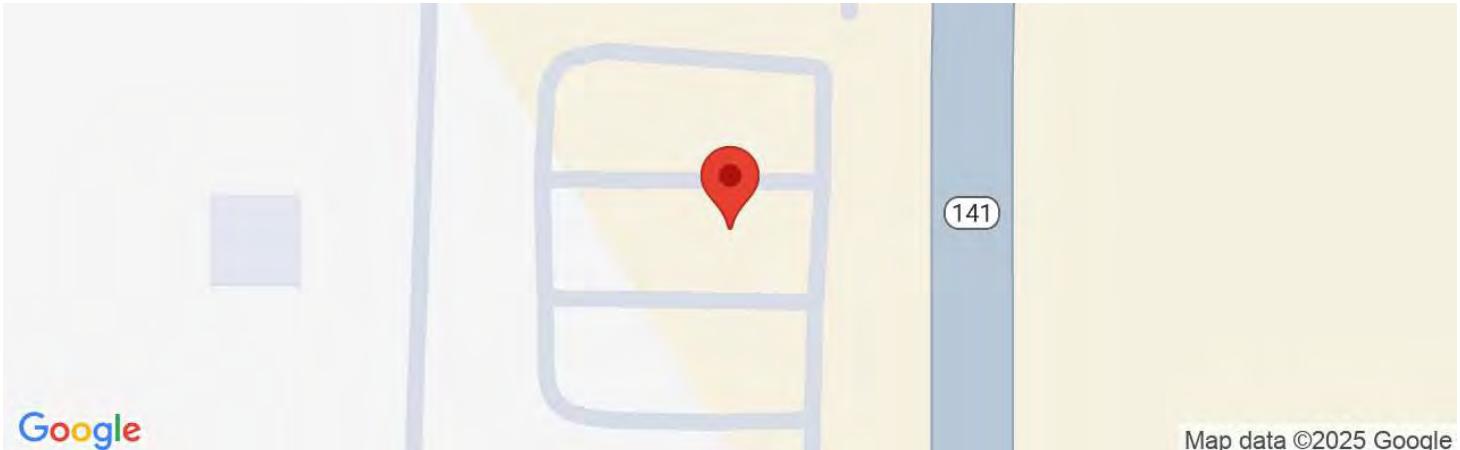
At any time, Manufacturers may request in writing to have materials not approved herein evaluated for a specific application. Requests for trial installations shall follow the requirements of P.D. 1401.1. Contact information for that procedure is given below:

Product Evaluation Coordinator  
Colorado Department of Transportation  
Materials and Geotechnical Branch  
4670 Holly Street, Unit A  
Denver, CO 80216  
303-398-6500

- Manufacturers will provide all of the materials, equipment, and labor required for the pipe material to be evaluated at no cost to CDOT.
- The pipe material to be evaluated must meet applicable AASHTO and ASTM design and material standards.
- Manufacturers will be responsible for all coordination with the Contractor, and any additional cost incurred by the Contractor as a result of the trial installation.
- CDOT will determine a suitable location for the trial installation.
- During installation, the manufacturer shall have a representative at the installation site. The manufacturer will provide documentation to CDOT that the pipe material was designed and installed per all current and applicable AASHTO and CDOT design and installation standards.
- Trial installations shall perform satisfactorily for at least one year before conclusions regarding product performance are made.

# **CDOT PIPE MATERIAL SELECTION GUIDE**

Revised April 30, 2015


- During the one year evaluation period, at a time chosen by CDOT, the manufacturer shall provide laser video inspection services on the trial installation utilizing an inspection contractor approved by CDOT.
- The results of the laser video inspection shall be used to evaluate trial installations. The results shall demonstrate compliance with CDOT and AASHTO deflection, joint separation, buckling, tearing, sagging, and cracking standards.
- Monitoring may include research of the trial material in use in other states.
- If further evaluation is required beyond one year, the supplier will be notified of the justification for this evaluation extension.
- An independent evaluation performed by a local agency or other organization may be substituted for this trial installation and evaluation process if all of the following are true.
  - The local agency or other organization owns and maintains the material being evaluated.
  - A representative with the local agency or organization can be contacted to verify the information supplied.
  - The installation specifications are available for CDOT to review.
  - A trial installation was performed in Colorado on site applications similar to CDOT projects.
  - A laser video inspection was performed (or can be performed) a minimum of 1 year after installation that produced satisfactory results.
- Upon successful completion of the monitoring period, CDOT's Drainage Advisory Committee will review the performance and determine the acceptability of the material for future inclusion into the CDOT Pipe Material Selection Guide.
- If changes to this guide, including the introduction of new materials or drainage products, are requested, they will be evaluated through the following process:
  - The Drainage Advisory Committee will evaluate documentation concerning changes to the guide.
  - Documentation supporting the proposed change shall be submitted by the supplier to the Product Evaluation Coordinator (PEC) at the address above.
  - The PEC will compile all submitted documentation and submit it to the chair and secretary of the Drainage Advisory Committee.
  - The Drainage Advisory Committee will determine the future acceptability of the material for inclusion into the CDOT Pipe Material Selection Guide. The Drainage Advisory Committee will forward recommendations to the Chief Engineer for signature.

## **APPENDIX H**

### **SEISMIC COEFFICIENTS OUTPUT SHEET**



Latitude, Longitude: 39.06150858, -108.46005571



|                                |                         |
|--------------------------------|-------------------------|
| Date                           | 11/24/2025, 10:59:36 AM |
| Design Code Reference Document | ASCE7-22                |
| Risk Category                  | II                      |
| Site Class                     | D                       |

| Type     | Value | Description (Data)                                                                                                                                                                                          |
|----------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $S_S$    | 0.22  | The $MCE_R$ spectral response acceleration at 0.2 seconds for Site Class BC, in units of g.                                                                                                                 |
| $S_1$    | 0.048 | The $MCE_R$ spectral response acceleration at 1 second for Site Class BC, in units of g.                                                                                                                    |
| $S_{MS}$ | 0.27  | $S_{MS} = 1.5 \times S_{DS}$ , the Risk-Targeted Maximum Considered Earthquake ( $MCE_R$ ) spectral response acceleration for short periods (of the two-period spectrum) and the user-specified Site Class. |
| $S_{M1}$ | 0.11  | $S_{M1} = 1.5 \times S_{D1}$ , the $MCE_R$ spectral response acceleration for 1 second (of the two-period spectrum) and the user-specified Site Class.                                                      |
| $S_{DS}$ | 0.18  | The design spectral response acceleration for short periods (of the two-period spectrum) and the user-specified Site Class, in units of g.                                                                  |
| $S_{D1}$ | 0.073 | The design spectral response acceleration for 1 second (of the two-period spectrum) and the user-specified Site Class, in units of g                                                                        |

| Type    | Value  | Description (Data Contd.)                                                                                                                        |
|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| SDC     | B      | Seismic design category                                                                                                                          |
| $PGA_M$ | 0.13   | $PGA_M$ , the Geometric-Mean Maximum Considered Earthquake ( $MCE_G$ ) peak ground acceleration for the user-specified Site Class, in units of g |
| $T_S$   | 0.402  | $T_S = S_{D1}/S_{DS}$ , in seconds, for construction of the two-period design spectrum                                                           |
| $T_0$   | 0.0804 | $T_0 = 0.2 \times T_S$ , in seconds, for construction of the two-period design response spectrum                                                 |
| $T_L$   | 4      | $T_L$ , the long-period transition period, in seconds, for construction of the two-period design spectrum                                        |

| Type                         | Value           | Description (Underlying Data and Metadata)                                                                                                                                                |
|------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PGA <sub>uh</sub>            | 0.13            | Probabilistic uniform-hazard (2%-in-50-years), geometric-mean peak ground acceleration, in units of g.                                                                                    |
| PGA <sub>84th</sub>          |                 | Deterministic 84th-percentile, geometric-mean peak ground acceleration (without deterministic lower limit), in units of g.                                                                |
| V <sub>S30</sub>             | 260             | The shear-wave velocity used for the user-specified Site Class, in units of m/s                                                                                                           |
| Spatial Interpolation Method | linearloglinear | Identifier for spatial interpolation method used to obtain values for location of interest from underlying gridded values: "linearloglinear" for bilinear or natural logarithm of values. |
| PGA <sub>dFloor</sub>        | 0.53            | Deterministic lower limit peak ground acceleration (PGA <sub>G</sub> ) for the user-specified Site Class, in units of g.                                                                  |
| riskTargetedSpectrum         |                 | Probabilistic risk-targeted, maximum direction response spectrum (for 1%-in-50-years collapse risk)                                                                                       |
| eightyFourthSpectrum         |                 | Deterministic 84 <sup>th</sup> -percentile, maximum-direction response spectrum (without deterministic lower limit)                                                                       |

[Click to copy](#)

Multi Period

| Period T(s) | Design Spectrum Ordinates (g) | MCE <sub>R</sub> Spectrum Ordinates (g) |
|-------------|-------------------------------|-----------------------------------------|
| 0           | 0.095                         | 0.14                                    |
| 0.01        | 0.1                           | 0.16                                    |
| 0.02        | 0.15                          | 0.22                                    |
| 0.03        | 0.17                          | 0.26                                    |
| 0.05        | 0.22                          | 0.33                                    |
| 0.075       | 0.24                          | 0.35                                    |
| 0.1         | 0.24                          | 0.36                                    |
| 0.15        | 0.23                          | 0.34                                    |
| 0.2         | 0.2                           | 0.3                                     |
| 0.25        | 0.18                          | 0.27                                    |
| 0.3         | 0.16                          | 0.24                                    |
| 0.4         | 0.14                          | 0.21                                    |
| 0.5         | 0.12                          | 0.19                                    |
| 0.75        | 0.093                         | 0.14                                    |
| 1           | 0.073                         | 0.11                                    |
| 1.5         | 0.048                         | 0.071                                   |
| 2           | 0.033                         | 0.05                                    |
| 3           | 0.02                          | 0.03                                    |
| 4           | 0.014                         | 0.02                                    |
| 5           | 0.0095                        | 0.014                                   |
| 7.5         | 0.0052                        | 0.0079                                  |
| 10          | 0.0034                        | 0.0051                                  |

[Click to copy](#)

Two Period

| Period T(s) | Design Spectrum Ordinates (g) | MCE <sub>R</sub> Spectrum Ordinates (g) |
|-------------|-------------------------------|-----------------------------------------|
| 0           | 0.073                         | 0.11                                    |
| 0.025       | 0.11                          | 0.16                                    |
| 0.05        | 0.14                          | 0.21                                    |
| 0.08        | 0.18                          | 0.27                                    |
| 0.1         | 0.18                          | 0.27                                    |
| 0.15        | 0.18                          | 0.27                                    |
| 0.2         | 0.18                          | 0.27                                    |
| 0.25        | 0.18                          | 0.27                                    |
| 0.3         | 0.18                          | 0.27                                    |
| 0.35        | 0.18                          | 0.27                                    |
| 0.4         | 0.18                          | 0.27                                    |
| 0.4         | 0.18                          | 0.27                                    |
| 0.45        | 0.16                          | 0.24                                    |
| 0.5         | 0.15                          | 0.22                                    |
| 0.55        | 0.13                          | 0.2                                     |
| 0.6         | 0.12                          | 0.18                                    |
| 0.65        | 0.11                          | 0.17                                    |
| 0.7         | 0.1                           | 0.16                                    |
| 0.75        | 0.098                         | 0.15                                    |
| 0.8         | 0.092                         | 0.14                                    |
| 0.85        | 0.086                         | 0.13                                    |
| 0.9         | 0.081                         | 0.12                                    |
| 0.95        | 0.077                         | 0.12                                    |

| Period T(s) | Design Spectrum Ordinates (g) | MCE <sub>R</sub> Spectrum Ordinates (g) |
|-------------|-------------------------------|-----------------------------------------|
| 1           | 0.073                         | 0.11                                    |
| 1.05        | 0.07                          | 0.1                                     |
| 1.1         | 0.067                         | 0.1                                     |
| 1.15        | 0.064                         | 0.096                                   |
| 1.2         | 0.061                         | 0.092                                   |
| 1.25        | 0.059                         | 0.088                                   |
| 1.3         | 0.056                         | 0.085                                   |
| 1.35        | 0.054                         | 0.081                                   |
| 1.4         | 0.052                         | 0.079                                   |
| 1.45        | 0.051                         | 0.076                                   |
| 1.5         | 0.049                         | 0.073                                   |
| 1.55        | 0.047                         | 0.071                                   |
| 1.6         | 0.046                         | 0.069                                   |
| 1.65        | 0.044                         | 0.067                                   |
| 1.7         | 0.043                         | 0.065                                   |
| 1.75        | 0.042                         | 0.063                                   |
| 1.8         | 0.041                         | 0.061                                   |
| 1.85        | 0.04                          | 0.059                                   |
| 1.9         | 0.039                         | 0.058                                   |
| 1.95        | 0.038                         | 0.056                                   |
| 2           | 0.037                         | 0.055                                   |
| 2.05        | 0.036                         | 0.054                                   |
| 2.1         | 0.035                         | 0.052                                   |
| 2.15        | 0.034                         | 0.051                                   |
| 2.2         | 0.033                         | 0.05                                    |
| 2.25        | 0.033                         | 0.049                                   |
| 2.3         | 0.032                         | 0.048                                   |
| 2.35        | 0.031                         | 0.047                                   |
| 2.4         | 0.031                         | 0.046                                   |
| 2.45        | 0.03                          | 0.045                                   |
| 2.5         | 0.029                         | 0.044                                   |
| 2.55        | 0.029                         | 0.043                                   |
| 2.6         | 0.028                         | 0.042                                   |
| 2.65        | 0.028                         | 0.042                                   |
| 2.7         | 0.027                         | 0.041                                   |
| 2.75        | 0.027                         | 0.04                                    |
| 2.8         | 0.026                         | 0.039                                   |
| 2.85        | 0.026                         | 0.039                                   |
| 2.9         | 0.025                         | 0.038                                   |
| 2.95        | 0.025                         | 0.037                                   |
| 3           | 0.024                         | 0.037                                   |
| 3.05        | 0.024                         | 0.036                                   |
| 3.1         | 0.024                         | 0.035                                   |
| 3.15        | 0.023                         | 0.035                                   |
| 3.2         | 0.023                         | 0.034                                   |
| 3.25        | 0.023                         | 0.034                                   |
| 3.3         | 0.022                         | 0.033                                   |
| 3.35        | 0.022                         | 0.033                                   |
| 3.4         | 0.022                         | 0.032                                   |
| 3.45        | 0.021                         | 0.032                                   |

| Period T(s) | Design Spectrum Ordinates (g) | MCE <sub>R</sub> Spectrum Ordinates (g) |
|-------------|-------------------------------|-----------------------------------------|
| 3.5         | 0.021                         | 0.031                                   |
| 3.55        | 0.021                         | 0.031                                   |
| 3.6         | 0.02                          | 0.031                                   |
| 3.65        | 0.02                          | 0.03                                    |
| 3.7         | 0.02                          | 0.03                                    |
| 3.75        | 0.02                          | 0.029                                   |
| 3.8         | 0.019                         | 0.029                                   |
| 3.85        | 0.019                         | 0.029                                   |
| 3.9         | 0.019                         | 0.028                                   |
| 3.95        | 0.019                         | 0.028                                   |
| 4           | 0.018                         | 0.028                                   |
| 4.05        | 0.018                         | 0.027                                   |
| 4.1         | 0.017                         | 0.026                                   |
| 4.15        | 0.017                         | 0.026                                   |
| 4.2         | 0.017                         | 0.025                                   |
| 4.25        | 0.016                         | 0.024                                   |
| 4.3         | 0.016                         | 0.024                                   |
| 4.35        | 0.016                         | 0.023                                   |
| 4.4         | 0.015                         | 0.023                                   |
| 4.45        | 0.015                         | 0.022                                   |
| 4.5         | 0.014                         | 0.022                                   |
| 4.55        | 0.014                         | 0.021                                   |
| 4.6         | 0.014                         | 0.021                                   |
| 4.65        | 0.014                         | 0.02                                    |
| 4.7         | 0.013                         | 0.02                                    |
| 4.75        | 0.013                         | 0.02                                    |
| 4.8         | 0.013                         | 0.019                                   |
| 4.85        | 0.012                         | 0.019                                   |
| 4.9         | 0.012                         | 0.018                                   |
| 4.95        | 0.012                         | 0.018                                   |
| 5           | 0.012                         | 0.018                                   |

[Click to copy](#)

Probabilistic & Deterministic

| Period T(s) | Risk Targeted Spectrum Ordinates (g) | 84 <sup>th</sup> Spectrum Ordinates(g) |
|-------------|--------------------------------------|----------------------------------------|
| 0           | 0.14                                 |                                        |
| 0.01        | 0.16                                 |                                        |
| 0.02        | 0.22                                 |                                        |
| 0.03        | 0.26                                 |                                        |
| 0.05        | 0.33                                 |                                        |
| 0.075       | 0.35                                 |                                        |
| 0.1         | 0.36                                 |                                        |
| 0.15        | 0.34                                 |                                        |
| 0.2         | 0.3                                  |                                        |
| 0.25        | 0.27                                 |                                        |
| 0.3         | 0.24                                 |                                        |
| 0.4         | 0.21                                 |                                        |
| 0.5         | 0.19                                 |                                        |
| 0.75        | 0.14                                 |                                        |
| 1           | 0.11                                 |                                        |
| 1.5         | 0.071                                |                                        |
| 2           | 0.05                                 |                                        |

| Period T(s) | Risk Targeted Spectrum Ordinates (g) | 84 <sup>th</sup> Spectrum Ordinates(g) |
|-------------|--------------------------------------|----------------------------------------|
| 3           | 0.03                                 |                                        |
| 4           | 0.02                                 |                                        |
| 5           | 0.014                                |                                        |
| 7.5         | 0.0079                               |                                        |
| 10          | 0.0051                               |                                        |

#### DISCLAIMER

While the information presented on this website is believed to be correct, SEAOC /OSHPD and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.

## **APPENDIX I**

### **PAVEMENT M-E DESIGN FLEXIBLE PAVEMENT OUTPUT SHEETS**

## Design Inputs

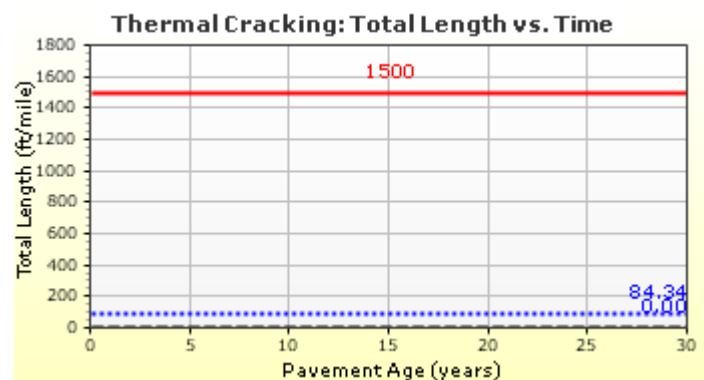
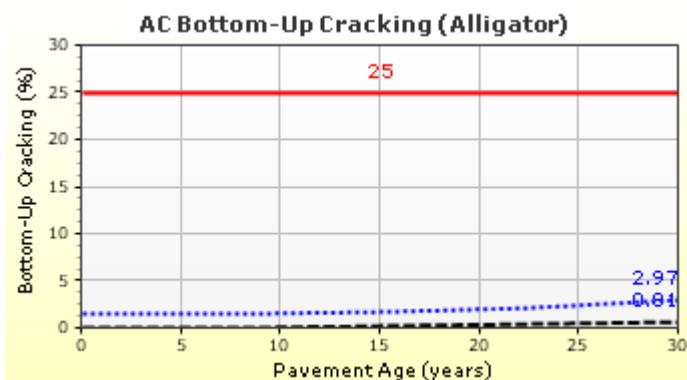
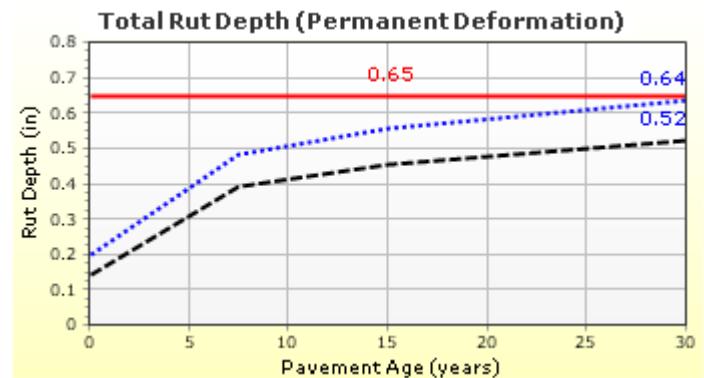
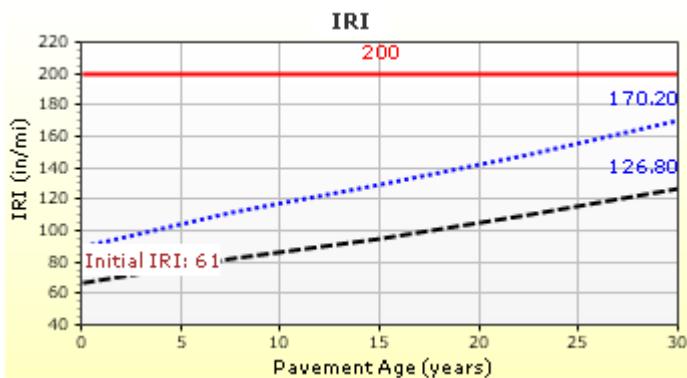
|              |          |                        |                 |                   |                  |
|--------------|----------|------------------------|-----------------|-------------------|------------------|
| Design Life: | 30 years | Base construction:     | May, 2027       | Climate Data      | 39.134, -108.538 |
| Design Type: | FLEXIBLE | Pavement construction: | June, 2027      | Sources (Lat/Lon) |                  |
|              |          | Traffic opening:       | September, 2027 |                   |                  |

### Design Structure

| Layer type    | Material Type               | Thickness (in) |
|---------------|-----------------------------|----------------|
| Flexible      | R3 Level 1 SX(100) PG 64-28 | 2.0            |
| Flexible      | R2 Level 1 SX(75) PG 64-22  | 2.0            |
| NonStabilized | Crushed gravel              | 6.0            |
| Subgrade      | A-1-b                       | 6.0            |
| Subgrade      | A-1-b                       | Semi-infinite  |

| Volumetric at Construction:  |      |
|------------------------------|------|
| Effective binder content (%) | 10.7 |
| Air voids (%)                | 5.7  |

### Traffic

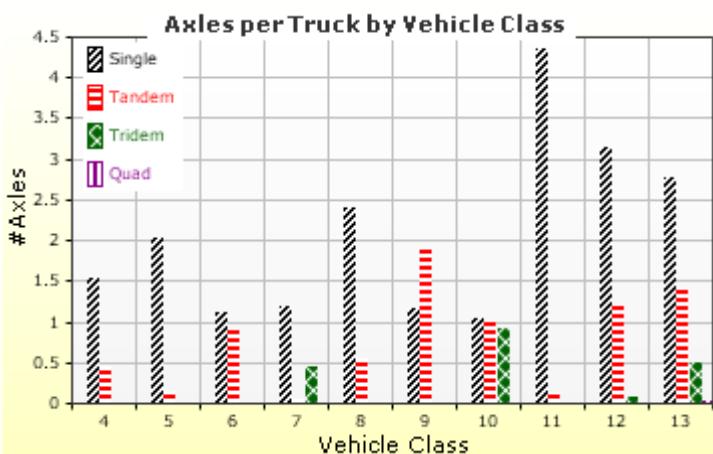
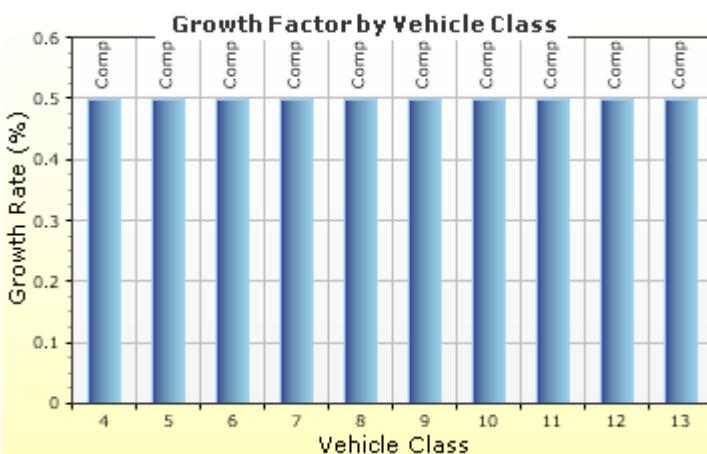
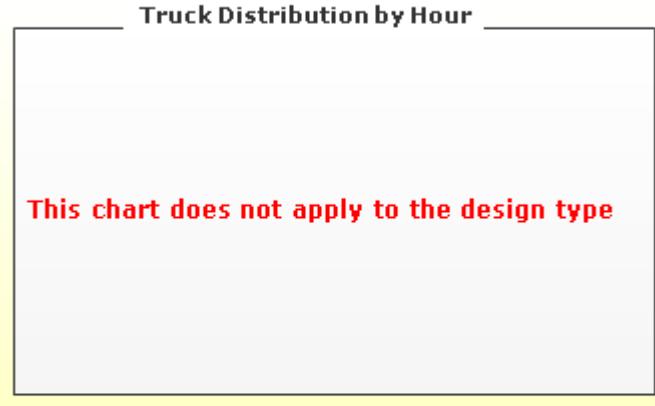
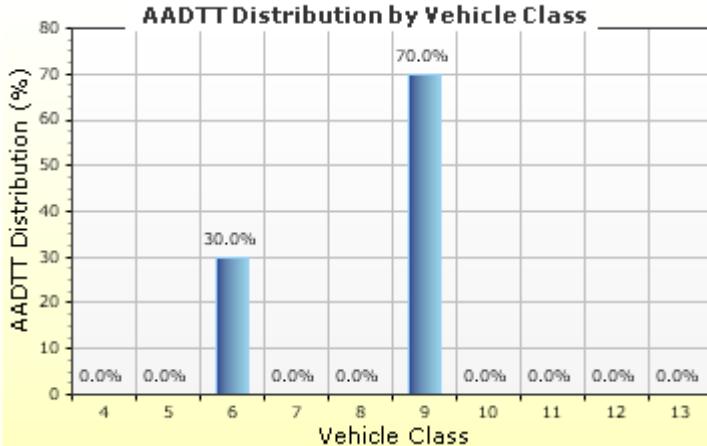




| Age (year)      | Heavy Trucks (cumulative) |
|-----------------|---------------------------|
| 2027 (initial)  | 40                        |
| 2042 (15 years) | 226,989                   |
| 2057 (30 years) | 471,611                   |

## Design Outputs

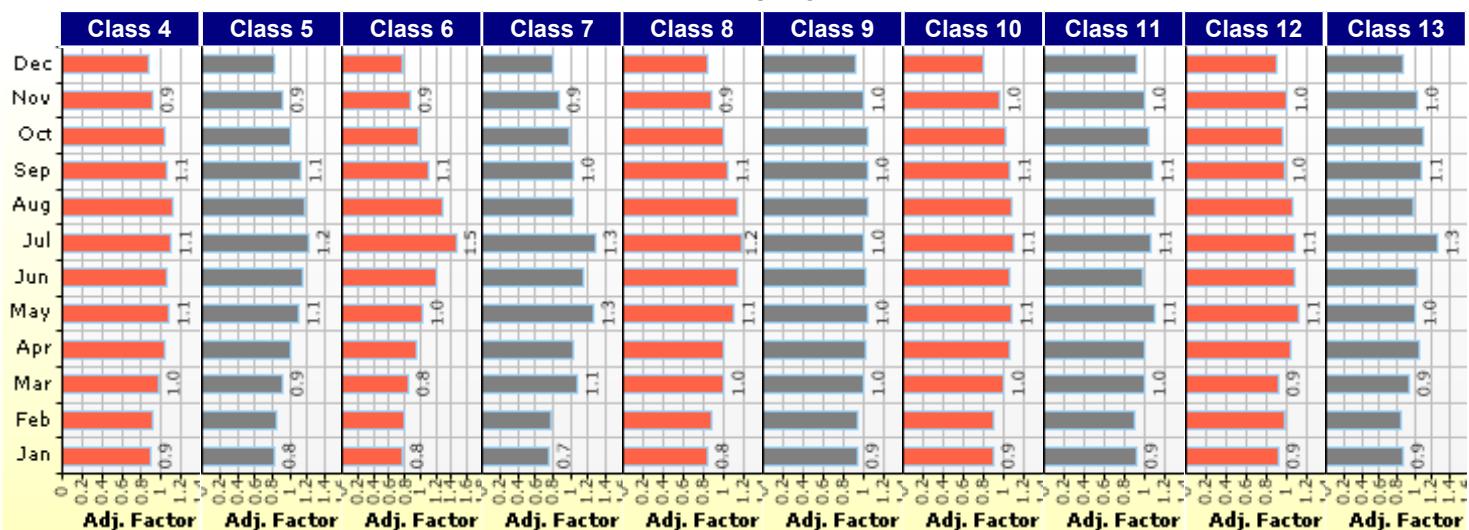
### Distress Prediction Summary

| Distress Type                               | Distress @ Specified Reliability |           | Reliability (%) |          | Criterion Satisfied? |
|---------------------------------------------|----------------------------------|-----------|-----------------|----------|----------------------|
|                                             | Target                           | Predicted | Target          | Achieved |                      |
| Terminal IRI (in/mile)                      | 200.00                           | 170.22    | 90.00           | 98.46    | Pass                 |
| Permanent deformation - total pavement (in) | 0.65                             | 0.64      | 90.00           | 92.37    | Pass                 |
| AC bottom-up fatigue cracking (% lane area) | 25.00                            | 2.97      | 90.00           | 100.00   | Pass                 |
| AC thermal cracking (ft/mile)               | 1500.00                          | 84.34     | 90.00           | 100.00   | Pass                 |
| AC top-down fatigue cracking (ft/mile)      | 3000.00                          | 2995.48   | 90.00           | 90.04    | Pass                 |
| Permanent deformation - AC only (in)        | 0.65                             | 0.14      | 90.00           | 100.00   | Pass                 |

## Distress Charts


— Threshold Value    .... @ Specified Reliability    - - - @ 50% Reliability


## Traffic Inputs

### Graphical Representation of Traffic Inputs

|                                      |    |                                            |       |
|--------------------------------------|----|--------------------------------------------|-------|
| Initial two-way AADTT:               | 40 | Percent of trucks in design direction (%): | 100.0 |
| Number of lanes in design direction: | 1  | Percent of trucks in design lane (%):      | 100.0 |
|                                      |    | Operational speed (mph)                    | 25.0  |



### Traffic Volume Monthly Adjustment Factors



## Tabular Representation of Traffic Inputs

## Volume Monthly Adjustment Factors

Level 3: Default MAF

| Month     | Vehicle Class |     |     |     |     |     |     |     |     |     |
|-----------|---------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|           | 4             | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  |
| January   | 0.9           | 0.8 | 0.8 | 0.7 | 0.8 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |
| February  | 0.9           | 0.8 | 0.8 | 0.8 | 0.9 | 0.9 | 0.9 | 0.9 | 1.0 | 0.8 |
| March     | 1.0           | 0.9 | 0.8 | 1.1 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9 | 0.9 |
| April     | 1.0           | 1.0 | 0.9 | 1.0 | 1.0 | 1.0 | 1.1 | 1.0 | 1.0 | 1.1 |
| May       | 1.1           | 1.1 | 1.0 | 1.3 | 1.1 | 1.0 | 1.1 | 1.1 | 1.1 | 1.0 |
| June      | 1.1           | 1.1 | 1.2 | 1.1 | 1.1 | 1.0 | 1.1 | 1.0 | 1.1 | 1.0 |
| July      | 1.1           | 1.2 | 1.5 | 1.3 | 1.2 | 1.0 | 1.1 | 1.1 | 1.1 | 1.3 |
| August    | 1.1           | 1.2 | 1.3 | 1.0 | 1.1 | 1.0 | 1.1 | 1.1 | 1.1 | 1.0 |
| September | 1.1           | 1.1 | 1.1 | 1.0 | 1.1 | 1.0 | 1.1 | 1.1 | 1.0 | 1.1 |
| October   | 1.0           | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9 | 1.1 |
| November  | 0.9           | 0.9 | 0.9 | 0.9 | 0.9 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
| December  | 0.9           | 0.8 | 0.8 | 0.8 | 0.8 | 0.9 | 0.8 | 0.9 | 0.9 | 0.9 |

## Distributions by Vehicle Class

Truck Distribution by Hour does not apply

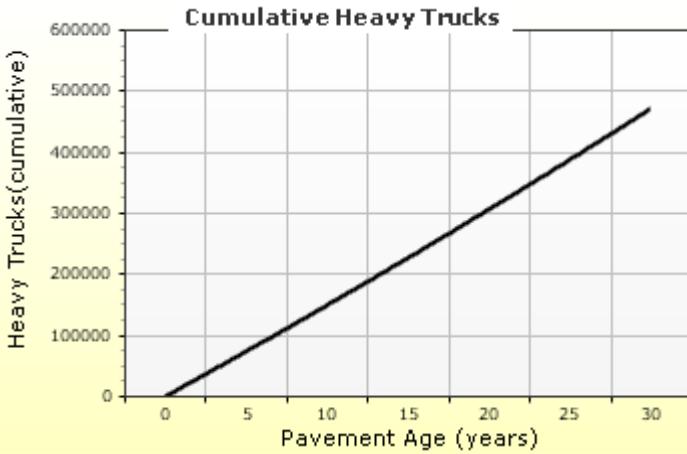
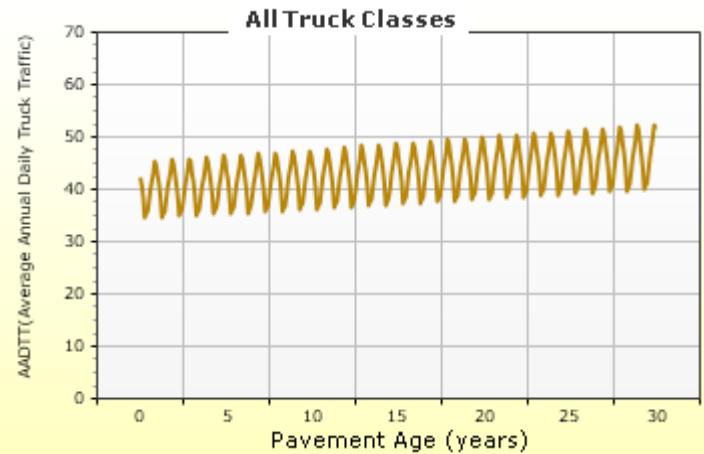
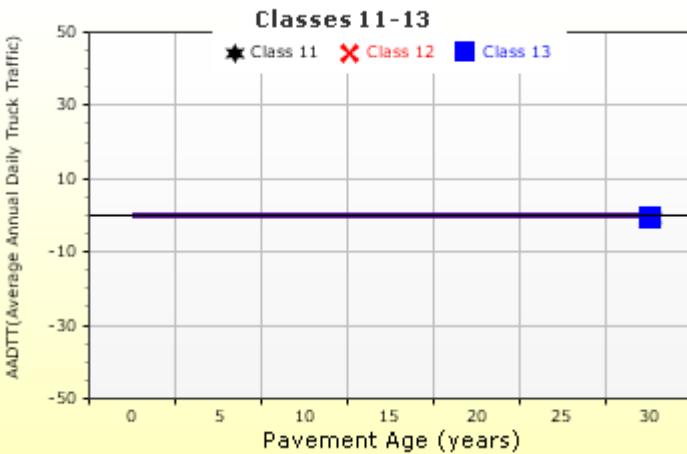
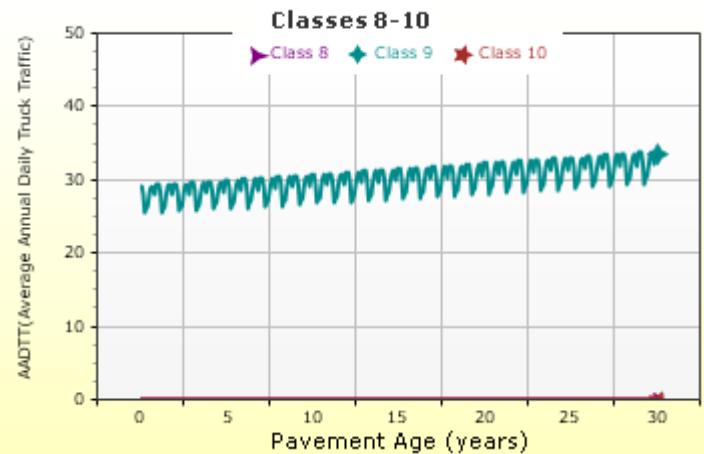
| Vehicle Class | AADTT Distribution (%) (Level 3) | Growth Factor |          |
|---------------|----------------------------------|---------------|----------|
|               |                                  | Rate (%)      | Function |
| Class 4       | 0%                               | 0.5%          | Compound |
| Class 5       | 0%                               | 0.5%          | Compound |
| Class 6       | 30%                              | 0.5%          | Compound |
| Class 7       | 0%                               | 0.5%          | Compound |
| Class 8       | 0%                               | 0.5%          | Compound |
| Class 9       | 70%                              | 0.5%          | Compound |
| Class 10      | 0%                               | 0.5%          | Compound |
| Class 11      | 0%                               | 0.5%          | Compound |
| Class 12      | 0%                               | 0.5%          | Compound |
| Class 13      | 0%                               | 0.5%          | Compound |

## Axe Configuration

| Traffic Wander                         |      |
|----------------------------------------|------|
| Mean wheel location (in)               | 18.0 |
| Traffic wander standard deviation (in) | 10.0 |
| Design lane width (ft)                 | 12.0 |

| Axle Configuration      |       |
|-------------------------|-------|
| Average axle width (ft) | 8.5   |
| Dual tire spacing (in)  | 12.0  |
| Tire pressure (psi)     | 120.0 |

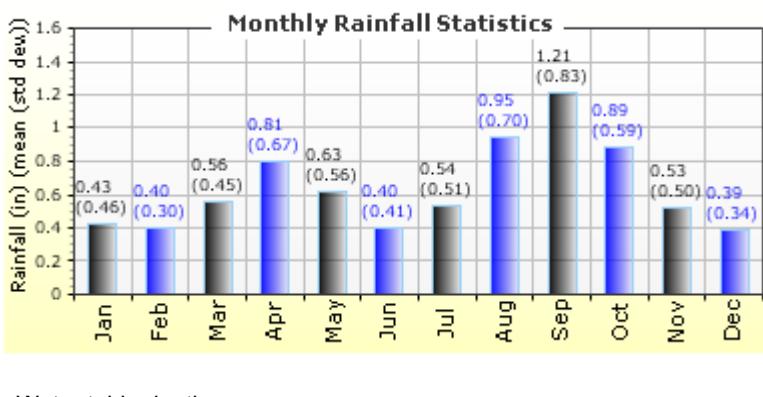
## Number of Axles per Truck





| Vehicle Class | Single Axle | Tandem Axle | Tridem Axle | Quad Axle |
|---------------|-------------|-------------|-------------|-----------|
| Class 4       | 1.53        | 0.45        | 0           | 0         |
| Class 5       | 2.02        | 0.16        | 0.02        | 0         |
| Class 6       | 1.12        | 0.93        | 0           | 0         |
| Class 7       | 1.19        | 0.07        | 0.45        | 0.02      |
| Class 8       | 2.41        | 0.56        | 0.02        | 0         |
| Class 9       | 1.16        | 1.88        | 0.01        | 0         |
| Class 10      | 1.05        | 1.01        | 0.93        | 0.02      |
| Class 11      | 4.35        | 0.13        | 0           | 0         |
| Class 12      | 3.15        | 1.22        | 0.09        | 0         |
| Class 13      | 2.77        | 1.4         | 0.51        | 0.04      |

| Average Axle Spacing     |      |
|--------------------------|------|
| Tandem axle spacing (in) | 51.6 |
| Tridem axle spacing (in) | 49.2 |
| Quad axle spacing (in)   | 49.2 |

Wheelbase does not apply

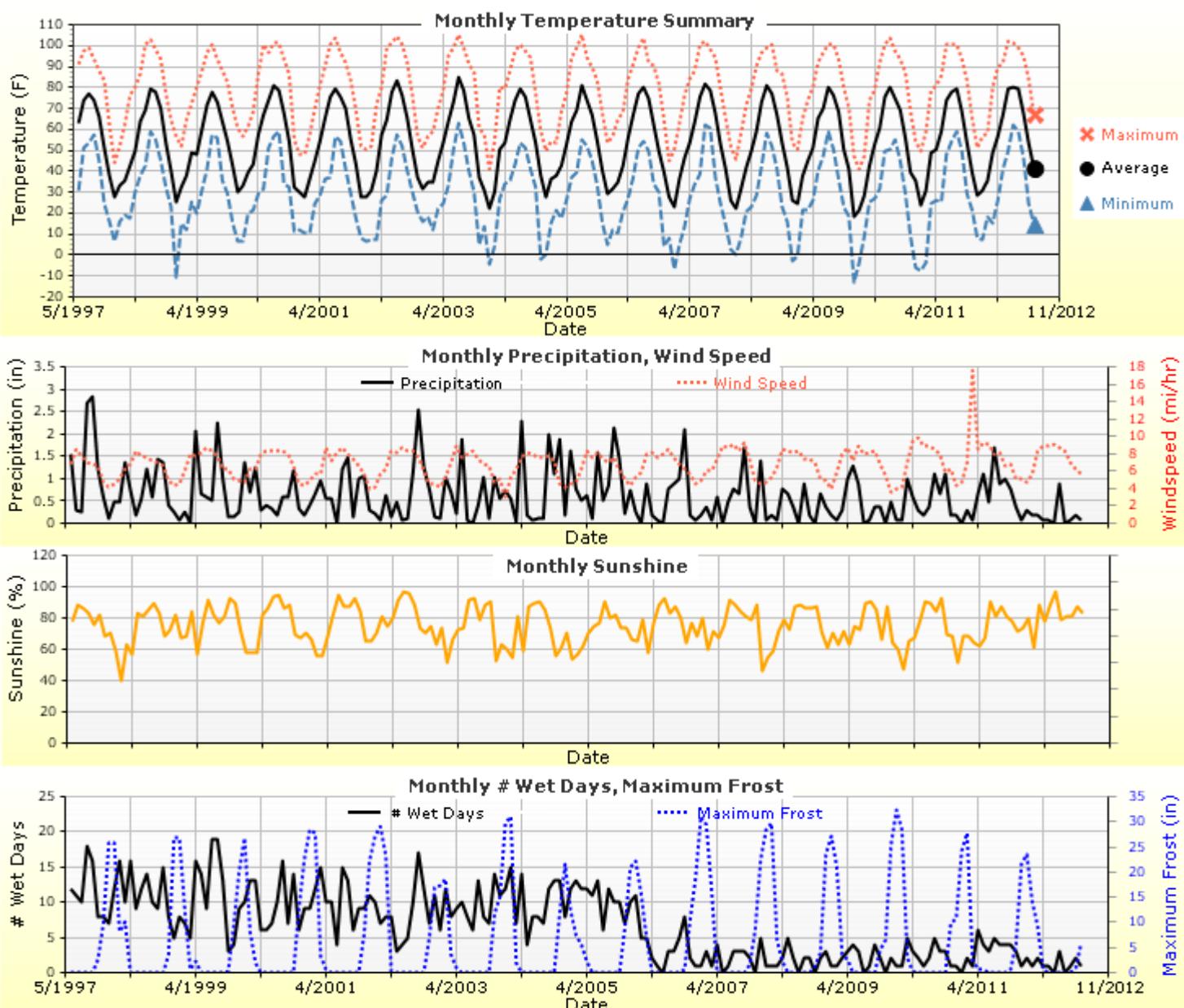
## AADTT (Average Annual Daily Truck Traffic) Growth


\* Traffic cap is not enforced

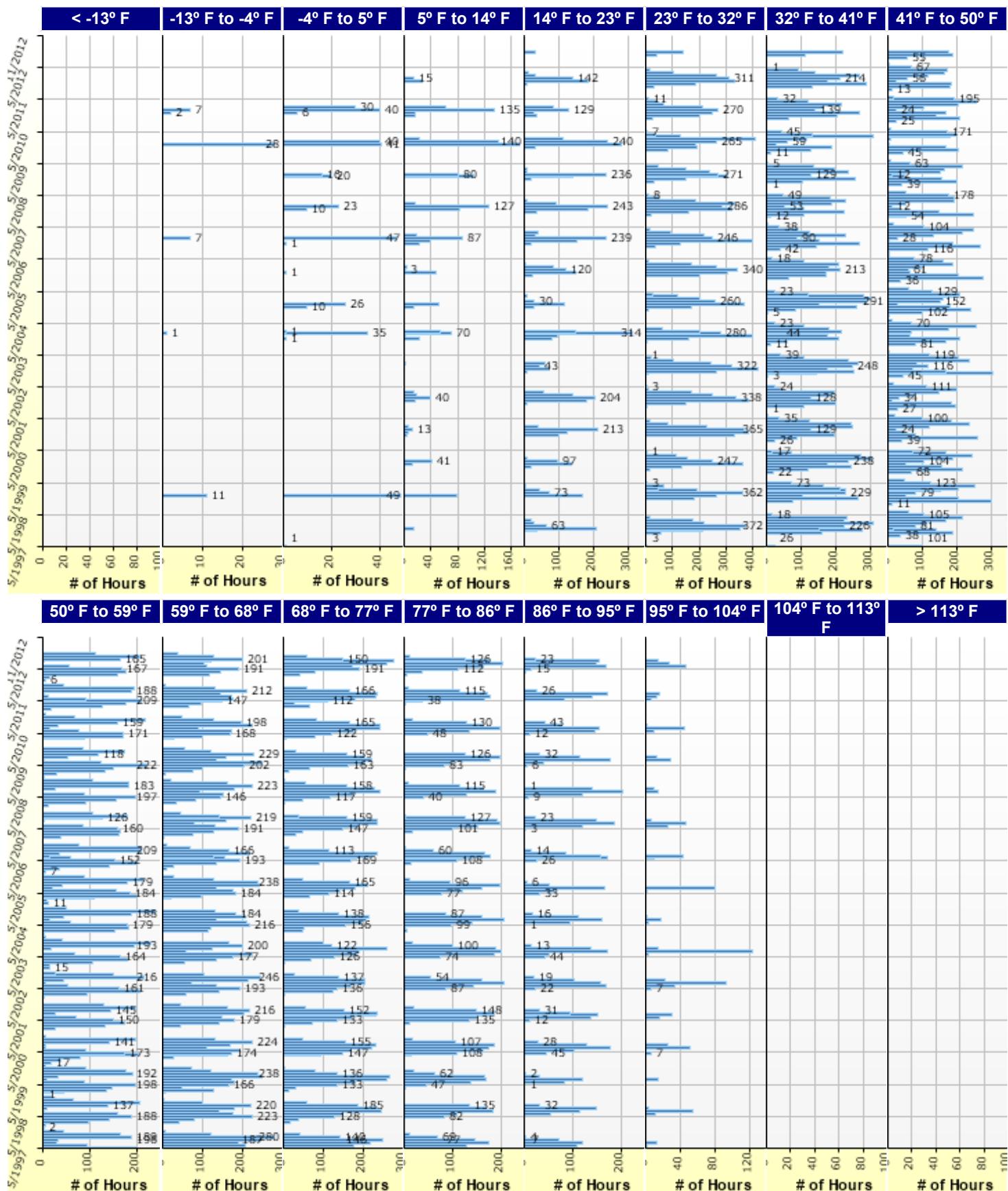


## Climate Inputs

### Climate Data Sources:


Climate Station Cities: GRAND JUNCTION, CO Location (lat lon elevation(ft)) 39.13400 -108.53800 4839




### Annual Statistics:

|                                              |        |
|----------------------------------------------|--------|
| Mean annual air temperature (°F)             | 53.55  |
| Mean annual precipitation (in)               | 7.76   |
| Freezing index (°F - days)                   | 398.73 |
| Average annual number of freeze/thaw cycles: | 111.77 |
| Water table depth (ft)                       | 4.00   |

### Monthly Climate Summary:

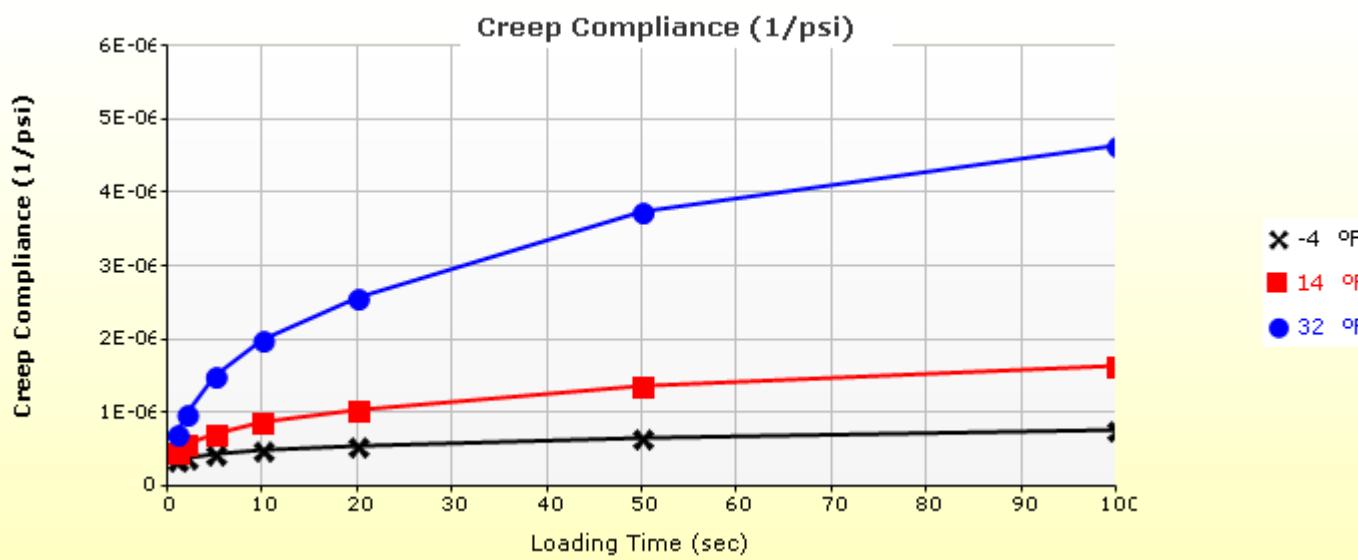


## Hourly Air Temperature Distribution by Month:

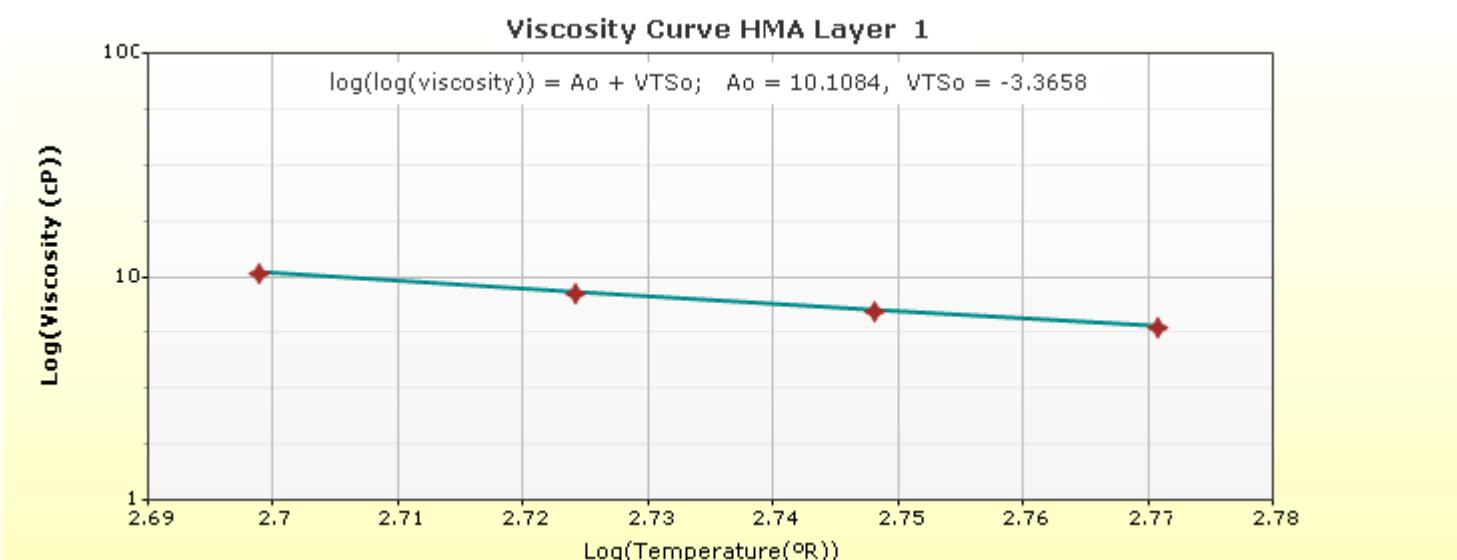
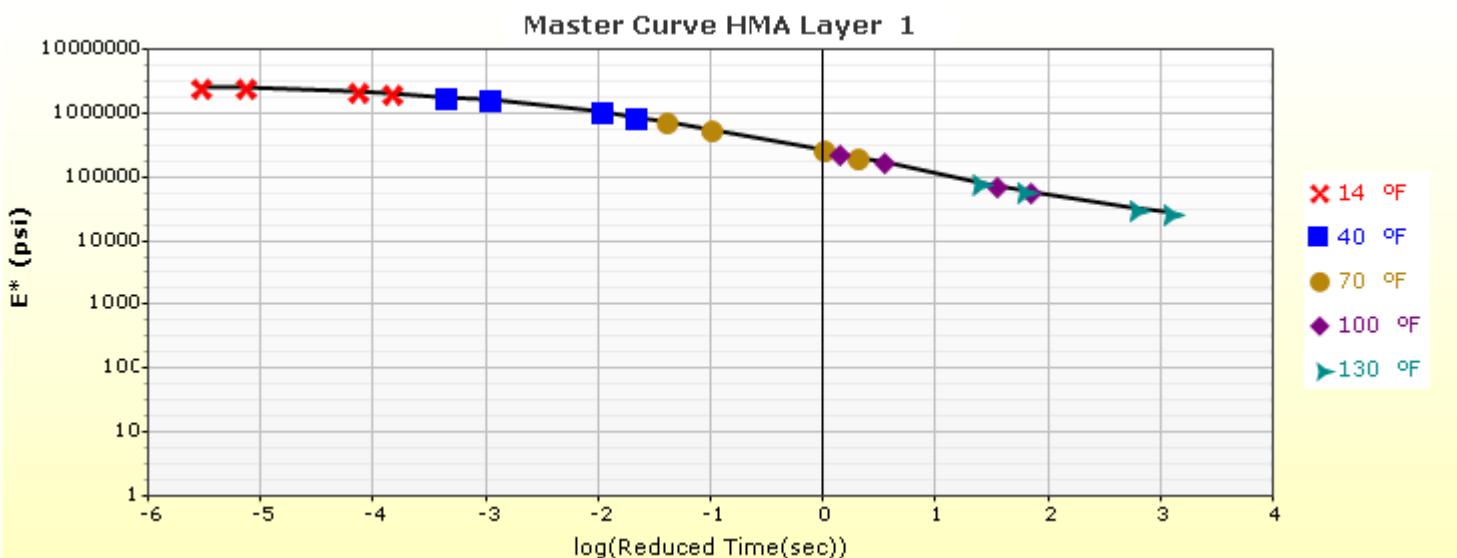


## Design Properties

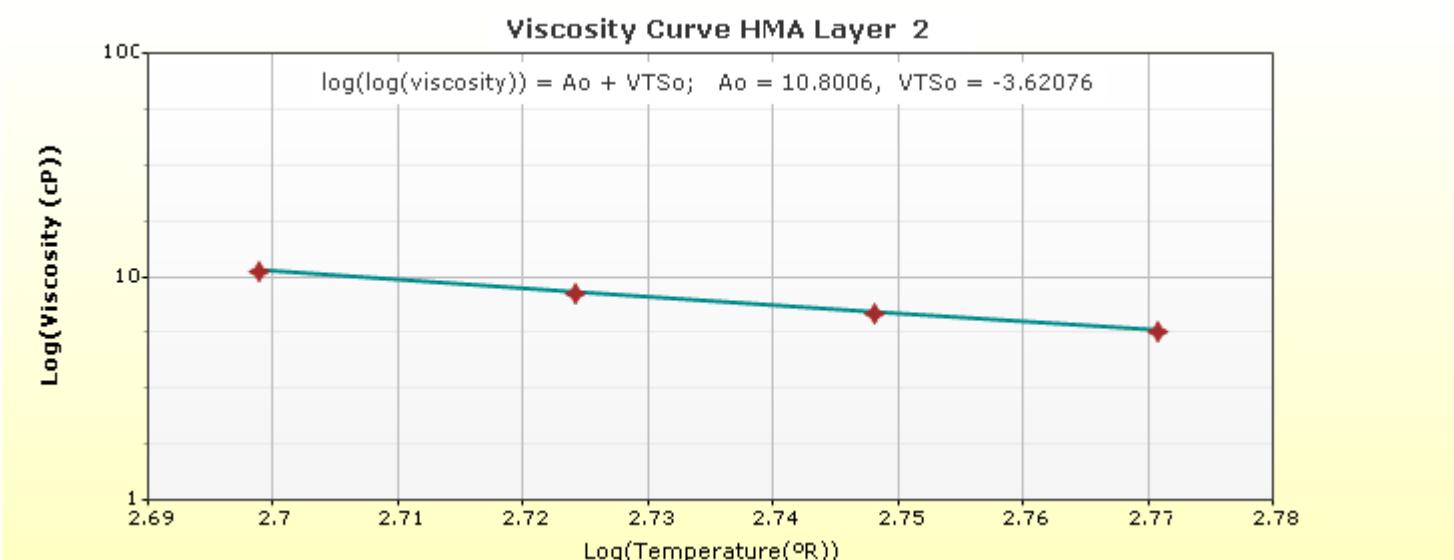
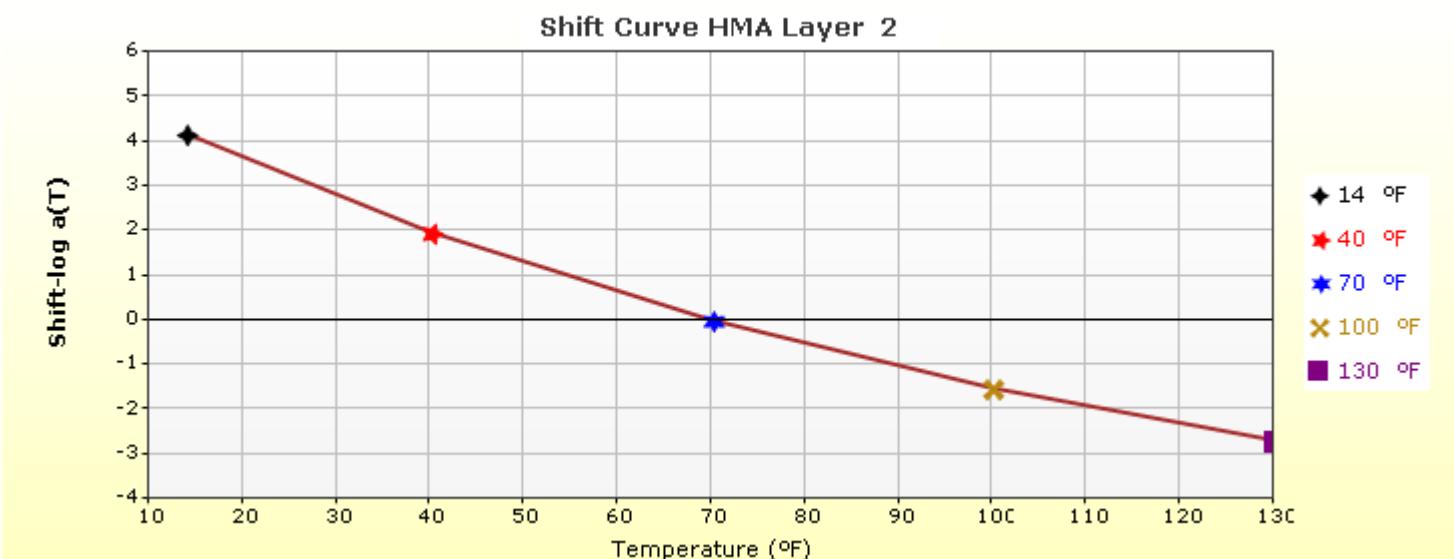
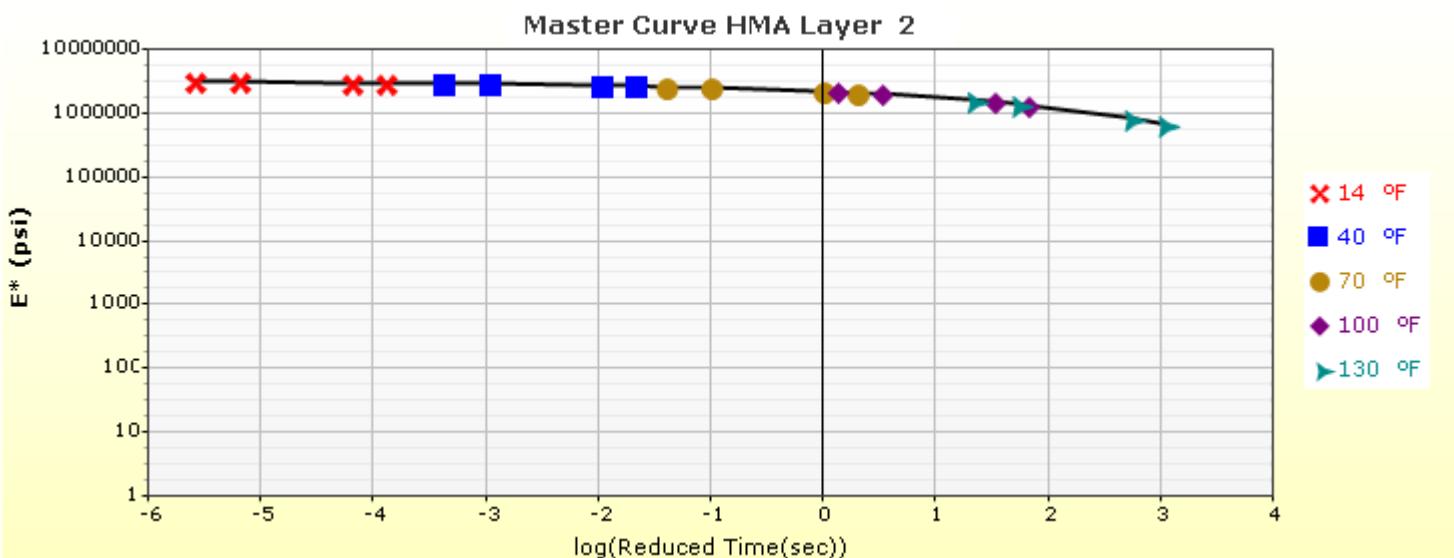
### HMA Design Properties


|                                                  |       |
|--------------------------------------------------|-------|
| Use Multilayer Rutting Model                     | False |
| Using G* based model (not nationally calibrated) | False |
| Is NCHRP 1-37A HMA Rutting Model Coefficients    | True  |
| Endurance Limit                                  | -     |
| Use Reflective Cracking                          | True  |
| <b>Structure - ICM Properties</b>                |       |
| AC surface shortwave absorptivity                | 0.85  |

| Layer Name                                      | Layer Type              | Interface Friction |
|-------------------------------------------------|-------------------------|--------------------|
| Layer 1 Flexible : R3 Level 1 SX (100) PG 64-28 | Flexible (1)            | 1.00               |
| Layer 2 Flexible : R2 Level 1 SX (75) PG 64-22  | Flexible (1)            | 1.00               |
| Layer 3 Non-stabilized Base : Crushed gravel    | Non-stabilized Base (4) | 1.00               |
| Layer 4 Subgrade : A-1-b                        | Subgrade (5)            | 1.00               |
| Layer 5 Subgrade : A-1-b                        | Subgrade (5)            | -                  |

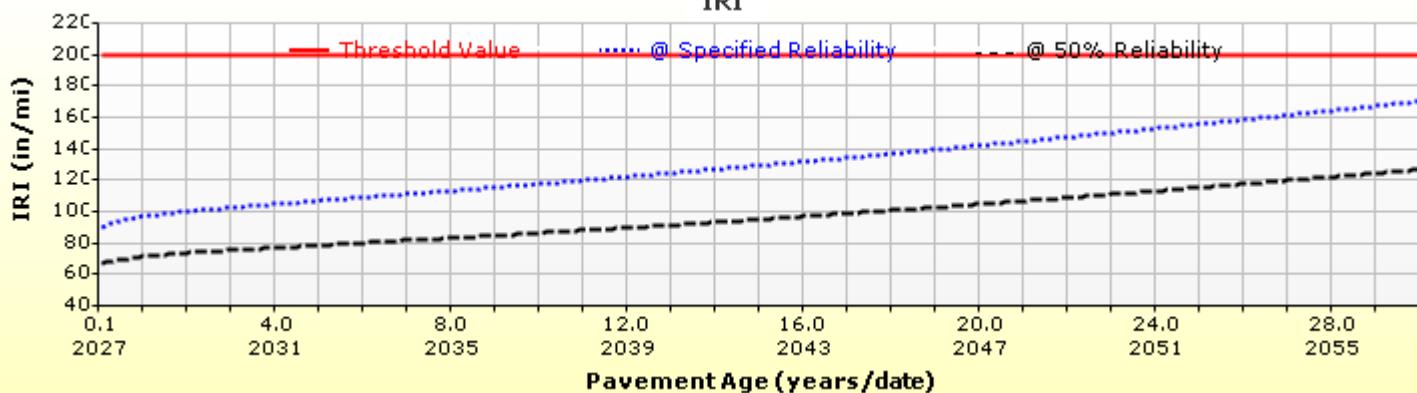


## Thermal Cracking (Input Level: 1)

|                                                         |          |
|---------------------------------------------------------|----------|
| Indirect tensile strength at 14 °F (psi)                | 519.00   |
| <b>Thermal Contraction</b>                              |          |
| Is thermal contraction calculated?                      | True     |
| Mix coefficient of thermal contraction (in/in/°F)       | -        |
| Aggregate coefficient of thermal contraction (in/in/°F) | 5.0e-006 |
| Voids in Mineral Aggregate (%)                          | 16.4     |

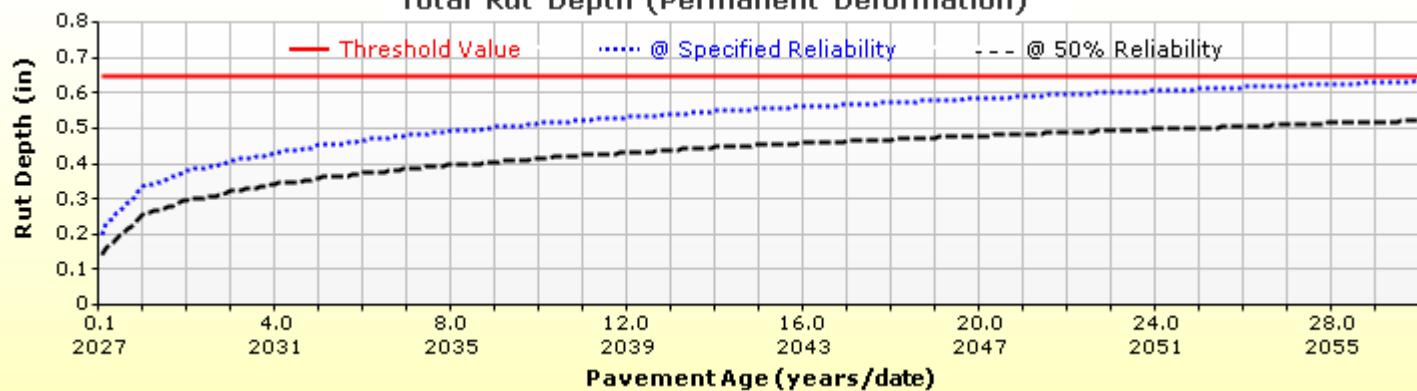



| Loading time (sec) | Creep Compliance (1/psi) |           |           |
|--------------------|--------------------------|-----------|-----------|
|                    | -4 °F                    | 14 °F     | 32 °F     |
| 1                  | 3.61e-007                | 4.73e-007 | 7.12e-007 |
| 2                  | 4.04e-007                | 5.74e-007 | 9.97e-007 |
| 5                  | 4.51e-007                | 7.35e-007 | 1.52e-006 |
| 10                 | 5.11e-007                | 8.78e-007 | 1.99e-006 |
| 20                 | 5.67e-007                | 1.04e-006 | 2.59e-006 |
| 50                 | 6.57e-007                | 1.37e-006 | 3.75e-006 |
| 100                | 7.68e-007                | 1.66e-006 | 4.66e-006 |



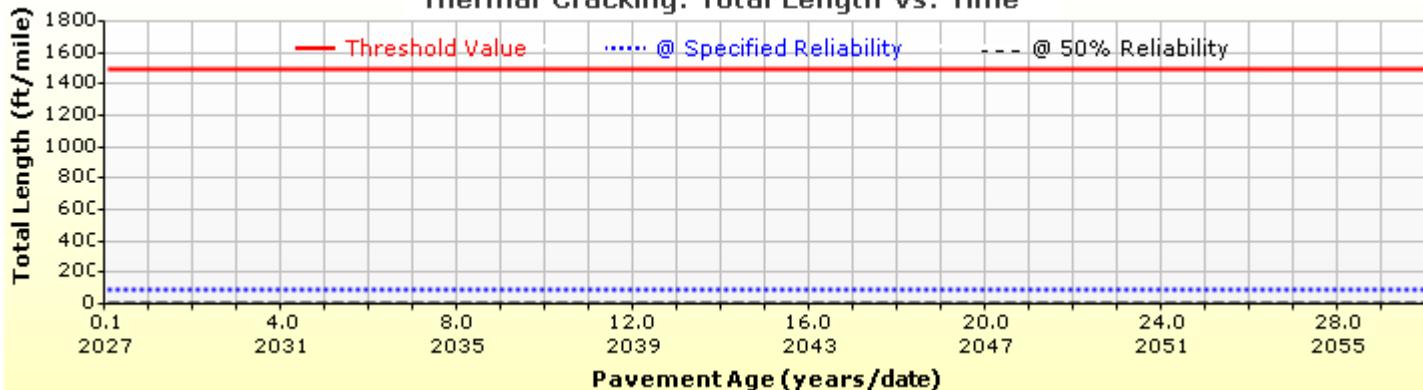
## HMA Layer 1: Layer 1 Flexible : R3 Level 1 SX(100) PG 64-28

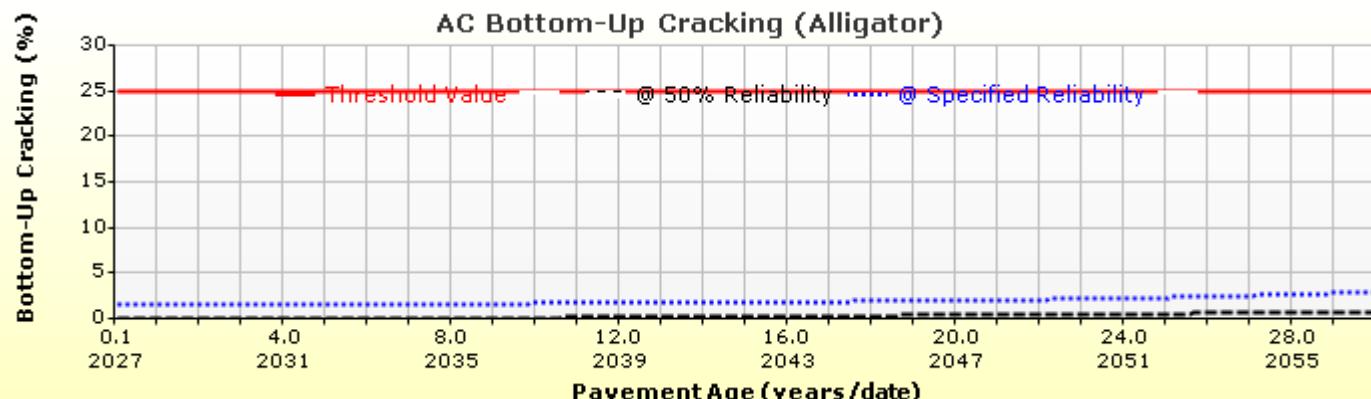
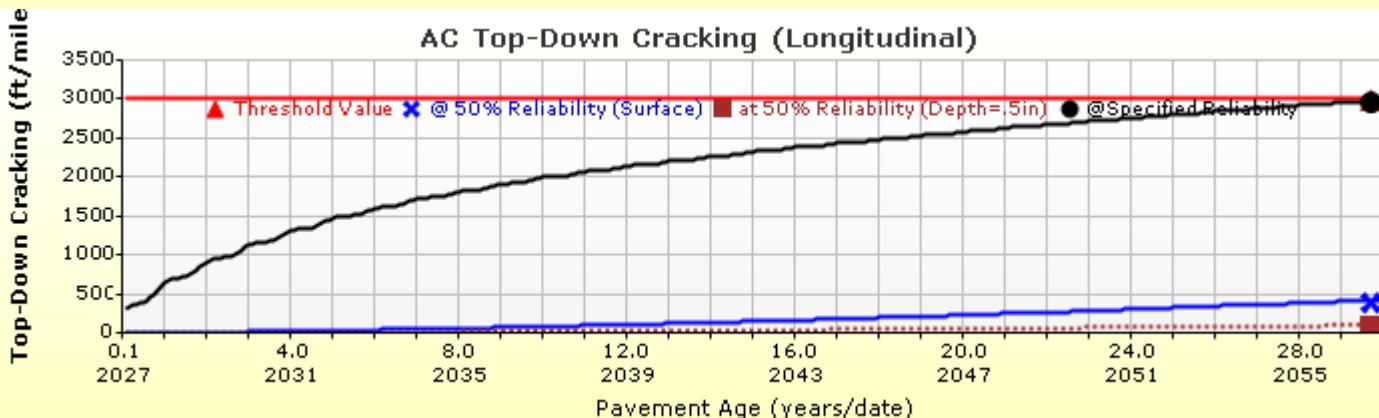
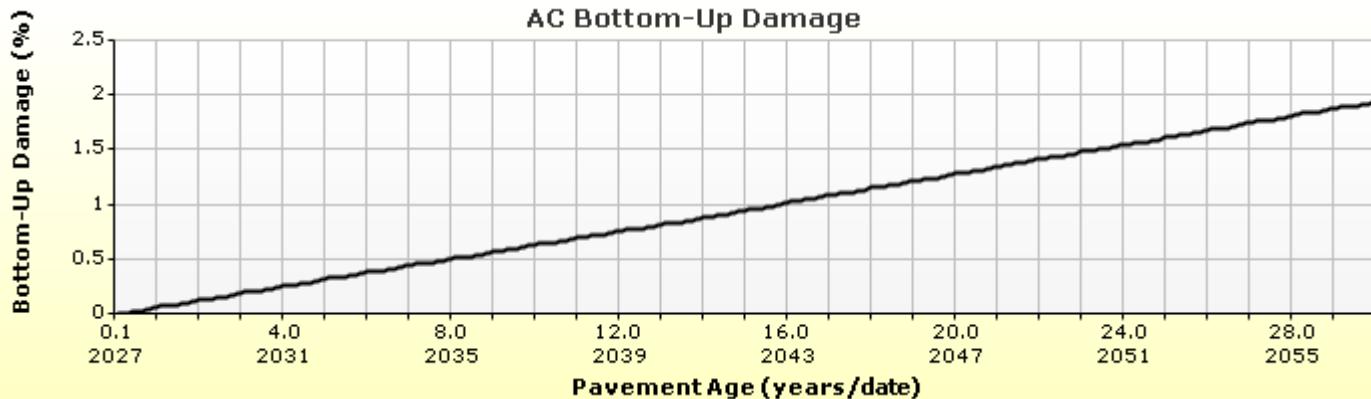
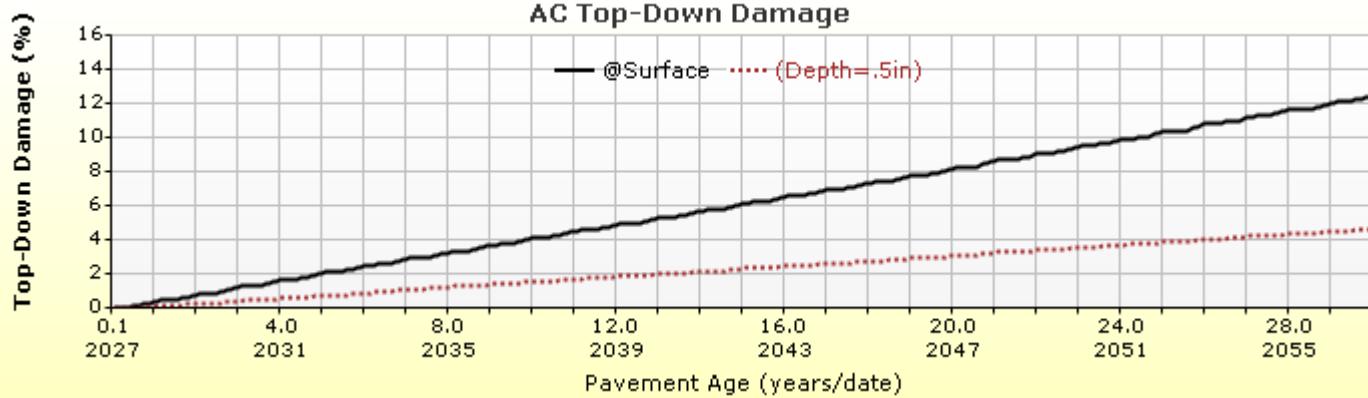



## HMA Layer 2: Layer 2 Flexible : R2 Level 1 SX(75) PG 64-22

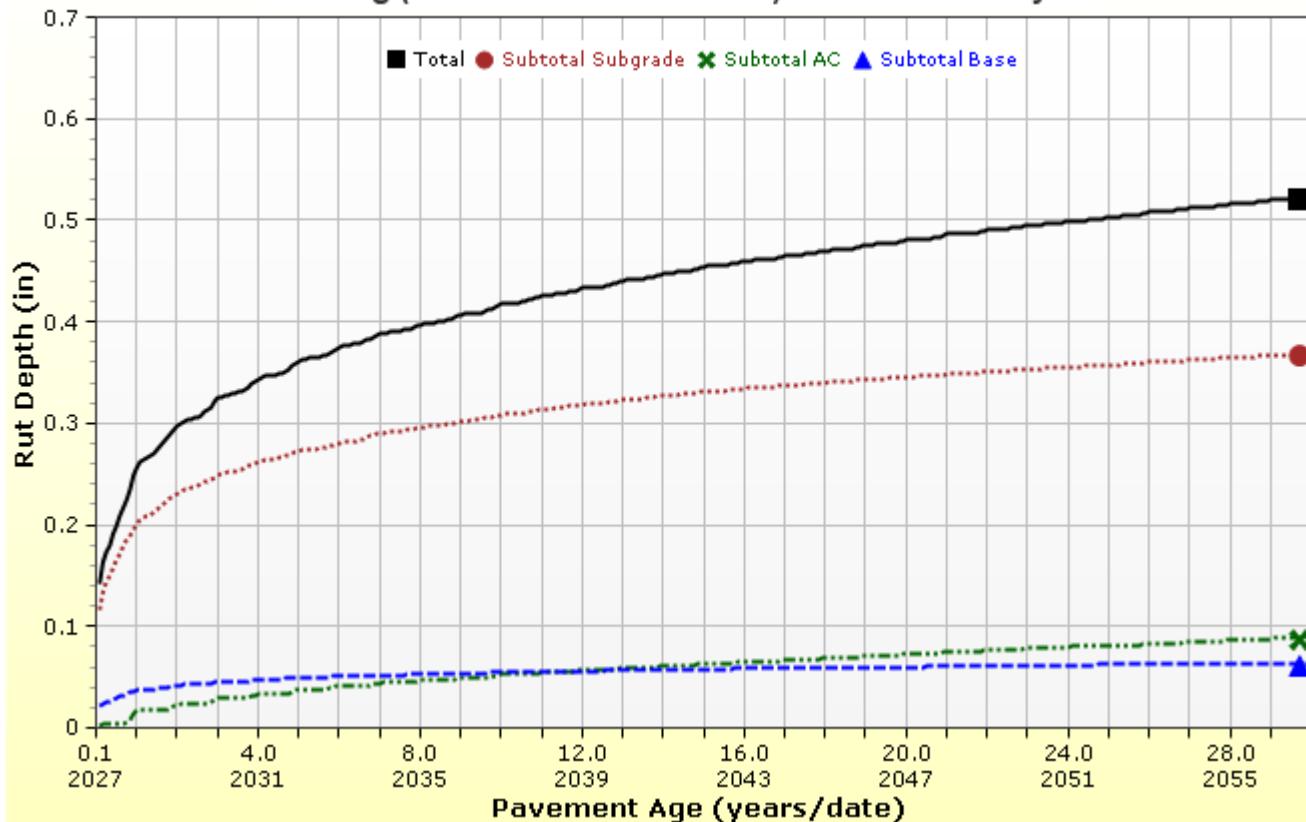


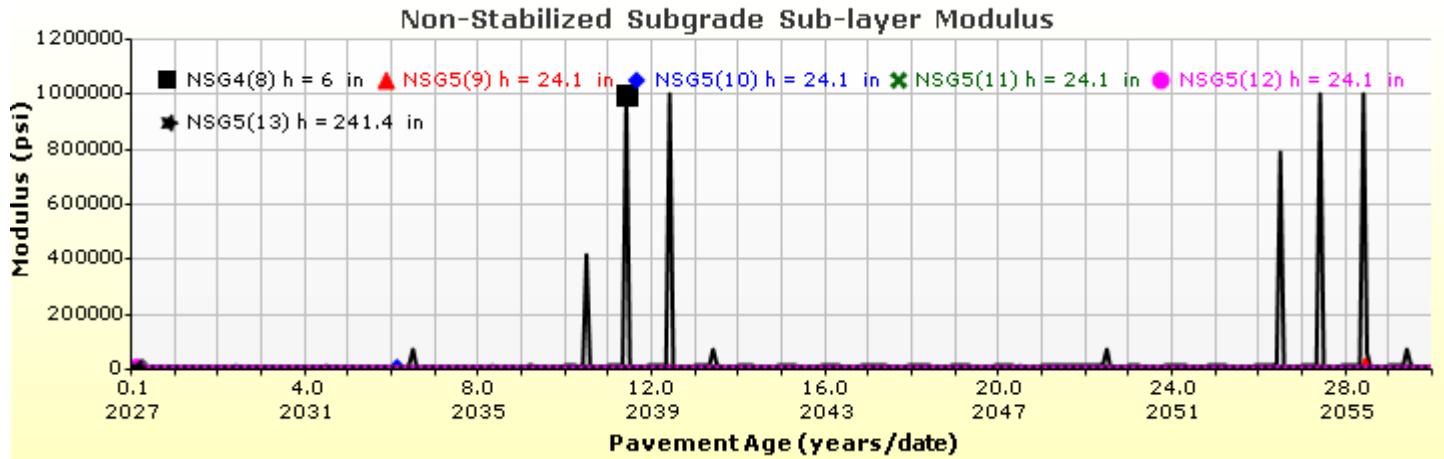
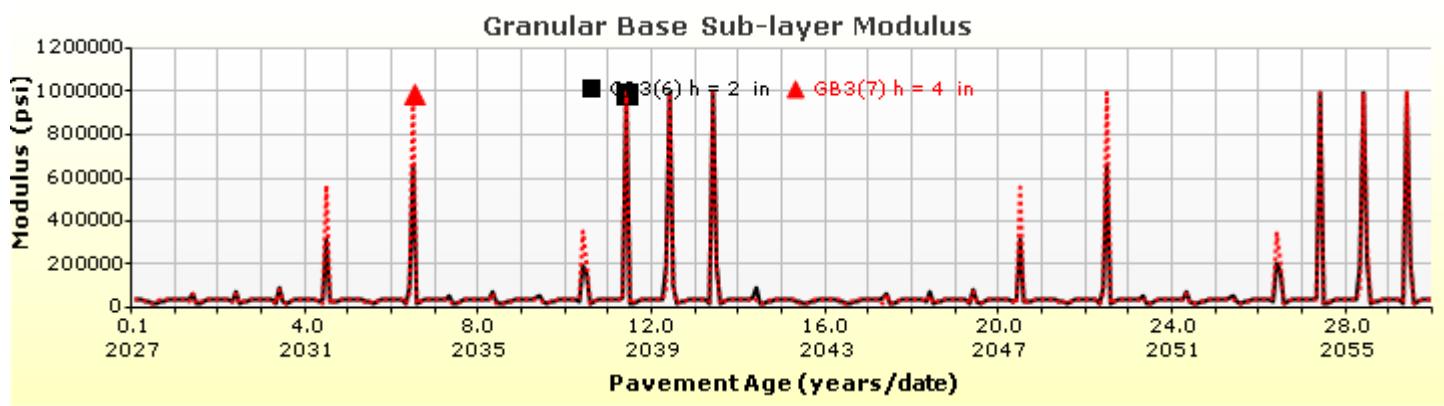
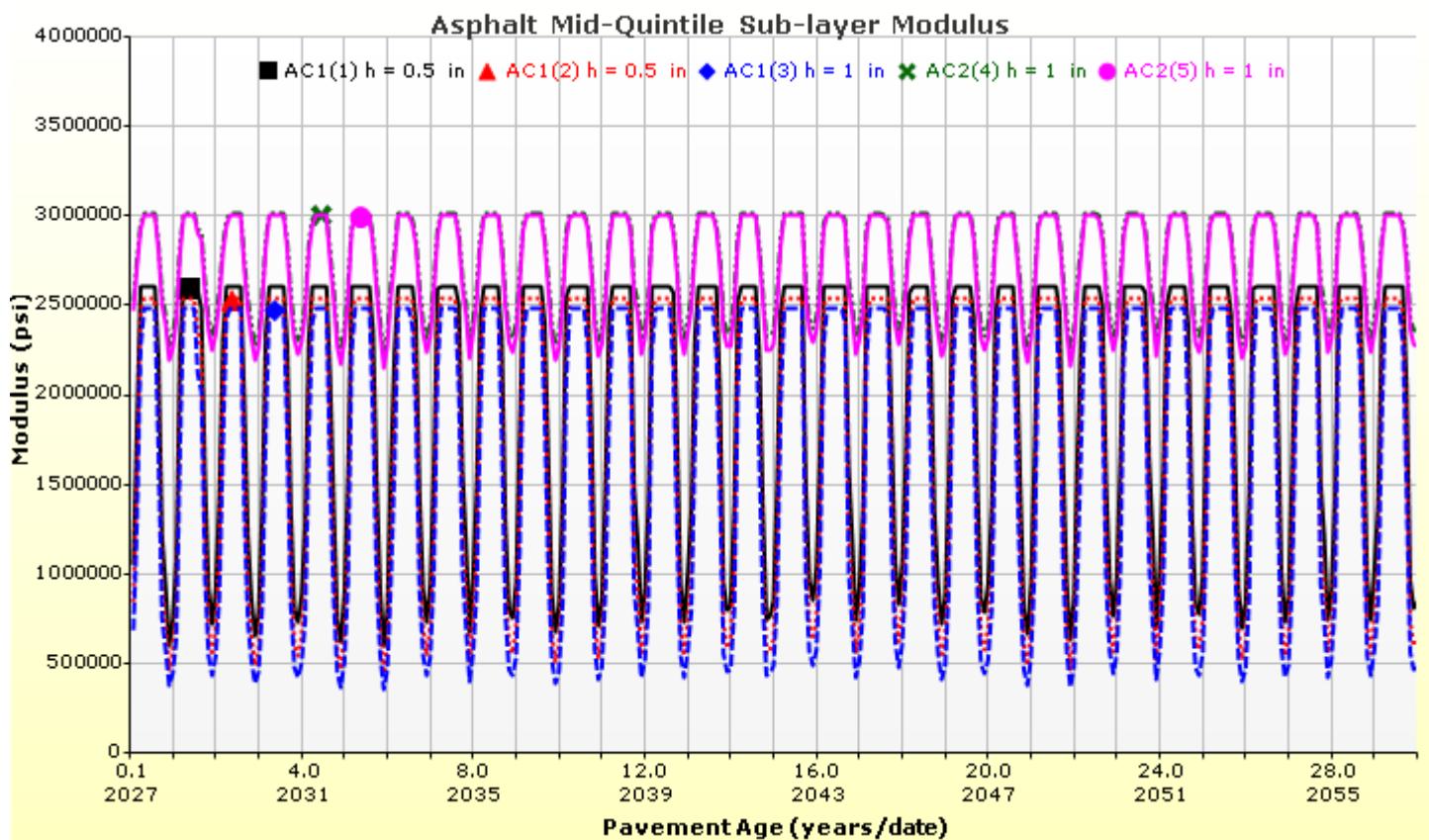

## Analysis Output Charts


IRI


Total Rut Depth (Permanent Deformation)







Thermal Cracking: Total Length vs. Time





## Rutting (Permanent Deformation) at 50% Reliability





## Layer Information

### Layer 1 Flexible : R3 Level 1 SX(100) PG 64-28

#### Asphalt

|                   |                |          |
|-------------------|----------------|----------|
| Thickness (in)    | 2.0            |          |
| Unit weight (pcf) | 145.0          |          |
| Poisson's ratio   | Is Calculated? | True     |
|                   | Ratio          | -        |
|                   | Parameter A    | -1.63    |
|                   | Parameter B    | 3.84E-06 |

#### General Info

| Name                                | Value |
|-------------------------------------|-------|
| Reference temperature (°F)          | 70    |
| Effective binder content (%)        | 10.7  |
| Air voids (%)                       | 5.7   |
| Thermal conductivity (BTU/hr-ft-°F) | 0.67  |
| Heat capacity (BTU/lb-°F)           | 0.23  |

#### Asphalt Dynamic Modulus (Input Level: 1)

| T ( °F) | 0.5 Hz  | 1 Hz    | 10 Hz   | 25 Hz   |
|---------|---------|---------|---------|---------|
| 14      | 1687360 | 2134249 | 2493389 | 2608869 |
| 40      | 697463  | 1127680 | 1612900 | 1802220 |
| 70      | 173403  | 334774  | 616373  | 765125  |
| 100     | 54259   | 93163   | 175106  | 227742  |
| 130     | 27890   | 38645   | 60413   | 74657   |

#### Asphalt Binder

| Temperature (°F) | Binder Gstar (Pa) | Phase angle (deg) |
|------------------|-------------------|-------------------|
| 147.2            | 3051              | 81.6              |
| 158              | 1495              | 83.1              |
| 168.8            | 772               | 85                |

#### Identifiers

| Field                   | Value                       |
|-------------------------|-----------------------------|
| Display name/identifier | R3 Level 1 SX(100) PG 64-28 |
| Description of object   | Mix ID # FS1959             |
| Author                  | CDOT                        |
| Date Created            | 4/3/2013 12:00:00 AM        |
| Approver                | CDOT                        |
| Date approved           | 4/3/2013 12:00:00 AM        |
| State                   | Colorado                    |
| District                |                             |
| County                  |                             |
| Highway                 |                             |
| Direction of Travel     |                             |
| From station (miles)    |                             |
| To station (miles)      |                             |
| Province                |                             |
| User defined field 1    | SX                          |
| User defined field 2    |                             |
| User defined field 3    |                             |
| Revision Number         | 0                           |

## Layer 2 Flexible : R2 Level 1 SX(75) PG 64-22

## Asphalt

|                   |                |          |
|-------------------|----------------|----------|
| Thickness (in)    | 2.0            |          |
| Unit weight (pcf) | 140.5          |          |
| Poisson's ratio   | Is Calculated? | True     |
|                   | Ratio          | -        |
|                   | Parameter A    | -1.63    |
|                   | Parameter B    | 3.84E-06 |

## General Info

| Name                                | Value |
|-------------------------------------|-------|
| Reference temperature (°F)          | 70    |
| Effective binder content (%)        | 11.8  |
| Air voids (%)                       | 6.9   |
| Thermal conductivity (BTU/hr-ft-°F) | 0.67  |
| Heat capacity (BTU/lb-°F)           | 0.23  |

## Asphalt Dynamic Modulus (Input Level: 1)

| T (°F) | 0.5 Hz  | 1 Hz    | 10 Hz   | 25 Hz   |
|--------|---------|---------|---------|---------|
| 14     | 2910500 | 2947100 | 3034800 | 3058600 |
| 40     | 2620500 | 2695700 | 2882400 | 2934800 |
| 70     | 2057300 | 2190500 | 2549800 | 2658300 |
| 100    | 1334300 | 1500400 | 2017600 | 2195500 |
| 130    | 697600  | 836500  | 1365200 | 1584000 |

## Asphalt Binder

| Temperature (°F) | Binder Gstar (Pa) | Phase angle (deg) |
|------------------|-------------------|-------------------|
| 168.8            | 451               | 85                |
| 147.2            | 1857              | 81.6              |
| 158              | 889               | 83.1              |

## Identifiers

| Field                   | Value                      |
|-------------------------|----------------------------|
| Display name/identifier | R2 Level 1 SX(75) PG 64-22 |
| Description of object   | Mix ID # 19127A            |
| Author                  | CDOT                       |
| Date Created            | 4/3/2013 12:00:00 AM       |
| Approver                | CDOT                       |
| Date approved           | 4/3/2013 12:00:00 AM       |
| State                   | Colorado                   |
| District                |                            |
| County                  |                            |
| Highway                 |                            |
| Direction of Travel     |                            |
| From station (miles)    |                            |
| To station (miles)      |                            |
| Province                |                            |
| User defined field 1    | SX                         |
| User defined field 2    |                            |
| User defined field 3    |                            |
| Revision Number         | 0                          |

## Layer 3 Non-stabilized Base : Crushed gravel

## Unbound

|                                            |      |
|--------------------------------------------|------|
| Layer thickness (in)                       | 6.0  |
| Poisson's ratio                            | 0.35 |
| Coefficient of lateral earth pressure (k0) | 0.5  |

## Sieve

|                     |      |
|---------------------|------|
| Liquid Limit        | 6.0  |
| Plasticity Index    | 1.0  |
| Is layer compacted? | True |

## Modulus (Input Level: 3)

|                |                                             |
|----------------|---------------------------------------------|
| Analysis Type: | Modify input values by temperature/moisture |
| Method:        | Resilient Modulus (psi)                     |

|                         |
|-------------------------|
| Resilient Modulus (psi) |
| 25000.0                 |

|                                        |   |
|----------------------------------------|---|
| Use Correction factor for NDT modulus? | - |
| NDT Correction Factor:                 | - |

## Identifiers

| Field                   | Value                |
|-------------------------|----------------------|
| Display name/identifier | Crushed gravel       |
| Description of object   | Default material     |
| Author                  | AASHTO               |
| Date Created            | 1/1/2011 12:00:00 AM |
| Approver                |                      |
| Date approved           | 1/1/2011 12:00:00 AM |
| State                   |                      |
| District                |                      |
| County                  |                      |
| Highway                 |                      |
| Direction of Travel     |                      |
| From station (miles)    |                      |
| To station (miles)      |                      |
| Province                |                      |
| User defined field 1    |                      |
| User defined field 2    |                      |
| User defined field 3    |                      |
| Revision Number         | 42                   |

| Is User Defined?                         | Value |
|------------------------------------------|-------|
| Maximum dry unit weight (pcf)            | False |
| Saturated hydraulic conductivity (ft/hr) | False |
| Specific gravity of solids               | False |
| Water Content (%)                        | False |

| User-defined Soil Water Characteristic Curve (SWCC) |          |
|-----------------------------------------------------|----------|
| Is User Defined?                                    | False    |
| af                                                  | 7.2555   |
| bf                                                  | 1.3328   |
| cf                                                  | 0.8242   |
| hr                                                  | 117.4000 |

| Sieve Size | % Passing |
|------------|-----------|
| 0.001mm    |           |
| 0.002mm    |           |
| 0.020mm    |           |
| #200       | 8.7       |
| #100       |           |
| #80        | 12.9      |
| #60        |           |
| #50        |           |
| #40        | 20.0      |
| #30        |           |
| #20        |           |
| #16        |           |
| #10        | 33.8      |
| #8         |           |
| #4         | 44.7      |
| 3/8-in.    | 57.2      |
| 1/2-in.    | 63.1      |
| 3/4-in.    | 72.7      |
| 1-in.      | 78.8      |
| 1 1/2-in.  | 85.8      |
| 2-in.      | 91.6      |
| 2 1/2-in.  |           |
| 3-in.      |           |
| 3 1/2-in.  | 97.6      |

## Layer 4 Subgrade : A-1-b

## Unbound

|                                            |      |
|--------------------------------------------|------|
| Layer thickness (in)                       | 6.0  |
| Poisson's ratio                            | 0.35 |
| Coefficient of lateral earth pressure (k0) | 0.5  |

## Sieve

|                     |      |
|---------------------|------|
| Liquid Limit        | 11.0 |
| Plasticity Index    | 1.0  |
| Is layer compacted? | True |

## Modulus (Input Level: 3)

|                |                                             |
|----------------|---------------------------------------------|
| Analysis Type: | Modify input values by temperature/moisture |
| Method:        | Resilient Modulus (psi)                     |

## Resilient Modulus (psi)

|         |
|---------|
| 10942.0 |
|---------|

|                                        |   |
|----------------------------------------|---|
| Use Correction factor for NDT modulus? | - |
| NDT Correction Factor:                 | - |

## Identifiers

| Field                   | Value                |
|-------------------------|----------------------|
| Display name/identifier | A-1-b                |
| Description of object   | Default material     |
| Author                  | AASHTO               |
| Date Created            | 1/1/2011 12:00:00 AM |
| Approver                |                      |
| Date approved           | 1/1/2011 12:00:00 AM |
| State                   |                      |
| District                |                      |
| County                  |                      |
| Highway                 |                      |
| Direction of Travel     |                      |
| From station (miles)    |                      |
| To station (miles)      |                      |
| Province                |                      |
| User defined field 1    |                      |
| User defined field 2    |                      |
| User defined field 3    |                      |
| Revision Number         | 0                    |

|                                          | Is User Defined? | Value     |
|------------------------------------------|------------------|-----------|
| Maximum dry unit weight (pcf)            | False            | 124.2     |
| Saturated hydraulic conductivity (ft/hr) | False            | 2.303e-03 |
| Specific gravity of solids               | False            | 2.7       |
| Water Content (%)                        | False            | 9.1       |

## User-defined Soil Water Characteristic Curve (SWCC)

|                  |          |
|------------------|----------|
| Is User Defined? | False    |
| af               | 5.8206   |
| bf               | 0.4621   |
| cf               | 3.8497   |
| hr               | 126.8000 |

| Sieve Size | % Passing |
|------------|-----------|
| 0.001mm    |           |
| 0.002mm    |           |
| 0.020mm    |           |
| #200       | 13.4      |
| #100       |           |
| #80        | 20.8      |
| #60        |           |
| #50        |           |
| #40        | 37.6      |
| #30        |           |
| #20        |           |
| #16        |           |
| #10        | 64.0      |
| #8         |           |
| #4         | 74.2      |
| 3/8-in.    | 82.3      |
| 1/2-in.    | 85.8      |
| 3/4-in.    | 90.8      |
| 1-in.      | 93.6      |
| 1 1/2-in.  | 96.7      |
| 2-in.      | 98.4      |
| 2 1/2-in.  |           |
| 3-in.      |           |
| 3 1/2-in.  | 99.4      |

## Layer 5 Subgrade : A-1-b

## Unbound

|                                            |               |
|--------------------------------------------|---------------|
| Layer thickness (in)                       | Semi-infinite |
| Poisson's ratio                            | 0.35          |
| Coefficient of lateral earth pressure (k0) | 0.5           |

## Sieve

|                     |       |
|---------------------|-------|
| Liquid Limit        | 11.0  |
| Plasticity Index    | 1.0   |
| Is layer compacted? | False |

## Modulus (Input Level: 3)

|                |                                             |
|----------------|---------------------------------------------|
| Analysis Type: | Modify input values by temperature/moisture |
| Method:        | Resilient Modulus (psi)                     |

## Resilient Modulus (psi)

|         |
|---------|
| 10942.0 |
|---------|

|                                        |   |
|----------------------------------------|---|
| Use Correction factor for NDT modulus? | - |
| NDT Correction Factor:                 | - |

## Identifiers

| Field                   | Value                |
|-------------------------|----------------------|
| Display name/identifier | A-1-b                |
| Description of object   | Default material     |
| Author                  | AASHTO               |
| Date Created            | 1/1/2011 12:00:00 AM |
| Approver                |                      |
| Date approved           | 1/1/2011 12:00:00 AM |
| State                   |                      |
| District                |                      |
| County                  |                      |
| Highway                 |                      |
| Direction of Travel     |                      |
| From station (miles)    |                      |
| To station (miles)      |                      |
| Province                |                      |
| User defined field 1    |                      |
| User defined field 2    |                      |
| User defined field 3    |                      |
| Revision Number         | 0                    |

|                                          | Is User Defined? | Value     |
|------------------------------------------|------------------|-----------|
| Maximum dry unit weight (pcf)            | False            | 123.7     |
| Saturated hydraulic conductivity (ft/hr) | False            | 2.303e-03 |
| Specific gravity of solids               | False            | 2.7       |
| Water Content (%)                        | False            | 9.1       |

## User-defined Soil Water Characteristic Curve (SWCC)

|                  |          |
|------------------|----------|
| Is User Defined? | False    |
| af               | 5.8206   |
| bf               | 0.4621   |
| cf               | 3.8497   |
| hr               | 126.8000 |

| Sieve Size | % Passing |
|------------|-----------|
| 0.001mm    |           |
| 0.002mm    |           |
| 0.020mm    |           |
| #200       | 13.4      |
| #100       |           |
| #80        | 20.8      |
| #60        |           |
| #50        |           |
| #40        | 37.6      |
| #30        |           |
| #20        |           |
| #16        |           |
| #10        | 64.0      |
| #8         |           |
| #4         | 74.2      |
| 3/8-in.    | 82.3      |
| 1/2-in.    | 85.8      |
| 3/4-in.    | 90.8      |
| 1-in.      | 93.6      |
| 1 1/2-in.  | 96.7      |
| 2-in.      | 98.4      |
| 2 1/2-in.  |           |
| 3-in.      |           |
| 3 1/2-in.  | 99.4      |

## Calibration Coefficients

## AC Fatigue

$$N_f = 0.00432 * C * \beta_{f1} k_1 \left( \frac{1}{\varepsilon_1} \right)^{k_2 \beta_{f2}} \left( \frac{1}{E} \right)^{k_3 \beta_{f3}}$$

$$C = 10^M$$

$$M = 4.84 \left( \frac{V_b}{V_a + V_b} - 0.69 \right)$$

k1: 0.007566

k2: 3.9492

k3: 1.281

Bf1: 1

Bf2: 1

Bf3: 1

## AC Rutting

$$\frac{\varepsilon_p}{\varepsilon_r} = k_z \beta_{r1} 10^{k_1 T^{k_2 \beta_{r2}} N^{k_3 \beta_{r3}}}$$

$$k_z = (C_1 + C_2 * \text{depth}) * 0.328196^{\text{depth}}$$

$$C_1 = -0.1039 * H_\alpha^2 + 2.4868 * H_\alpha - 17.342$$

$$C_2 = 0.0172 * H_\alpha^2 - 1.7331 * H_\alpha + 27.428$$

Where:

 $H_{ac}$  = total AC thickness (in) $\varepsilon_p$  = plastic strain (in/in) $\varepsilon_r$  = resilient strain (in/in)

T = layer temperature (°F)

N = number of load repetitions

AC Rutting Standard Deviation

0.24 \* Pow(RUT, 0.8026) + 0.001

AC Layer

K1:-3.35412 K2:1.5606 K3:0.4791

Br1:1 Br2:1 Br3:1

## Thermal Fracture

$$C_f = 400 * N \left( \frac{\log C / h_{ac}}{\sigma} \right)$$

$$\Delta C = (k * \beta_t)^{n+1} * A * \Delta K^n$$

$$A = 10^{(4.389 - 2.52 * \log(E * \sigma_m * n))}$$

$C_f$  = observed amount of thermal cracking (ft/500ft)  
 $k$  = regression coefficient determined through field calibration  
 $N()$  = standard normal distribution evaluated at()  
 $\sigma$  = standard deviation of the log of the depth of cracks in the pavements  
 $C$  = crack depth (in)  
 $h_{ac}$  = thickness of asphalt layer (in)  
 $\Delta C$  = Change in the crack depth due to a cooling cycle  
 $\Delta K$  = Change in the stress intensity factor due to a cooling cycle  
 $A, n$  = Fracture parameters for the asphalt mixture  
 $E$  = mixture stiffness  
 $\sigma_m$  = Undamaged mixture tensile strength  
 $\beta_t$  = Calibration parameter

Level 1 K: 1.5 Level 1 Standard Deviation: 0.1468 \* THERMAL + 65.027

Level 2 K: 0.5 Level 2 Standard Deviation: 0.2841 \* THERMAL + 55.462

Level 3 K: 1.5 Level 3 Standard Deviation: 0.3972 \* THERMAL + 20.422

## CSM Fatigue

$$N_f = 10^{\left( \frac{k_1 \beta_{c1} \left( \frac{\sigma_s}{M_r} \right)}{k_2 \beta_{c2}} \right)}$$

$N_f$  = number of repetitions to fatigue cracking  
 $\sigma_s$  = Tensile stress (psi)  
 $M_r$  = modulus of rupture (psi)

k1: 1

k2: 1

Bc1: 0.75

Bc2: 1.1

## Subgrade Rutting

|                                                                                                                                                            |                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\delta_a(N) = \beta_{s_1} k_1 \varepsilon_v h \left( \frac{\varepsilon_0}{\varepsilon_r} \right) \left  e^{-\left( \frac{\rho}{N} \right)^\beta} \right $ | $\delta_a = \text{permanent deformation for the layer}$<br>$N = \text{number of repetitions}$<br>$\varepsilon_v = \text{average vertical strain (in/in)}$<br>$\varepsilon_0, \beta, \rho = \text{material properties}$<br>$\varepsilon_r = \text{resilient strain (in/in)}$ |
| Granular                                                                                                                                                   | Fine                                                                                                                                                                                                                                                                        |
| k1: 2.03                                                                                                                                                   | Bs1: 1                                                                                                                                                                                                                                                                      |
| Standard Deviation (BASERUT)<br>0.1477 * Pow(BASERUT,0.6711) + 0.001                                                                                       | Standard Deviation (BASERUT)<br>0.1235 * Pow(SUBRUT,0.5012) + 0.001                                                                                                                                                                                                         |

## AC Cracking

| AC Top Down Cracking                                                                           | AC Bottom Up Cracking                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $FC_{top} = \left( \frac{C_4}{1 + e^{(C_1 - C_2 * \log_{10}(\text{Damage}))}} \right) * 10.56$ | $FC = \left( \frac{6000}{1 + e^{(C_1 * C'_1 + C_2 * C'_2 * \log_{10}(D * 100))}} \right) * \left( \frac{1}{60} \right)$<br>$C'_2 = -2.40874 - 39.748 * (1 + h_{ac})^{-2.856}$<br>$C'_1 = -2 * C'_2$ |
| c1: 7                                                                                          | c1: 1                                                                                                                                                                                               |
| c2: 3.5                                                                                        | c2: 1                                                                                                                                                                                               |
| c3: 0                                                                                          | c3: 6000                                                                                                                                                                                            |
| c4: 1000                                                                                       |                                                                                                                                                                                                     |
| AC Cracking Top Standard Deviation                                                             | AC Cracking Bottom Standard Deviation                                                                                                                                                               |
| 200 + 2300/(1+exp(1.072-2.1654*LOG10                                                           | 1.13 + 13/(1+exp(7.57-15.5*LOG10                                                                                                                                                                    |
| (TOP+0.0001)))                                                                                 | (BOTTOM+0.0001)))                                                                                                                                                                                   |

## CSM Cracking

| CSM Cracking                                                    | IRI Flexible Pavements                                                               |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------|
| $FC_{ctb} = C_1 + \frac{C_2}{1 + e^{C_3 - C_4(\text{Damage})}}$ | C1 - Rutting      C3 - Transverse Crack<br>C2 - Fatigue Crack      C4 - Site Factors |
| C1: 0                                                           | C1: 40                                                                               |
| C2: 75                                                          | C2: 0.4                                                                              |
| C3: 5                                                           | C3: 0.008                                                                            |
| C4: 3                                                           | C4: 0.015                                                                            |
| CSM Standard Deviation                                          |                                                                                      |
| CTB*1                                                           |                                                                                      |

## **APPENDIX J**

### **PAVEXPRESS FLEXIBLE PAVEMENT OUTPUT SHEETS**

# Project: City of GJ Recycling Center



## New Asphalt Pavement Design

AASHTO '93/'98: Flexible Pavement Design

### Pavement Diagram



### Layer Thicknesses (in)

Recommended Surface: 4.00 in

Aggregate Base: 6.00 in

**Total SN: 2.41** (Required minimum design SN: 2.20)

#### Details

**Scenario:** New Asphalt Pavement Design

**Created By:** Alexander Walt, [walt@rocksol.com](mailto:walt@rocksol.com)

**Last Modified:** December 2, 2025 11:49:03 am

#### Design Parameters

**Design Period:** 30 years

**Reliability Level (R):** 90%

**Combined Standard Error ( $S_0$ ):** 0.44

**Initial Servicability Index ( $p_i$ ):** 4.5

**Terminal Servicability Index ( $p_f$ ):** 2

**Delta Servicability Index ( $\Delta PSI$ ):** 2.5

**Total Design ESALs ( $W_{18}$ ):** 514,000

#### Layers

Recommended Surface - Asphalt

**Thickness:** 4.00 in

Aggregate Base - Base

**Thickness:** 6.00 in

**Structural Coefficient:** 0.12

**Drainage Coefficient:** 0.9

[DISCLAIMER](#) | [TERMS OF SERVICE](#) | [PRIVACY POLICY](#)

Copyright 2025 PaveXpress

## **APPENDIX K**

### **PAVEMENT M-E DESIGN RIGID PAVEMENT OUTPUT SHEETS**

## Design Inputs

Design Life: 30 years  
Design Type: JPCP

Existing construction: -  
Pavement construction: May, 2027  
Traffic opening: August, 2027

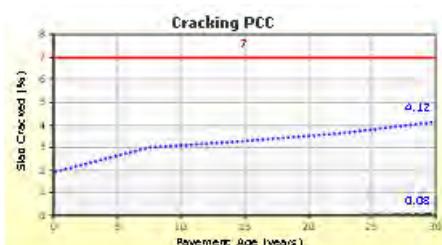
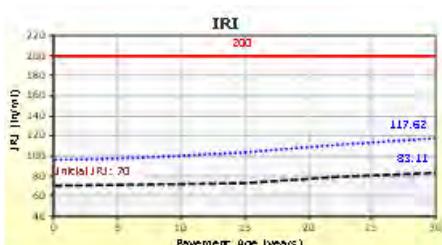
Climate Data 39.134, -108.538  
Sources (Lat/Lon)

### Design Structure

| Layer type    | Material Type     | Thickness (in) |
|---------------|-------------------|----------------|
| PCC           | R4 Level 1 Lawson | 7.0            |
| NonStabilized | Crushed stone     | 6.0            |
| Subgrade      | A-1-b             | 6.0            |
| Subgrade      | A-1-b             | Semi-infinite  |

| Joint Design:       |      |
|---------------------|------|
| Joint spacing (ft)  | 12.0 |
| Dowel diameter (in) | 1.00 |
| Slab width (ft)     | 12.0 |

### Traffic



| Age (year)      | Heavy Trucks (cumulative) |
|-----------------|---------------------------|
| 2027 (initial)  | 40                        |
| 2042 (15 years) | 226,989                   |
| 2057 (30 years) | 471,611                   |

## Design Outputs

### Distress Prediction Summary

| Distress Type                            | Distress @ Specified Reliability |           | Reliability (%) |          | Criterion Satisfied? |
|------------------------------------------|----------------------------------|-----------|-----------------|----------|----------------------|
|                                          | Target                           | Predicted | Target          | Achieved |                      |
| Terminal IRI (in/mile)                   | 200.00                           | 117.62    | 90.00           | 100.00   | Pass                 |
| Mean joint faulting (in)                 | 0.20                             | 0.02      | 90.00           | 100.00   | Pass                 |
| JPCP transverse cracking (percent slabs) | 7.00                             | 4.12      | 90.00           | 98.60    | Pass                 |

### Distress Charts



— Threshold Value    .... @ Specified Reliability    - - - @ 50% Reliability

## Traffic Inputs

### Graphical Representation of Traffic Inputs

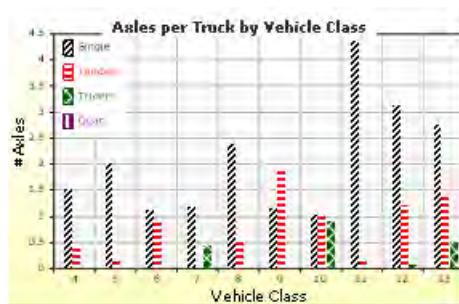
Initial two-way AADTT:

40

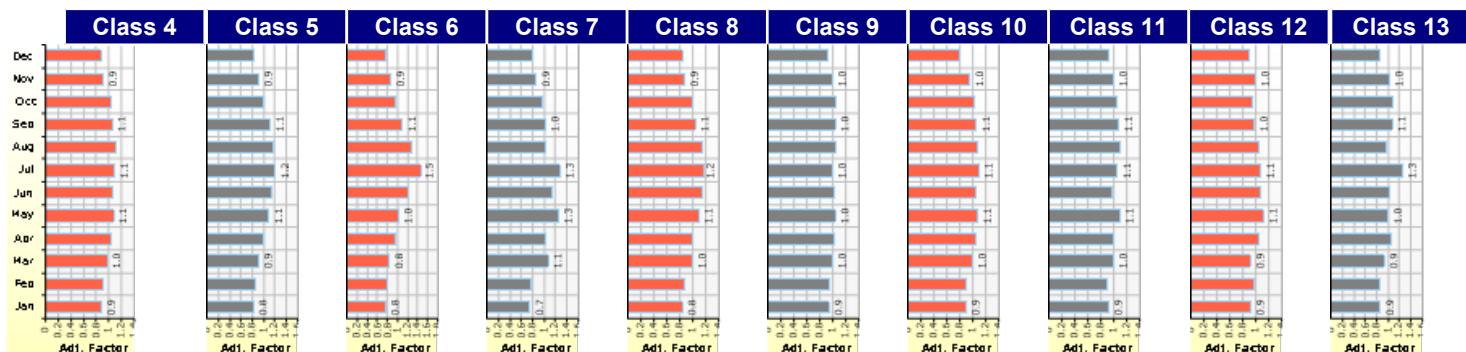
Number of lanes in design direction:

1

Percent of trucks in design direction (%):


100.0

Percent of trucks in design lane (%):


100.0

Operational speed (mph)

25.0



### Traffic Volume Monthly Adjustment Factors



## Tabular Representation of Traffic Inputs

## Volume Monthly Adjustment Factors

Level 3: Default MAF

| Month     | Vehicle Class |     |     |     |     |     |     |     |     |     |
|-----------|---------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|           | 4             | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  |
| January   | 0.9           | 0.8 | 0.8 | 0.7 | 0.8 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |
| February  | 0.9           | 0.8 | 0.8 | 0.8 | 0.9 | 0.9 | 0.9 | 0.9 | 1.0 | 0.8 |
| March     | 1.0           | 0.9 | 0.8 | 1.1 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9 | 0.9 |
| April     | 1.0           | 1.0 | 0.9 | 1.0 | 1.0 | 1.0 | 1.1 | 1.0 | 1.0 | 1.1 |
| May       | 1.1           | 1.1 | 1.0 | 1.3 | 1.1 | 1.0 | 1.1 | 1.1 | 1.1 | 1.0 |
| June      | 1.1           | 1.1 | 1.2 | 1.1 | 1.1 | 1.0 | 1.1 | 1.0 | 1.1 | 1.0 |
| July      | 1.1           | 1.2 | 1.5 | 1.3 | 1.2 | 1.0 | 1.1 | 1.1 | 1.1 | 1.3 |
| August    | 1.1           | 1.2 | 1.3 | 1.0 | 1.1 | 1.0 | 1.1 | 1.1 | 1.1 | 1.0 |
| September | 1.1           | 1.1 | 1.1 | 1.0 | 1.1 | 1.0 | 1.1 | 1.1 | 1.0 | 1.1 |
| October   | 1.0           | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9 | 1.1 |
| November  | 0.9           | 0.9 | 0.9 | 0.9 | 0.9 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
| December  | 0.9           | 0.8 | 0.8 | 0.8 | 0.8 | 0.9 | 0.8 | 0.9 | 0.9 | 0.9 |

## Distributions by Vehicle Class

| Vehicle Class | AADTT Distribution (%) (Level 3) | Growth Factor |          |
|---------------|----------------------------------|---------------|----------|
|               |                                  | Rate (%)      | Function |
| Class 4       | 0%                               | 0.5%          | Compound |
| Class 5       | 0%                               | 0.5%          | Compound |
| Class 6       | 30%                              | 0.5%          | Compound |
| Class 7       | 0%                               | 0.5%          | Compound |
| Class 8       | 0%                               | 0.5%          | Compound |
| Class 9       | 70%                              | 0.5%          | Compound |
| Class 10      | 0%                               | 0.5%          | Compound |
| Class 11      | 0%                               | 0.5%          | Compound |
| Class 12      | 0%                               | 0.5%          | Compound |
| Class 13      | 0%                               | 0.5%          | Compound |

## Truck Distribution by Hour

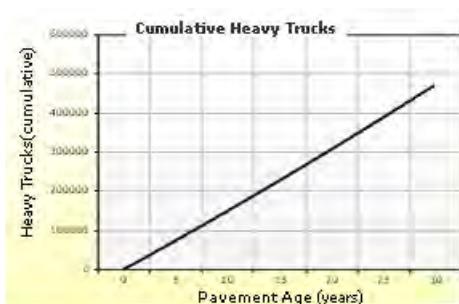
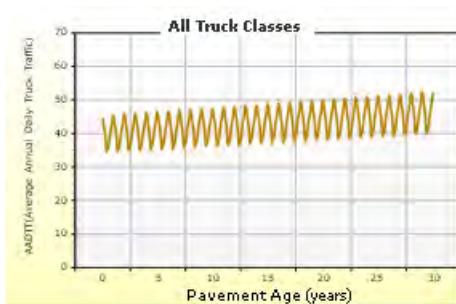
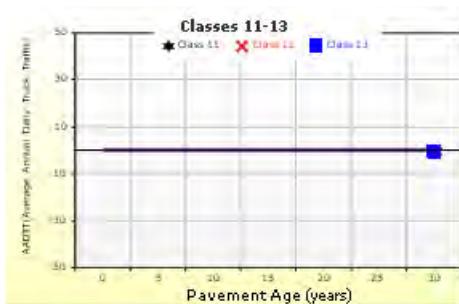
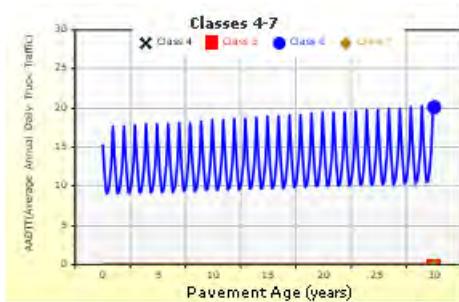
| Hour  | Distribution (%) | Hour  | Distribution (%) |
|-------|------------------|-------|------------------|
| 12 AM | 1.65%            | 12 PM | 6.75%            |
| 1 AM  | 1.37%            | 1 PM  | 6.81%            |
| 2 AM  | 1.28%            | 2 PM  | 6.83%            |
| 3 AM  | 1.36%            | 3 PM  | 6.56%            |
| 4 AM  | 1.66%            | 4 PM  | 6.02%            |
| 5 AM  | 2.32%            | 5 PM  | 5.23%            |
| 6 AM  | 3.8%             | 6 PM  | 4.35%            |
| 7 AM  | 4.95%            | 7 PM  | 3.59%            |
| 8 AM  | 5.9%             | 8 PM  | 2.98%            |
| 9 AM  | 6.48%            | 9 PM  | 2.56%            |
| 10 AM | 6.83%            | 10 PM | 2.12%            |
| 11 AM | 6.85%            | 11 PM | 1.75%            |
| Total |                  | 100%  |                  |

## Axe Configuration

| Traffic Wander                         |      |
|----------------------------------------|------|
| Mean wheel location (in)               | 18.0 |
| Traffic wander standard deviation (in) | 10.0 |
| Design lane width (ft)                 | 12.0 |

| Axe Configuration       |       |
|-------------------------|-------|
| Average axle width (ft) | 8.5   |
| Dual tire spacing (in)  | 12.0  |
| Tire pressure (psi)     | 120.0 |

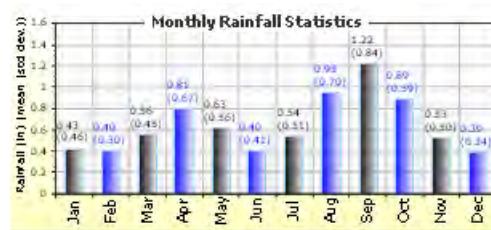
| Average Axe Spacing      |      |
|--------------------------|------|
| Tandem axle spacing (in) | 51.6 |
| Tridem axle spacing (in) | 49.2 |
| Quad axle spacing (in)   | 49.2 |





| Wheelbase                     |           |       |        |      |
|-------------------------------|-----------|-------|--------|------|
| Value Type                    | Axle Type | Short | Medium | Long |
| Average spacing of axles (ft) | 12.0      | 15.0  | 18.0   |      |
| Percent of Trucks (%)         | 17.0      | 22.0  | 61.0   |      |

## Number of Axles per Truck

| Vehicle Class | Single Axe | Tandem Axe | Tridem Axe | Quad Axe |
|---------------|------------|------------|------------|----------|
| Class 4       | 1.53       | 0.45       | 0          | 0        |
| Class 5       | 2.02       | 0.16       | 0.02       | 0        |
| Class 6       | 1.12       | 0.93       | 0          | 0        |
| Class 7       | 1.19       | 0.07       | 0.45       | 0.02     |
| Class 8       | 2.41       | 0.56       | 0.02       | 0        |
| Class 9       | 1.16       | 1.88       | 0.01       | 0        |
| Class 10      | 1.05       | 1.01       | 0.93       | 0.02     |
| Class 11      | 4.35       | 0.13       | 0          | 0        |
| Class 12      | 3.15       | 1.22       | 0.09       | 0        |
| Class 13      | 2.77       | 1.4        | 0.51       | 0.04     |

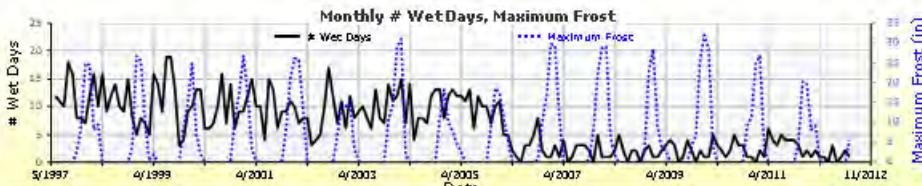
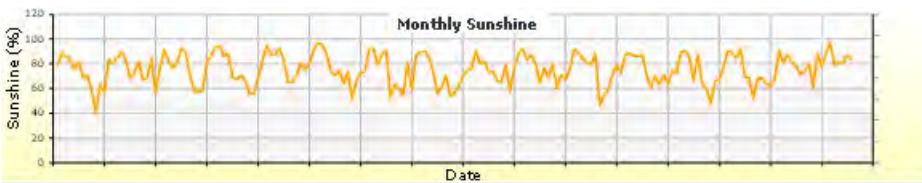
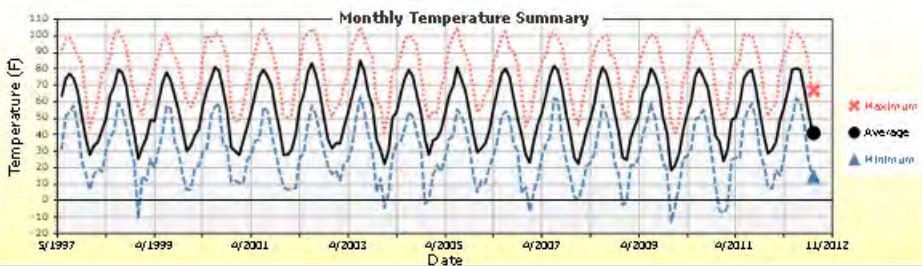
## AADTT (Average Annual Daily Truck Traffic) Growth


\* Traffic cap is not enforced

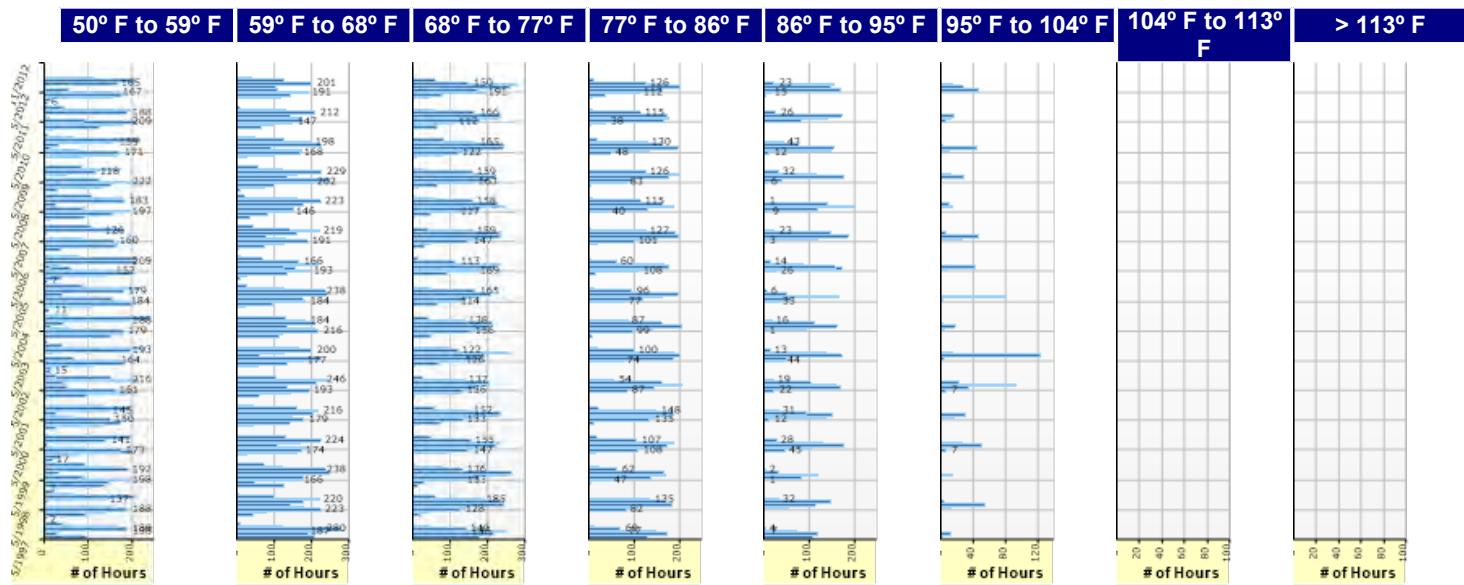
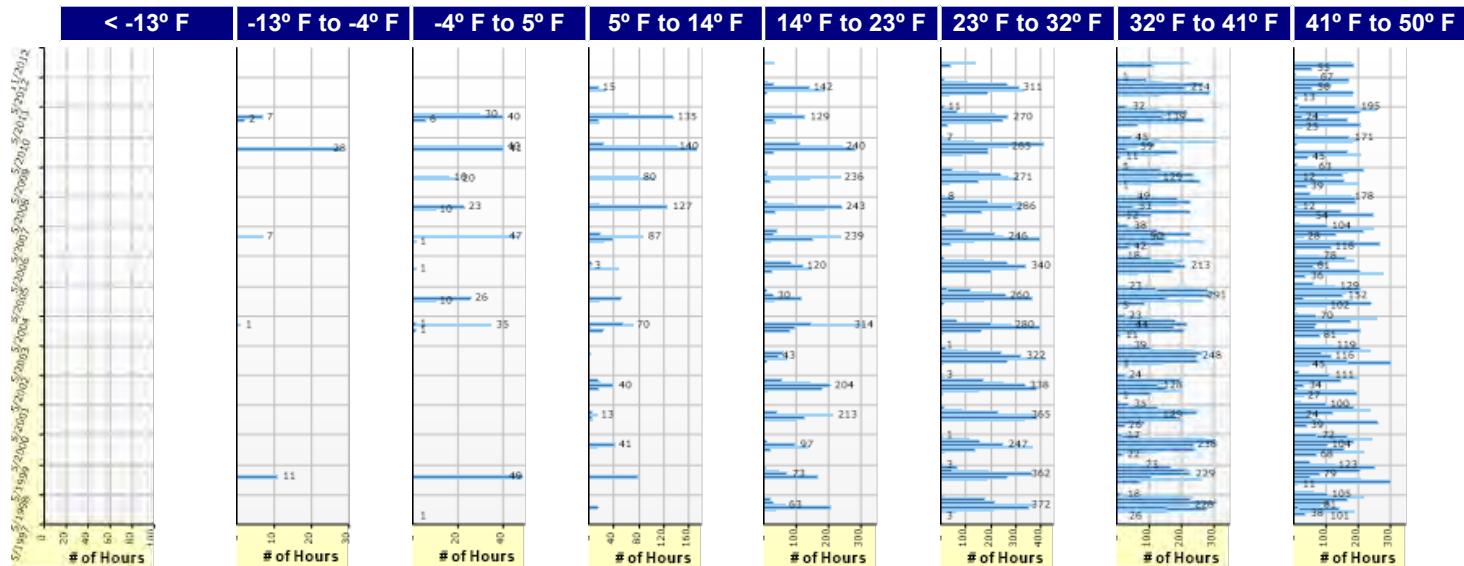


## Climate Inputs

### Climate Data Sources:




Climate Station Cities: GRAND JUNCTION, CO  
Location (lat lon elevation(ft)) 39.13400 -108.53800 4839





### Annual Statistics:

|                                              |        |       |
|----------------------------------------------|--------|-------|
| Mean annual air temperature (°F)             | 53.51  |       |
| Mean annual precipitation (in)               | 7.75   |       |
| Freezing index (°F - days)                   | 399.81 |       |
| Average annual number of freeze/thaw cycles: | 111.77 |       |
| Water table depth (ft)                       |        | 10.00 |

### Monthly Climate Summary:



## Hourly Air Temperature Distribution by Month:



## Design Properties

### JPCP Design Properties

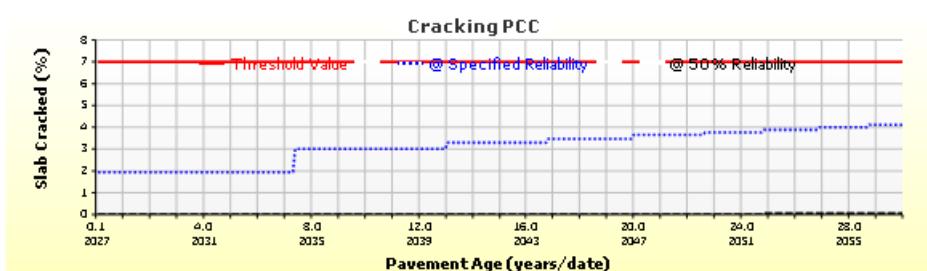
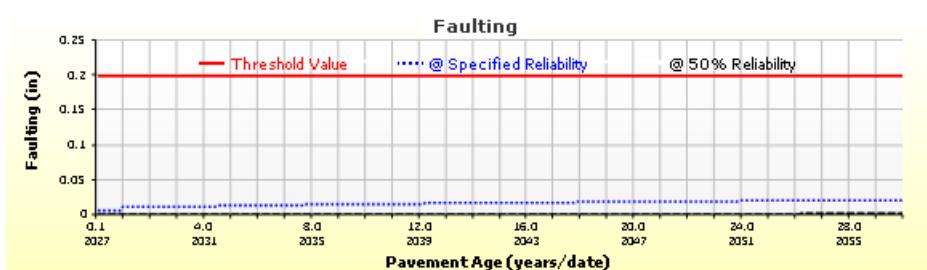
| Structure - ICM Properties         |      |
|------------------------------------|------|
| PCC surface shortwave absorptivity | 0.85 |

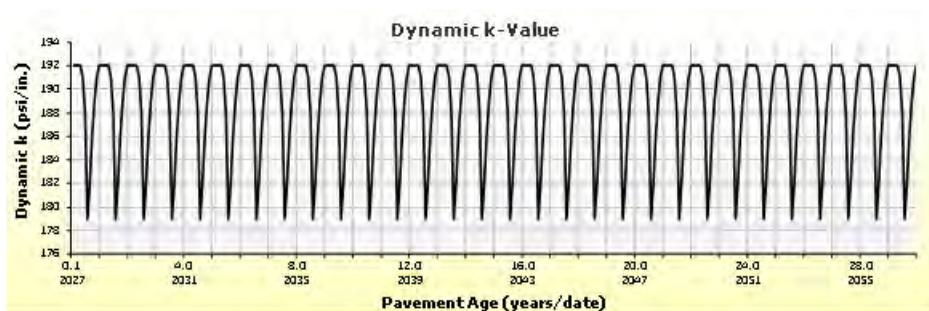
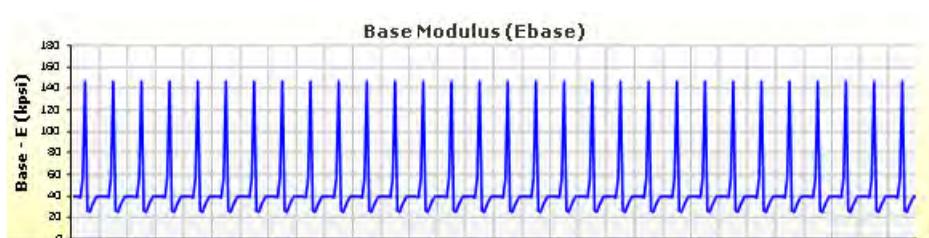
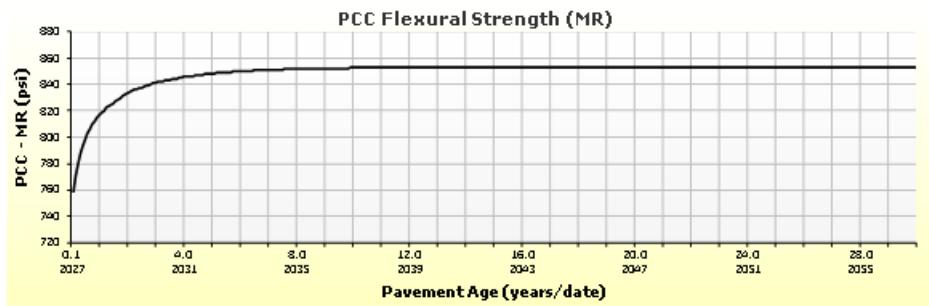
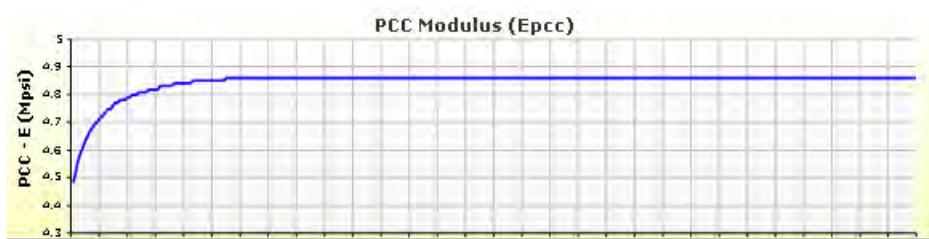
| Doweled Joints      |       |
|---------------------|-------|
| Is joint doweled ?  | True  |
| Dowel diameter (in) | 1.00  |
| Dowel spacing (in)  | 12.00 |

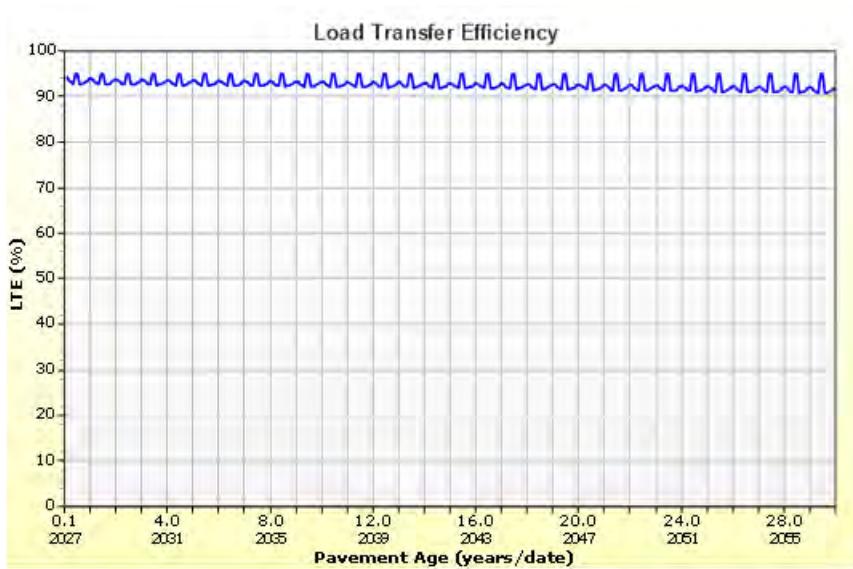
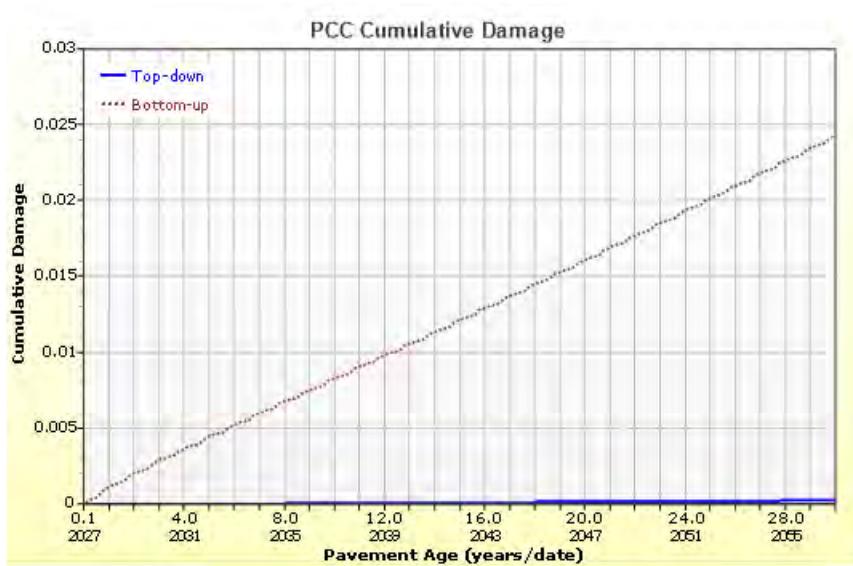
| Tied Shoulders               |       |
|------------------------------|-------|
| Tied shoulders               | True  |
| Load transfer efficiency (%) | 50.00 |

| PCC joint spacing (ft)    |       |
|---------------------------|-------|
| Is joint spacing random ? | False |
| Joint spacing (ft)        | 12.00 |

| Widened Slab      |       |
|-------------------|-------|
| Is slab widened ? | False |
| Slab width (ft)   | 12.00 |



| PCC-Base Contact Friction      |        |
|--------------------------------|--------|
| PCC-Base full friction contact | True   |
| Months until friction loss     | 360.00 |





| Sealant type | Other(Including No Sealant... Liquid... Silicone) |
|--------------|---------------------------------------------------|
|--------------|---------------------------------------------------|



| Erodibility index | 4 |
|-------------------|---|
|-------------------|---|

|                                                           |        |
|-----------------------------------------------------------|--------|
| Permanent curl/warp effective temperature difference (°F) | -10.00 |
|-----------------------------------------------------------|--------|

## Analysis Output Charts







## Layer Information

## Layer 1 PCC : R4 Level 1 Lawson

| PCC               |       |
|-------------------|-------|
| Thickness (in)    | 7.0   |
| Unit weight (pcf) | 140.6 |
| Poisson's ratio   | 0.2   |

| Thermal                                                                  |      |
|--------------------------------------------------------------------------|------|
| PCC coefficient of thermal expansion (in/in/ $^{\circ}$ F x 10 $^{-6}$ ) | 4.86 |
| PCC thermal conductivity (BTU/hr-ft- $^{\circ}$ F)                       | 1.25 |
| PCC heat capacity (BTU/lb- $^{\circ}$ F)                                 | 0.28 |

| Mix                                              |                                                                                                                                                                              |                        |      |            |   |                  |       |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------|------------|---|------------------|-------|
| Cement type                                      | Type I (1)                                                                                                                                                                   |                        |      |            |   |                  |       |
| Cementitious material content (lb/yd $^3$ )      | 563                                                                                                                                                                          |                        |      |            |   |                  |       |
| Water to cement ratio                            | 0.36                                                                                                                                                                         |                        |      |            |   |                  |       |
| Aggregate type                                   | Dolomite (2)                                                                                                                                                                 |                        |      |            |   |                  |       |
| PCC zero-stress temperature ( $^{\circ}$ F)      | <table border="1"> <tr> <td>Calculated Internally?</td><td>True</td></tr> <tr> <td>User Value</td><td>-</td></tr> <tr> <td>Calculated Value</td><td>90.7</td></tr> </table>  | Calculated Internally? | True | User Value | - | Calculated Value | 90.7  |
| Calculated Internally?                           | True                                                                                                                                                                         |                        |      |            |   |                  |       |
| User Value                                       | -                                                                                                                                                                            |                        |      |            |   |                  |       |
| Calculated Value                                 | 90.7                                                                                                                                                                         |                        |      |            |   |                  |       |
| Ultimate shrinkage (microstrain)                 | <table border="1"> <tr> <td>Calculated Internally?</td><td>True</td></tr> <tr> <td>User Value</td><td>-</td></tr> <tr> <td>Calculated Value</td><td>516.0</td></tr> </table> | Calculated Internally? | True | User Value | - | Calculated Value | 516.0 |
| Calculated Internally?                           | True                                                                                                                                                                         |                        |      |            |   |                  |       |
| User Value                                       | -                                                                                                                                                                            |                        |      |            |   |                  |       |
| Calculated Value                                 | 516.0                                                                                                                                                                        |                        |      |            |   |                  |       |
| Reversible shrinkage (%)                         | 50                                                                                                                                                                           |                        |      |            |   |                  |       |
| Time to develop 50% of ultimate shrinkage (days) | 35                                                                                                                                                                           |                        |      |            |   |                  |       |
| Curing method                                    | Curing Compound                                                                                                                                                              |                        |      |            |   |                  |       |

## Identifiers

| Field                   | Value                |
|-------------------------|----------------------|
| Display name/identifier | R4 Level 1 Lawson    |
| Description of object   | Mix ID # 2009105     |
| Author                  | CDOT                 |
| Date Created            | 4/3/2013 12:00:00 AM |
| Approver                | CDOT                 |
| Date approved           | 4/3/2013 12:00:00 AM |
| State                   | Colorado             |
| District                |                      |
| County                  |                      |
| Highway                 |                      |
| Direction of Travel     |                      |
| From station (miles)    |                      |
| To station (miles)      |                      |
| Province                |                      |
| User defined field 1    | Region 4/1/6         |
| User defined field 2    |                      |
| User defined field 3    |                      |
| Revision Number         | 0                    |

## PCC strength and modulus (Input Level: 1)

| Time           | Modulus of rupture (psi) | Elastic modulus (psi) |
|----------------|--------------------------|-----------------------|
| 7-day          | 560                      | 3230000               |
| 14-day         | 620                      | 3500000               |
| 28-day         | 710                      | 4030000               |
| 90-day         | 730                      | 4240000               |
| 20-year/28-day | 1.2                      | 1.2                   |

## Layer 2 Non-stabilized Base : Crushed stone

## Unbound

|                                            |      |
|--------------------------------------------|------|
| Layer thickness (in)                       | 6.0  |
| Poisson's ratio                            | 0.35 |
| Coefficient of lateral earth pressure (k0) | 0.5  |

## Sieve

|                     |      |
|---------------------|------|
| Liquid Limit        | 6.0  |
| Plasticity Index    | 1.0  |
| Is layer compacted? | True |

## Modulus (Input Level: 3)

|                |                                             |
|----------------|---------------------------------------------|
| Analysis Type: | Modify input values by temperature/moisture |
| Method:        | Resilient Modulus (psi)                     |

## Resilient Modulus (psi)

|         |
|---------|
| 25000.0 |
|---------|

|                                        |   |
|----------------------------------------|---|
| Use Correction factor for NDT modulus? | - |
| NDT Correction Factor:                 | - |

## Identifiers

| Field                   | Value                |
|-------------------------|----------------------|
| Display name/identifier | Crushed stone        |
| Description of object   | Default material     |
| Author                  | AASHTO               |
| Date Created            | 1/1/2011 12:00:00 AM |
| Approver                |                      |
| Date approved           | 1/1/2011 12:00:00 AM |
| State                   |                      |
| District                |                      |
| County                  |                      |
| Highway                 |                      |
| Direction of Travel     |                      |
| From station (miles)    |                      |
| To station (miles)      |                      |
| Province                |                      |
| User defined field 1    |                      |
| User defined field 2    |                      |
| User defined field 3    |                      |
| Revision Number         | 20                   |

| Is User Defined?                         | Value |
|------------------------------------------|-------|
| Maximum dry unit weight (pcf)            | False |
| Saturated hydraulic conductivity (ft/hr) | False |
| Specific gravity of solids               | False |
| Water Content (%)                        | False |

## User-defined Soil Water Characteristic Curve (SWCC)

|                  |          |
|------------------|----------|
| Is User Defined? | False    |
| af               | 7.2555   |
| bf               | 1.3328   |
| cf               | 0.8242   |
| hr               | 117.4000 |

| Sieve Size | % Passing |
|------------|-----------|
| 0.001mm    |           |
| 0.002mm    |           |
| 0.020mm    |           |
| #200       | 8.7       |
| #100       |           |
| #80        | 12.9      |
| #60        |           |
| #50        |           |
| #40        | 20.0      |
| #30        |           |
| #20        |           |
| #16        |           |
| #10        | 33.8      |
| #8         |           |
| #4         | 44.7      |
| 3/8-in.    | 57.2      |
| 1/2-in.    | 63.1      |
| 3/4-in.    | 72.7      |
| 1-in.      | 78.8      |
| 1 1/2-in.  | 85.8      |
| 2-in.      | 91.6      |
| 2 1/2-in.  |           |
| 3-in.      |           |
| 3 1/2-in.  | 97.6      |

## Layer 3 Subgrade : A-1-b

## Unbound

|                                            |      |
|--------------------------------------------|------|
| Layer thickness (in)                       | 6.0  |
| Poisson's ratio                            | 0.35 |
| Coefficient of lateral earth pressure (k0) | 0.5  |

## Sieve

|                     |      |
|---------------------|------|
| Liquid Limit        | 11.0 |
| Plasticity Index    | 1.0  |
| Is layer compacted? | True |

## Modulus (Input Level: 3)

|                |                                             |
|----------------|---------------------------------------------|
| Analysis Type: | Modify input values by temperature/moisture |
| Method:        | Resilient Modulus (psi)                     |

## Resilient Modulus (psi)

|         |
|---------|
| 10615.0 |
|---------|

|                                        |   |
|----------------------------------------|---|
| Use Correction factor for NDT modulus? | - |
| NDT Correction Factor:                 | - |

## Identifiers

| Field                   | Value                |
|-------------------------|----------------------|
| Display name/identifier | A-1-b                |
| Description of object   | Default material     |
| Author                  | AASHTO               |
| Date Created            | 1/1/2011 12:00:00 AM |
| Approver                |                      |
| Date approved           | 1/1/2011 12:00:00 AM |
| State                   |                      |
| District                |                      |
| County                  |                      |
| Highway                 |                      |
| Direction of Travel     |                      |
| From station (miles)    |                      |
| To station (miles)      |                      |
| Province                |                      |
| User defined field 1    |                      |
| User defined field 2    |                      |
| User defined field 3    |                      |
| Revision Number         | 0                    |

|                                          | Is User Defined? | Value     |
|------------------------------------------|------------------|-----------|
| Maximum dry unit weight (pcf)            | False            | 124.2     |
| Saturated hydraulic conductivity (ft/hr) | False            | 2.303e-03 |
| Specific gravity of solids               | False            | 2.7       |
| Water Content (%)                        | False            | 9.1       |

## User-defined Soil Water Characteristic Curve (SWCC)

|                  |          |
|------------------|----------|
| Is User Defined? | False    |
| af               | 5.8206   |
| bf               | 0.4621   |
| cf               | 3.8497   |
| hr               | 126.8000 |

| Sieve Size | % Passing |
|------------|-----------|
| 0.001mm    |           |
| 0.002mm    |           |
| 0.020mm    |           |
| #200       | 13.4      |
| #100       |           |
| #80        | 20.8      |
| #60        |           |
| #50        |           |
| #40        | 37.6      |
| #30        |           |
| #20        |           |
| #16        |           |
| #10        | 64.0      |
| #8         |           |
| #4         | 74.2      |
| 3/8-in.    | 82.3      |
| 1/2-in.    | 85.8      |
| 3/4-in.    | 90.8      |
| 1-in.      | 93.6      |
| 1 1/2-in.  | 96.7      |
| 2-in.      | 98.4      |
| 2 1/2-in.  |           |
| 3-in.      |           |
| 3 1/2-in.  | 99.4      |

## Layer 4 Subgrade : A-1-b

## Unbound

|                                            |               |
|--------------------------------------------|---------------|
| Layer thickness (in)                       | Semi-infinite |
| Poisson's ratio                            | 0.35          |
| Coefficient of lateral earth pressure (k0) | 0.5           |

## Sieve

|                     |       |
|---------------------|-------|
| Liquid Limit        | 11.0  |
| Plasticity Index    | 1.0   |
| Is layer compacted? | False |

## Modulus (Input Level: 3)

|                |                                             |
|----------------|---------------------------------------------|
| Analysis Type: | Modify input values by temperature/moisture |
| Method:        | Resilient Modulus (psi)                     |

## Resilient Modulus (psi)

|         |
|---------|
| 10615.0 |
|---------|

|                                        |   |
|----------------------------------------|---|
| Use Correction factor for NDT modulus? | - |
| NDT Correction Factor:                 | - |

## Identifiers

| Field                   | Value                |
|-------------------------|----------------------|
| Display name/identifier | A-1-b                |
| Description of object   | Default material     |
| Author                  | AASHTO               |
| Date Created            | 1/1/2011 12:00:00 AM |
| Approver                |                      |
| Date approved           | 1/1/2011 12:00:00 AM |
| State                   |                      |
| District                |                      |
| County                  |                      |
| Highway                 |                      |
| Direction of Travel     |                      |
| From station (miles)    |                      |
| To station (miles)      |                      |
| Province                |                      |
| User defined field 1    |                      |
| User defined field 2    |                      |
| User defined field 3    |                      |
| Revision Number         | 0                    |

|                                          | Is User Defined? | Value     |
|------------------------------------------|------------------|-----------|
| Maximum dry unit weight (pcf)            | False            | 123.7     |
| Saturated hydraulic conductivity (ft/hr) | False            | 2.303e-03 |
| Specific gravity of solids               | False            | 2.7       |
| Water Content (%)                        | False            | 9.1       |

## User-defined Soil Water Characteristic Curve (SWCC)

|                  |          |
|------------------|----------|
| Is User Defined? | False    |
| af               | 5.8206   |
| bf               | 0.4621   |
| cf               | 3.8497   |
| hr               | 126.8000 |

| Sieve Size | % Passing |
|------------|-----------|
| 0.001mm    |           |
| 0.002mm    |           |
| 0.020mm    |           |
| #200       | 13.4      |
| #100       |           |
| #80        | 20.8      |
| #60        |           |
| #50        |           |
| #40        | 37.6      |
| #30        |           |
| #20        |           |
| #16        |           |
| #10        | 64.0      |
| #8         |           |
| #4         | 74.2      |
| 3/8-in.    | 82.3      |
| 1/2-in.    | 85.8      |
| 3/4-in.    | 90.8      |
| 1-in.      | 93.6      |
| 1 1/2-in.  | 96.7      |
| 2-in.      | 98.4      |
| 2 1/2-in.  |           |
| 3-in.      |           |
| 3 1/2-in.  | 99.4      |

## Calibration Coefficients

## PCC Faulting

$$C_{12} = C_1 + (C_2 * FR^{0.25})$$

$$C_{34} = C_3 + (C_4 * FR^{0.25})$$

$$FaultMax_0 = C_{12} * \delta_{curling} * \left[ \log(1 + C_5 * 5.0^{EROD}) * \log\left(P_{200} * \frac{WetDays}{p_S}\right) \right]^{C_6}$$

$$FaultMax_i = FaultMax_0 + C_7 * \sum_{j=1}^m DE_j * \log(1 + C_5 * 5.0^{EROD})^{C_6}$$

$$\Delta Fault_i = C_{34} * (FaultMax_{i-1} - Fault_{i-1})^2 * DE_i$$

$$C_8 = DowelDeterioration$$

|            |             |             |              |
|------------|-------------|-------------|--------------|
| C1: 0.5104 | C2: 0.00838 | C3: 0.00147 | C4: 0.008345 |
|------------|-------------|-------------|--------------|

|          |            |            |         |
|----------|------------|------------|---------|
| C5: 5999 | C6: 0.8404 | C7: 5.9293 | C8: 400 |
|----------|------------|------------|---------|

## PCC Reliability Faulting Standard Deviation

0.0831\*Pow(FAULT,0.3426) + 0.00521

## IRI-jpcp

|                                                                     |            |            |
|---------------------------------------------------------------------|------------|------------|
| C1 - Cracking<br>C2 - Spalling<br>C3 - Faulting<br>C4 - Site Factor | C1: 0.8203 | C2: 0.4417 |
|---------------------------------------------------------------------|------------|------------|

|                                                                     |            |           |
|---------------------------------------------------------------------|------------|-----------|
| C1 - Cracking<br>C2 - Spalling<br>C3 - Faulting<br>C4 - Site Factor | C3: 1.4929 | C4: 25.24 |
|---------------------------------------------------------------------|------------|-----------|

## Reliability Standard Deviation

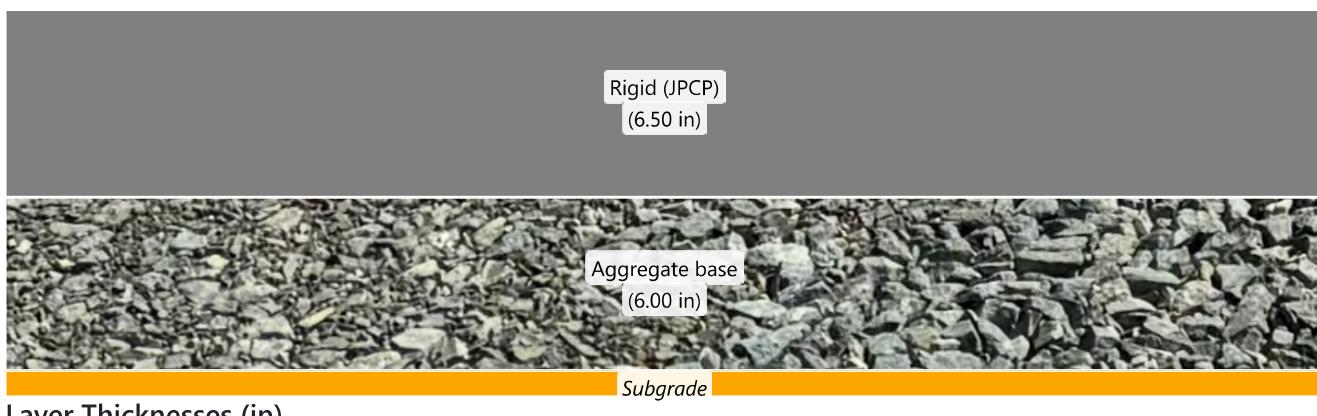
|                                                                     |     |
|---------------------------------------------------------------------|-----|
| C1 - Cracking<br>C2 - Spalling<br>C3 - Faulting<br>C4 - Site Factor | 5.4 |
|---------------------------------------------------------------------|-----|

## PCC Cracking

| $\log(N) = C1 \cdot \left(\frac{MR}{\sigma}\right)^{C2}$ | Fatigue Coefficients |          | Cracking Coefficients |           |
|----------------------------------------------------------|----------------------|----------|-----------------------|-----------|
|                                                          | C1: 2                | C2: 1.22 | C4: 0.6               | C5: -2.05 |
| <b>PCC Reliability Cracking Standard Deviation</b>       |                      |          |                       |           |
| $CRK = \frac{100}{1 + C4 FD^{C5}}$                       |                      |          |                       |           |

## **APPENDIX L**

### **PAVEXPRESS RIGID PAVEMENT OUTPUT SHEETS**


# Project: City of GJ Recycling Center



## New Rigid Pavement Design

AASHTO '93/'98: Rigid Pavement Design

### Pavement Diagram



### Layer Thicknesses (in)

**Rigid (JPCP):** 6.50 in

**Base:** 6.00 in

### Calculation Details ?

Effective positive temperature differential

TD

5.062 °F

Ratio of stress with friction to stress with bond

f

1.11

Radius of relative stiffness l

l

30.89 in

Log of slope of TD effect on stress

log(b)

-1.45

Stress due to load

$\sigma_L$

314.1 PSI

Total stress due to load and temperature

$\sigma_t$

411.3 PSI

*\*Note: calculated design thicknesses will be rounded to the nearest 0.5" for constructability reasons.*

#### Details

**Scenario:** New Rigid Pavement Design

**Created By:** Alexander Walt, [walt@rocksol.com](mailto:walt@rocksol.com)

**Last Modified:** December 2, 2025 12:16:38 pm

#### Layers

Rigid (JPCP) - Concrete

**Thickness:** 6.50 in

Aggregate base - Base

**Thickness:** 6.00 in

Subgrade - Subgrade

#### Design Parameters

**Design Period:** 30 years

**Reliability Level (R):** 90%

**Combined Standard Error ( $S_0$ ):** 0.44

**Initial Servicability Index ( $p_i$ ):** 4.5

**Terminal Servicability Index ( $p_t$ ):** 2

**Delta Servicability Index ( $\Delta PSI$ ):** 2.5

**Total Design ESALs ( $W_{18}$ ):** 796,000

**Thickness:** 0.00 in

[DISCLAIMER](#) | [TERMS OF SERVICE](#) | [PRIVACY POLICY](#)

Copyright 2025 PaveXpress