

Huddleston-Berry Engineering & Testing, LLC

GEOLOGIC HAZARDS AND GEOTECHNICAL INVESTIGATION LAS COLONIAS PARK GRAND JUNCTION, COLORADO PROJECT#00208-0044

CITY OF GRAND JUNCTION 250 NORTH 5TH STREET GRAND JUNCTION, COLORADO 81501

OCTOBER 17, 2014

Huddleston-Berry Engineering and Testing, LLC 640 White Avenue, Unit B Grand Junction, Colorado 81501

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1 1.2 1.3	Scope Site Location and Description Proposed Construction	1
2.0	GEOLOGIC SETTING	2
2.1 2.2 2.3	Soils Geology Groundwater	2
3.0	FIELD INVESTIGATION	2
3.1	Subsurface Investigation	2
4.0	LABORATORY TESTING	3
5.0	GEOLOGIC INTERPRETATION	3
5.1 5.2 5.3 5.4	Geologic Hazards Geologic Constraints Water Resources Mineral Resources	3 3
	Winieral Resources	4
6.0	CONCLUSIONS	
6.0 7.0		4
	CONCLUSIONS	4 4 5 5 6 6

FIGURES

Figure 1 – Site Location Map Figure 2 – Site Plan

APPENDICES

Appendix A – UDSA NRCS Soil Survey Data Appendix B – Typed Boring Logs Appendix C – Laboratory Testing Results

1.0 INTRODUCTION

As part of continued development in Western Colorado, the City of Grand Junction proposes to improve Las Colonias Park in Grand Junction. As part of the design development process, Huddleston-Berry Engineering and Testing, LLC (HBET) was retained by the City of Grand Junction to conduct a geologic hazards and geotechnical investigation at the site.

1.1 Scope

As discussed above, a geologic hazards and geotechnical investigation was conducted for Las Colonias Park in Grand Junction, Colorado. The scope of the investigation included the following components:

- Conducting a subsurface investigation to evaluate the subsurface conditions at the site.
- Collecting soil samples and conducting laboratory testing to determine the engineering properties of the soils at the site.
- Providing recommendations for foundation types and subgrade preparation.
- Providing recommendations for bearing capacity.
- Providing recommendations for lateral earth pressure.
- Providing recommendations for drainage, grading, and general earthwork.
- Providing recommendations for pavements.
- Evaluating potential geologic hazards at the site.

The investigation and report were completed by a Colorado registered professional engineer in accordance with generally accepted geotechnical and geological engineering practices. This report has been prepared for the exclusive use of the City of Grand Junction.

1.2 Site Location and Description

The site is located between Struthers Avenue and the Colorado River in Grand Junction, Colorado. The project location is shown on Figure 1 – Site Location Map.

At the time of the investigation, the majority of the site was open and nearly level. Vegetation consisted primarily of scattered weeds and trees. The site was bordered to the north by Struthers Avenue, vacant lots, and existing commercial/industrial properties. The site was bordered to the east by open land. The site was bordered to the south by open land and the Colorado River. The site was bordered to the west by existing commercial/industrial property.

1.3 Proposed Construction

The proposed construction is anticipated to include new structures, new utilities, and new pavements.

2.0 GEOLOGIC SETTING

2.1 Soils

Soils data was obtained from the USDA Natural Resource Conservation Service Web Soil Survey. The data indicates that the site is underlain by Massadona silty clay loam, 0 to 2 percent slopes. Soil survey data is included in Appendix A.

2.2 Geology

According to the *Geologic Map of Colorado* by Ogden Tweto (1979), the site is underlain by Quaternary gravels. The gravels are underlain by Mancos shale bedrock. The Mancos shale unit is thick in the Grand Valley and has a low to moderate potential for expansion.

2.3 Groundwater

Groundwater was encountered in three of the borings at depths of between 5.0 and 5.5 feet below the ground surface at the time of the investigation.

3.0 FIELD INVESTIGATION

3.1 Subsurface Investigation

The subsurface investigation was conducted on September 12^{th} , 2014 and consisted of six geotechnical borings. The borings were drilled to depths of between 4.0 and 9.0 feet below the existing ground surface. Boring locations are shown on Figure 2 – Site Plan. Typed boring logs are included in Appendix B. Samples of the native soils were collected during Standard Penetration Testing (SPT) and using bulk sampling methods at the locations shown on the logs.

As shown on the logs, the subsurface conditions were slightly variable. Borings B-1, B-2, and B-4, conducted in the southeastern portion of the site, generally encountered 3.5 to 7.5 feet of brown, moist to wet, soft to stiff lean clay with sand above brown, moist to wet, dense sandy gravel to the bottoms of the borings. Groundwater was encountered in these borings at depths of between 5.0 and 5.5 feet.

Boring B-3 encountered brown, moist, dense sandy gravel from the ground surface to the bottom of the boring. Groundwater was not encountered in B-3 in the boring at the time of the investigation.

Boring B-5 encountered 1.5 feet of concrete above brown, moist, stiff lean clay with sand to a depth of 2.5 feet. The clay was underlain by brown, moist, dense sandy gravel to the bottom of the boring. Groundwater as not encountered in B-5 at the time of the investigation.

Boring B-6 encountered 4.5 feet of brown, moist, very loose silty, clayey sand above brown moist, dense sandy gravel to the bottom of the boring. Groundwater was not encountered in B-6 at the time of the investigation.

4.0 LABORATORY TESTING

Selected native soil samples collected from the borings were tested in the Huddleston-Berry Engineering and Testing LLC geotechnical laboratory for natural moisture and density, grain size analysis, Atterberg limits, maximum dry density and optimum moisture (Proctor), swell/consolidation, and water soluble sulfates content. The laboratory testing results are included in Appendix C.

The laboratory testing results indicate that the native clay soils are slightly plastic. In addition, the native clay soils were indicated to tend to consolidate at their existing density. However, the CBR results indicate that the native clay soils may expand as much as 1% when compacted and introduced to excess moisture. The native sand soils were shown to be slightly plastic. The native sand soils are anticipated to be slightly collapsible.

5.0 GEOLOGIC INTERPRETATION

5.1 Geologic Hazards

The most critical geologic hazard identified on the site is the presence of moisture sensitive soils. However, due to the proximity of the site to the Colorado River, flooding could impact the site.

5.2 Geologic Constraints

In general, the primary geologic constraint to construction at the site is the presence of moisture sensitive soils.

5.3 Water Resources

No water supply wells were observed on the property. As discussed previously, the site lies adjacent to the Colorado River. In general, with proper design and construction, the development of the property is not anticipated to adversely impact surface water or groundwater.

5.4 Mineral Resources

Potential mineral resources in western Colorado generally include gravel, uranium ore, and commercial rock products such as flagstone. The site is mapped in the Mesa County GIS database as containing potential gravel resources. As indicate in the boring logs, gravels were encountered during the subsurface investigation. However, due to the size and location of the property, the existing gravel resources likely do not reflect an economically recoverable resource.

6.0 CONCLUSIONS

Based upon the available data sources, field investigation, and nature of the proposed construction, HBET does not believe that there are any geologic conditions which should preclude construction at this site. However, foundations, pavements, and earthwork may have to consider the impacts of moisture sensitive soils.

7.0 **RECOMMENDATIONS**

7.1 Foundations

As discussed previously, moisture sensitive soils were encountered at the site. However, based upon the nature of the proposed construction, shallow foundations are recommended. Spread footings and isolated pads and monolithic (turndown edge) structural slabs are the recommended foundation alternatives. However, to provide a uniform subgrade, it is recommended that the foundations be constructed above structural fill. Where the dense gravel soils are shallow, it is recommended that the foundations be constructed above a minimum of 12-inches of structural fill resting on the dense gravel soils. Where the dense gravel soils are deeper, a minimum of 24-inches of structural fill is recommended.

As discussed previously, the native clay soils were shown to be slightly expansive when compacted and introduced to excess moisture. However, the magnitude of expansion measured in the laboratory was small. Therefore, with careful moisture control and proper compaction, the native clay soils, exclusive of topsoil, may be reused as structural fill. The native sand and gravel soils, exclusive of topsoil, are also suitable for reuse as structural fill. Imported structural fill should consist of a granular, nonexpansive, non-free draining material such as pit-run, crusher fines, or CDOT Class 6 base course. However, if pit-run or the native gravels are used as structural fill, a minimum of 6-inches of base course, crusher fines, or other suitable fill material should be placed above the pit-run/gravels to prevent large point stresses on the bottoms of the foundations due to large particles in the pit-run/gravels.

Prior to placement of structural fill, it is recommended that the bottoms of the foundation excavations in gravel and cobble soils be proofrolled to the Engineer's satisfaction. It is recommended that the bottoms of the foundation excavations in the native sand or clay soils be scarified to a depth of 9 to 12-inches, moisture conditioned, and compacted to a minimum of 95% of the standard Proctor maximum dry density, within \pm 2% of the optimum moisture content, as determined in accordance with ASTM D698.

Structural fill should extend laterally beyond the edges of the foundation a distance equal to the thickness of structural fill. Structural fill should be moisture conditioned, placed in maximum 8-inch loose lifts, and compacted to a minimum of 95% of the standard Proctor maximum dry density for fine grained soils and 90% of the modified Proctor maximum dry density for coarse grained soils, within \pm 2% of the optimum moisture content as determined in accordance with ASTM D698 and D1557C, respectively. Pit-run or native gravels used as structural fill should be proofrolled to the Engineer's satisfaction.

For the foundation building pad prepared as recommended with structural fill consisting of the native soils or imported granular materials, a maximum allowable bearing capacity of 1,500 psf may be used. In addition, a modulus of subgrade reaction of 150 pci may be used for structural fill consisting of the native sand and/or clay soils and a modulus of 250 pci may be used for structural fill consisting of the native gravel soils, crusher fines, pit-run, or base course. The bottoms of exterior foundations should extend a minimum of 24-inches below grade for frost protection.

7.2 Seismic Design Criteria

In general based upon the results of the subsurface investigation, the site classifies as Site Class D for a stiff soil profile.

7.3 Corrosion of Concrete

Water soluble sulfates are common to the soils in Western Colorado. Therefore, at a minimum, Type I-II sulfate resistant cement is recommended for construction at this site.

7.4 Non-Structural Floor Slabs and Exterior Flatwork

As mentioned above, expansive materials are present in the subsurface at the site. In general, slabs-on-grade cannot develop sufficient bearing pressures to resist swelling pressures. Therefore, some movement of slabs-on-grade should be expected. The only way to eliminate the potential for excessive differential movements would be to utilize a structural floor supported by the foundations. However, where a structurally supported floor is not used, while the risk of movement cannot be eliminated, the risk can be reduced by constructing a floating floor slab on a minimum of 18-inches of structural fill. Exterior flatwork should be constructed on a minimum of 12-inches of structural fill.

Floating slabs-on-grade should not be tied in or connected to the foundations in any manner. If a non-structurally supported floor slab is used, interior non-bearing partitions should include a slip-joint or framing void which permits a minimum of 2inches of vertical movement.

7.5 Lateral Earth Pressures

Stemwalls and/or any retaining walls should be designed to resist lateral earth pressures. For backfill consisting of the native soils or imported granular, non-free draining, non-expansive material, we recommend that the walls be designed for an equivalent fluid unit weight of 55 pcf in areas where no surcharge loads are present. Lateral earth pressures should be increased as necessary to reflect any surcharge loading behind the walls.

7.6 Excavations

Excavations in the soils at the site may stand for short periods of time but should not be considered to be stable. The native soils generally classify as Type C soil with regard to OSHA's *Construction Standards for Excavations*. For Type C soils, the maximum allowable slope in temporary cuts is 1.5H:1V. However, the soil classifications above are based solely upon the geotechnical boring data. HBET should be contacted to further evaluate site soils with regard to OSHA soil classification at the time of construction.

7.7 Pavements

The proposed construction is anticipated to include new site roadways, parking lots, etc. As discussed previously, the pavement subgrade materials at the site range from clay to gravel. However, the clay will be critical for the pavement design. The design California Bearing Ratio (CBR) of the native clay soils was determined in the laboratory to be approximately 2.0. This corresponds to a Resilient Modulus of 3,000 psi.

Based upon the subgrade conditions and anticipated traffic loading, pavement section alternatives were developed in accordance with the *Guideline for the Design and Use of Asphalt Pavements for Colorado Roadways* by the Colorado Asphalt Pavement Association and CDOT *Pavement Design Manual*. The following pavement section alternatives are recommended:

		PAVEM	ENT SECTION (I	nches)	
ALTERNATIVE	Hot-Mix Asphalt Pavement	CDOT Class 6 Base Course	CDOT Class 3 Subbase Course	Concrete Pavement	TOTAL
Full Depth HMA	7.0				7.0
A	3.0	13.0			16.0
В	4.0	10.0			14.0
С	3.0	6.0	10.0		19.0
Rigid Pavement		6.0		6.0	12.0

Automobile Parking Areas (Limited Truck Traffic) ESAL's = 100,000, Structural Number = 3.10

Mixed Use Areas (Higher Truck Tra	affic)
ESAL's = 350,000: Structural Number	= 3.50

		PAVEM	ENT SECTION (I	nches)	
ALTERNATIVE	Hot-Mix Asphalt Pavement	CDOT Class 6 Base Course	CDOT Class 3 Subbase Course	Rigid Pavement	TOTAL
Full Depth HMA	9.0				9.0
A	4.0	14.0			18.0
В	5.0	11.0			16.0
С	4.0	6.0	11.0		21.0
Rigid Pavement		6.0		8.0	14.0

Prior to new pavement placement, areas to be paved should be stripped of all topsoil, fill, or other unsuitable materials. It is recommended that the subgrade soils be scarified to a depth of 12-inches; moisture conditioned, and recompacted to a minimum of 95% of the standard Proctor maximum dry density, within $\pm 2\%$ of optimum moisture content as determined by AASHTO T-99.

Aggregate base course and subbase course should be placed in maximum 9-inch loose lifts, moisture conditioned, and compacted to a minimum of 95% and 93% of the maximum dry density, respectively, at -2% to +3% of optimum moisture content as determined by AASHTO T-180. In addition to density testing, base course should be proofrolled to verify subgrade stability.

It is recommended that Hot-Mix Asphaltic (HMA) pavement conform to CDOT grading SX or S specifications and consist of an approved 75 gyration Superpave method mix design. HMA pavement should be compacted to between 92% and 96% of the maximum theoretical density. An end point stress of 50 psi should be used. It is recommended that rigid pavements consist of CDOT Class P concrete or alternative approved by the Engineer. In addition, pavements should conform to local specifications.

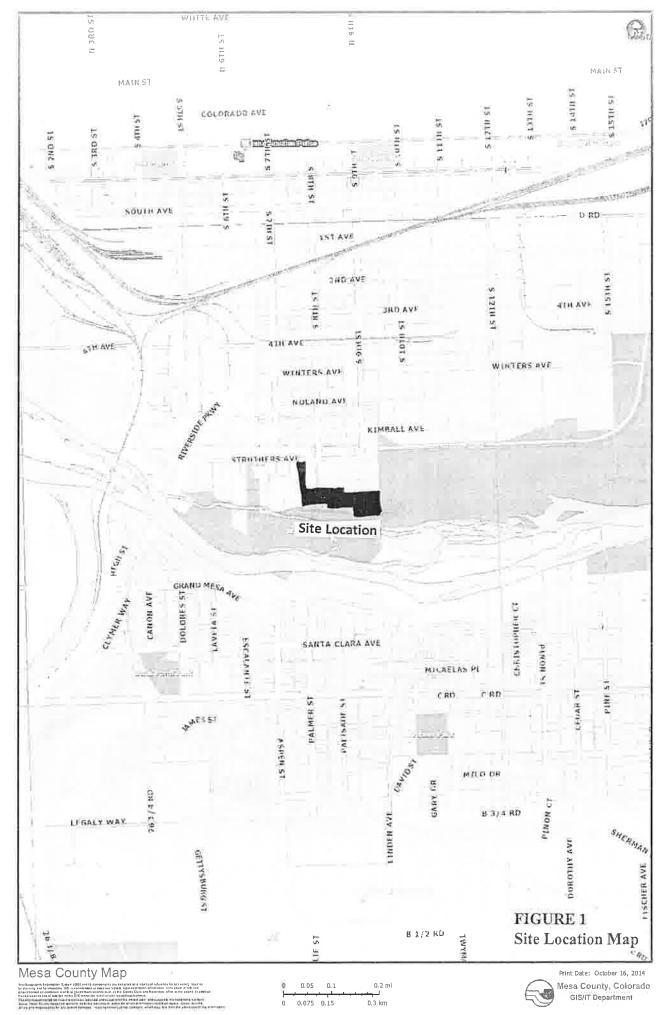
The long-term performance of the pavements is dependent on positive drainage away from the pavements. Ditches, culverts, and inlet structures in the vicinity of paved areas must be maintained to prevent ponding of water on the pavement

8.0 GENERAL

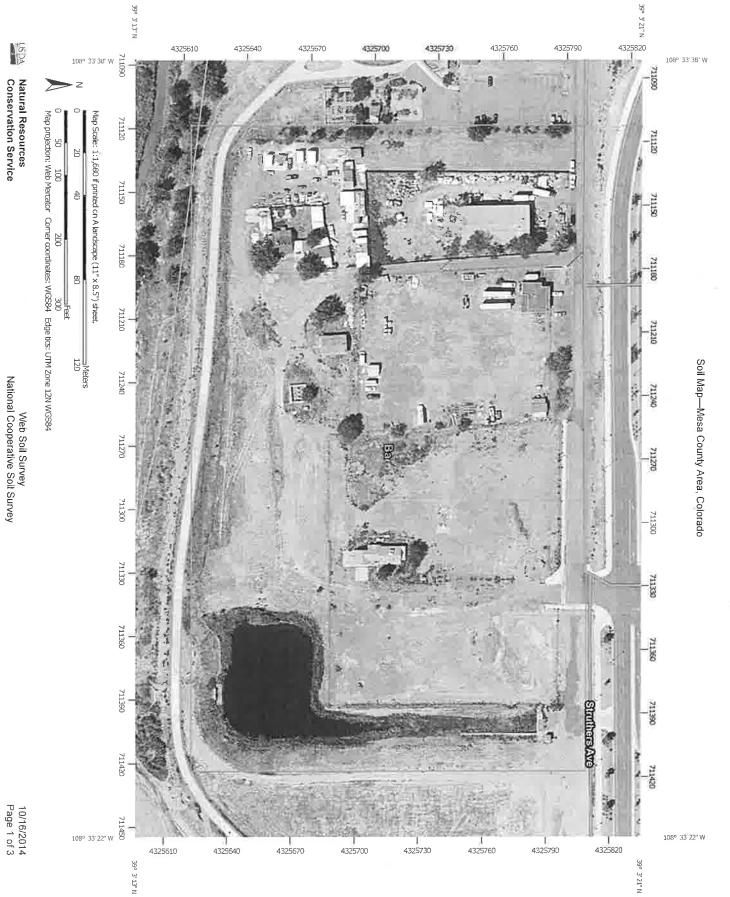
The recommendations included above are based upon the results of the subsurface investigation and on our local experience. These conclusions and recommendations are valid only for the proposed construction.

As discussed previously, the subsurface conditions at the site were variable. However, the precise nature and extent of any subsurface variability may not become evident until construction. Therefore, it is recommended that a representative of HBET observe the foundation excavations prior to structural fill placement to verify that the subsurface conditions are consistent with those described herein. In addition, it is recommended that a representative of HBET test compaction of structural fill materials.

As discussed previously, moisture sensitive soils were encountered at the site. The recommendations contained herein are designed to reduce the potential for excessive differential movements; however, HBET cannot predict long-term changes in subsurface moisture conditions and/or the precise magnitude or extent of volume change. Where significant increases in subsurface moisture occur due to poor grading, improper stormwater management, utility line failure, excess irrigation, etc. either during construction or the result of actions of the Owner, significant movements are possible.


Huddleston-Berry Engineering and Testing, LLC is pleased to be of service to your project. Please contact us if you have any questions or comments regarding the contents of this report.

Respectfully Submitted: Huddleston-Berry Engineering and Testing, LLC


Michael A. Berry, P.E. Vice President of Engineering

FIGURES

APPENDIX A Soil Survey Data

Area of Ir	terest (AOI)	Eq	Spoil Area
]	Area of Interest (AOI)	Ó	Stony Spot
Soils		â	Very Stony Spot
	Soil Map Unit Polygons	1991	Wet Spot
30 ⁰⁰ ~~30 ⁰⁰⁰	Soil Map Unit Lines	Ô	Other
	Soil Map Unit Points		Special Line Features
	Point Features	Water Fe	
ື	Blowout	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Streams and Canals
8	Borrow Pit	Transpor	tation
×	Clay Spot	* * *	Rails
<u></u>	Closed Depression	\sim	Interstate Highways
X	Gravel Pit	S Trading to	US Routes
* *>	Gravelly Spot		Major Roads
0	Landfill		Local Roads
Â.	Lava Flow	Backgrou	
dis.	Marsh or swamp	10	Aerial Photography
()	Mine or Quarry		
Ø	Miscellaneous Water		
\mathcal{O}	Perennial Water		
$r_{\rm eff} \ell$	Rock Outcrop		
	Saline Spot		
6 % ***	Sandy Spot		
- <u></u>	Severely Eroded Spot		
Ş	Sinkhole		
\$21	Slide or Slip		
ø	Sodic Spot		

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Mesa County Area, Colorado Survey Area Data: Version 5, Sep 22, 2014

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Jun 22, 2010—Sep 2, 2010

The orthophoto or other base map on which the soil lines were compiled and cigitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

Map Unit Legend

	Mesa County Area, Co	lorado (CO680)	
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
Ва	Massadona silty clay loam, 0 to 2 percent slopes	14.1	100.0%
Totals for Area of Interest		14.1	100.0%

USDA Natural Resources Conservation Service

Map Unit Description

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions in this report, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

USDA

Soils that have profiles that are almost alike make up a *soil series*. All the soils of a series have major horizons that are similar in composition, thickness, and arrangement. Soils of a given series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Additional information about the map units described in this report is available in other soil reports, which give properties of the soils and the limitations, capabilities, and potentials for many uses. Also, the narratives that accompany the soil reports define some of the properties included in the map unit descriptions.

Report—Map Unit Description

Mesa County Area, Colorado

Ba—Massadona silty clay loam, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: k06n Elevation: 4,500 to 4,900 feet Mean annual precipitation: 7 to 10 inches Mean annual air temperature: 50 to 54 degrees F Frost-free period: 150 to 190 days Farmland classification: Not prime farmland

USDA

Map Unit Composition

Massadona and similar soils: 70 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Massadona

Setting

Landform: Fan remnants Down-slope shape: Concave Across-slope shape: Linear Parent material: Alluvium derived from clayey shale

Typical profile

A - 0 to 2 inches: silty clay loam Bw - 2 to 12 inches: silty clay Bky - 12 to 24 inches: silty clay BCky1 - 24 to 48 inches: stratified silty clay loam to fine sandy loam BCky2 - 48 to 60 inches: stratified silty clay loam to fine sandy loam

Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Well drained Runoff class: High Capacity of the most limiting layer to transmit water (Ksat):

Moderately low to moderately high (0.06 to 0.20 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None

Frequency of ponding: None

Calcium carbonate, maximum in profile: 15 percent

Gypsum, maximum in profile: 2 percent

Salinity, maximum in profile: Moderately saline to strongly saline

(10.0 to 32.0 mmhos/cm)

Available water storage in profile: High (about 10.0 inches)

Interpretive groups

Land capability classification (irrigated): 3s Land capability classification (nonirrigated): 7s Hydrologic Soil Group: C

Data Source Information

Soil Survey Area: Mesa County Area, Colorado Survey Area Data: Version 5, Sep 22, 2014

USDA

APPENDIX B Typed Boring Logs

11

,iii

	LAS COLONIAS	S PARK GPJ GINT US LAB GDT 10/	16/14								_			
	7.5		5 0	N.5			o DEPTH o (ft)	NOTES	LOG			PRO	CLIENT	AND THE REAL PROPERTY
	•						GRAPHIC LOG	8	Logged by		INC	JECT	1	(B)
Bottom of hole at 9.0 feet.	Sandy GRAVEL (gw), brown, wet, dense					Lean CLAY with Sand (cl), brown, moist to wet, soft	MATERIAL DESCRIPTION		Y NWB CHECKED BY MAB	0 2	DATE STARTED 9/12/14 COMPLETED 9/12/14	ER 00208-0044	City of Grand Junction	Huddleston-Berry Engineering & Testing, LLC 640 White Avenue, Unit B Grand Junction, CO 81501 970-255-8005 970-255-6818
					-	(mp.	SAMPLE TYPE	AFTER DRILLING	AT END OF DRILLING		GROUND ELEVATION	PROJECT LOCATION	PROJECT NAME	
	≥ SS			S to the second		-→ B B		DRILL	OF D			CATIC	ME	
	100			83			RECOVERY % (RQD)	ING	RILLI			- 0	_as C	
	18-37			1-2-1 (3)			BLOW COUNTS (N VALUE)		NG 5.0 ft	0. NG 5.0 ft	ν,	Grand Junction,	Las Colonias Park	
							POCKET PEN. (tsf)			F		11.1	IF.	BORI
							DRY UNIT WT. (pcf)				HOLE	8		RIZ
							MOISTURE CONTENT (%)				LE SIZE			l D
											4			
		-					LIQUID LIMIT PLASTIC LIMIT PLASTICITY NDEX							PAGE
												11		
							PLASTICITY INDEX							יין אין ק י ק

.

......

. _____ 1____

	BORING NUMBER B-2 PAGE 1 OF 1
PROJECT NAME Las Colonias Pa	×
PROJECT LOCATION Grand Junc	tion, CO
GROUND ELEVATION	HOLE SIZE 4"
GROUND WATER LEVELS:	
AT TIME OF DRILLING 5.0 f	
AT END OF DRILLING 50 ft	
AFTER DRILLING	
	Colonias Pa Grand Jung ELS: LLING 5.0 f

- 1

EOTECH BH COLUMNS 00208	-0044 LAS COLONIAS PARK GPJ	GINT US LAB GDT 10/16/14	

18

Ł

I......

	5.0		2.5		o DEPTH o (ft)	NOTES	LOG	DRIL	DRIL	
		18383			GRAPHIC LOG	5	LOGGED BY	LING N	LING C	DATE STARTED
Bottom of hole at 7.0 feet.		Sandy GRAVEL (gw), brown, moist to wet, dense		Lean CLAY with Sand (cl), brown, moist, stiff	MATERIAL DESCRIPTION		1.1	0 2	RACTOR S. McKracken	TED 9/12/14 COMPLETED 9/12/14
					SAMPLE TYPE	AFTE	AT EN	Σ at time of drilling	GROUND WATER LEVELS:	GROUND ELEVATION
	N SS VI		S ~		NUMBER	AFTER DRILLING	AT END OF DRILLING	AE OF	ATER	EVAT
	75		50	 	RECOVERY % (RQD)	LING	DRILLI	DRILL	EVEL	
	21-24		1-1-8 (9)		BLOW COUNTS (N VALUE)		NG 50 ft	ING 5.0 ft	ŝ	
ul.					POCKET PEN. (tsf)		P	#		CHOIL
					DRY UNIT WT. (pcf)					Here and the second sec
21					MOISTURE CONTENT (%)					LE SIZE
									14	₽
	ξ				PLASTICITY ດິ INDEX					
					FINES CONTENT (%)				- 1	

- 54

OTECH BH COLUMNS 00208-0044 LAS COLONIAS PARK	GPJ GINT US LAB GDT 10	0/16/14	1-1-1-1-1-	1 1 1 1 1 1					_	
	4	ω	N		o DEPTH (ft)	NOTES		DATE	PRO.	
					GRAPHIC		LING	DATE STARTED	11	
Bottom of hole at 4.0 feet.	*** Auger Refusal at 4 ft ***				MATERIAL DESCRIPTION Sandy GRAVEL (aw), brown, moist, dense		- Q	9/1	PROJECT NUMBER 00208-0044	Fluxdueston-Herry Engineering & Testing, LLC 640 White Avenue, Unit B Grand Junction, CO 81501 970-255-8818 City of Grand Junction
Σ.			_		SAMPLE TYPE	AFTER DRILLING	GROUND WATER LEVELS:	GROUND ELEVATION	PROJECT LOCATION	PROJECT NAME
		°, c			NUMBER	PRIL	TER	EVAT	CATI	
		50			RECOVERY % (RQD)	LING				Las O
		22-28			BLOW COUNTS (N VALUE))		Grand Junction,	Las Colonias Park
					POCKET PEN. (tsf)				۲ ۲	BORI
					DRY UNIT WT. (pcf)			\simeq 1	8	
					MOISTURE CONTENT (%)			LE SIZE		G
								4		
					PLASTIC LIMIT PLASTICITY PLASTICITY					NG NUMBER PAGE 1
										្មី ភ្

	NS 00208-0044 LAS COLONIAS	PARK GPJ GINT US LAB GDT 10/16/14	, <u> </u>	1 1		_	_		_ [_	
	7.5	5	2.5		o DEPTH o (ft)	NOTES			DATE	PROJEC	ALL
1					GRAPHIC LOG	NOTES		DRILLING CONTRACTOR	DATE STARTED	<u>ыт</u> .	
					LOG	1 N -		C O N	RTE		100NG
	Sanc			Lear		INVE		ITRA	an ditt	IBER	640 White Avenue, Unit B Grand Junction, CO 81501 970-255-8005 970-255-6818
	luger						SIMCO	CTOF			640 White Av Grand Junction 970-255-8005 970-255-6818
	Refu			IN AY			100 2	lea		City of Grand Junction	ion, C 8
	L (gw			th Sa	ح		000	McK		044	0 81 0 81
Botto	Sandy GRAVEL (gw), brown, wet, dense			Lean CLAY with Sand (cl), brown, moist to wet, medium stiff to soft	MATERIAL DESCRIPTION			McKracken	0		501
Bottom of hole at 9.0 feet.	** INVI), bro	RIAL				COMPLETED		C
hole	vet d			L N	DESC						
at 9.0	ense			noist	RIP	1.14					ć
) feet				to we	FION				9/12/14		
2	ſ			t, me					*		
	l.			dium							
				stiff		<u>v</u> 2	ŝ.	្ព	ត្ន	- 4 	2
				ö		≥ x	∢ ∳		GROUND ELEVATION	PROJECT LOCAT	Ś Į
	\geq		\geq		SAMPLE TYPE	FTER		DW	DEL		1
	× SS				NUMBER				EVAT		
	50		01		RECOVERY % (RQD)	AFTER DRILLING			NOI	PROJECT LOCATION Grand Junction. CO	-
	7-1 (3		<u>_</u> 4		BLOW			LS		Gran	
	7-15-18 (33)		(7) (7)		COUNTS (N VALUE)	0.01				d Jur	- - -
			i		POCKET PEN. (tsf)		ᢪ│╡	2		ark	L D
					DRY UNIT WT (pcf)				Ы	8	
					(pcf) MOISTURE CONTENT (%)				HOLE SIZE		NG
					CONTENT (%)				a)		
					LIMIT 1				4		PAGE 1
					PLASTIC LIMIT PLASTICITY						PAGE
					PLASTICITY						ୁ 수

GEOTECH BH COLUMNS 00208-0044 LAS COLONIAS PAR	RK GPJ GINT US LAB GDT 10	0/16/14		 						
	4	ω	N	o DEPTH (ft)	NOTES	LOG		DATE	PRO	CLIENT
		343	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GRAPHIC	i is	LOGGED BY		DATE STARTED	JECT N	I to have st
Bottom of hole at 4.0 reet.	*** Auger Refusal at 4 ft ***	Sandy GRAVEL (gw), brown, moist, dense	Lean CLAY with Sand (cl), brown, moist, stiff	MATERIAL DESCRIPTION		NWB	DRILLING CONTRACTOR S. McKracken DRILLING METHOD Simco 2000 Truck Rig	TED 9/12/14 COMPLETED 9/12/14	PROJECT NUMBER 00208-0044	Huddleston-Berry Engineering & Testing, LLC 640 White Avenue, Unit B 970-255-8005 970-255-6818 City of Grand Junction
					AF	AT	AT TIME OF DRILLING	GROUND ELEVATION	PROJECT LOCATION	PROJECT NAME
		- MC	-	SAMPLE TYPE NUMBER	AFTER DRILLING	AT END OF DRILLING	AT TIME OF DRILLING	ELEVA	- LOCA	. NAME
		 ຜ		RECOVERY % (RQD)	ILLING	DRILL	FDRIL	TION		1
		15-27		BLOW COUNTS (N VALUE)	ł	ING dry	LING dry		Grand Junction,	Las Colonias Park
				POCKET PEN. (tsf)				Ļ		BO
		103		DRY UNIT WT. (pcf)				HOLE	CO	BORING NUMBER
				MOISTURE CONTENT (%)				-E SIZE		G 7
		-		LIQUID LIMIT				4		
				 PLASTICITY PLASTICITY						PAGE
				 INDEX						្ម R ្អ B -5
				FINES CONTENT (%)				1		_ ט

the fact that has a set of the se

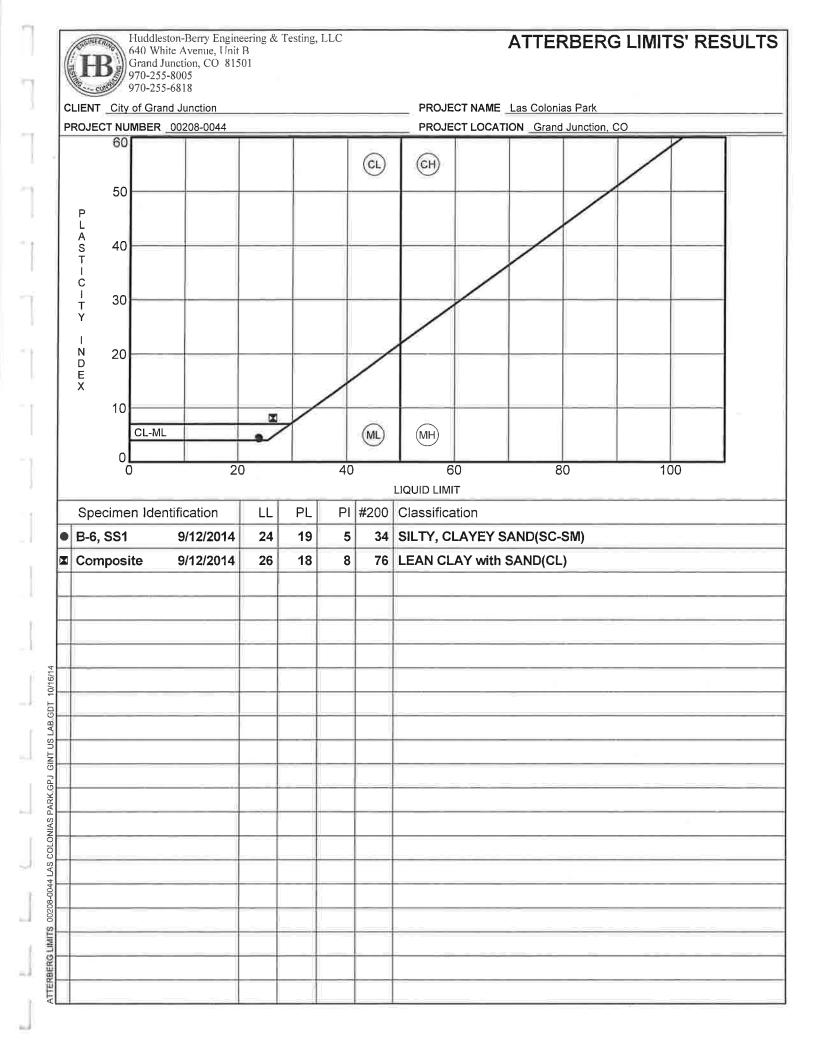
	T L G	1	SINCE
/970-255-8005	Grand Junction, CO 81501	640 White Avenue, Unit B	Huddleston-Berry Engineering & Testing, LLC

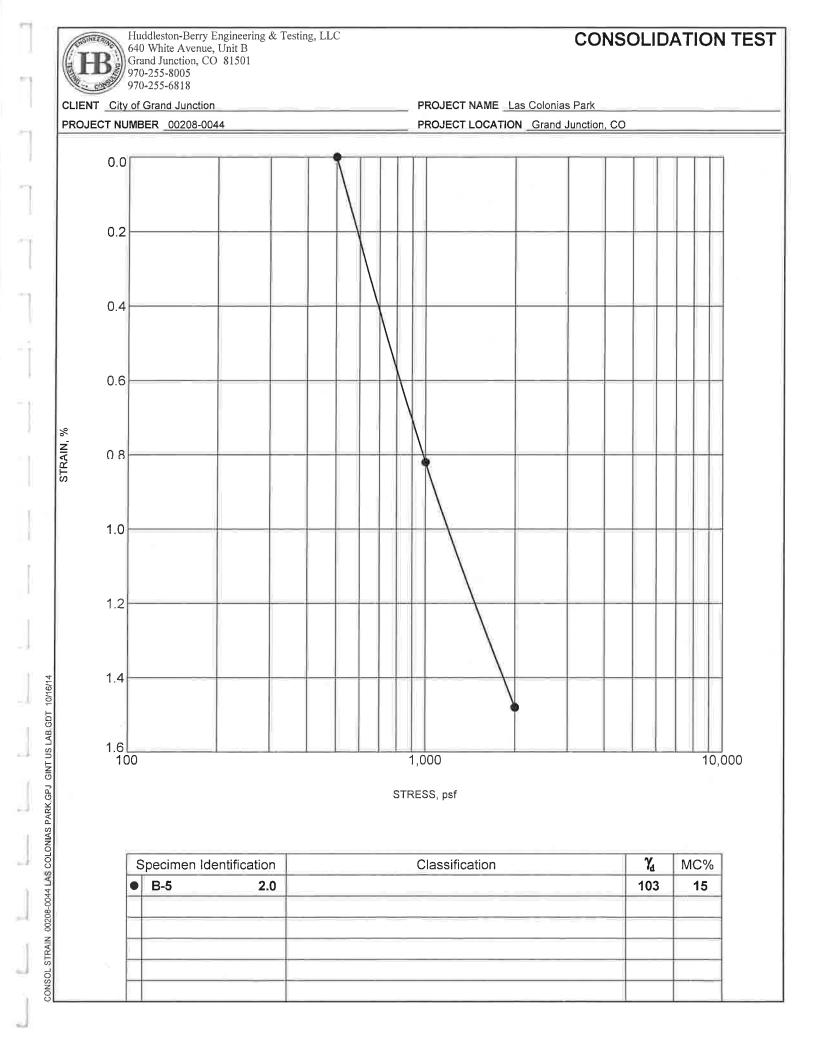
BORING NUMBER B-6

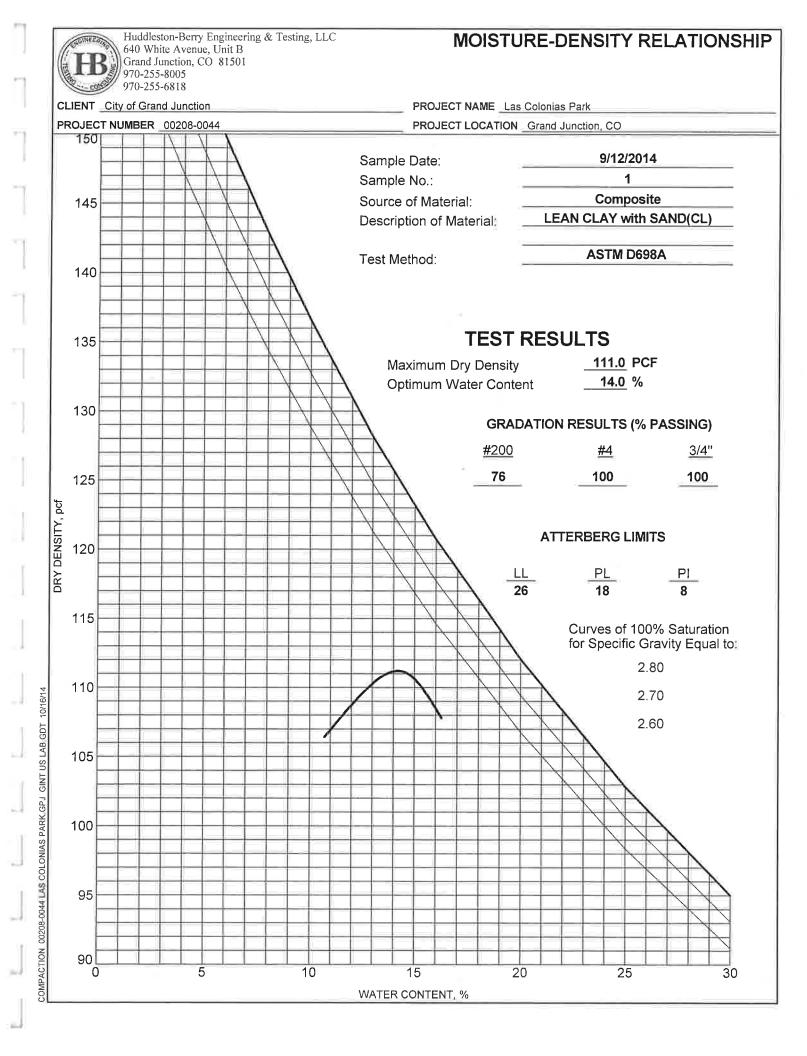
	5.0	25	 0 0	DEPTH (ft)	NOTES	годе	DRILL	DRILL	PROJ	CLIENT	ALLER T
			2	GRAPHIC LOG	0 	LOGGED BY	.ING M	DRILLING CONT		4	B
*** Auger Refusal at 6.5 ft *** Bottom of hole at 6.5 feet	Sandy GRAVEL (gw), brown, moist, dense		Sility, Clavey SAND (SC-SM), brown, moist, very loose	MATERIAL DESCRIPTION		CHECKED BY MAB	18	DRILLING CONTRACTOR S. McKracken	ER 00208-0044	City of Grand Junction	640 White Avenue, Unit B Grand Junction, CO 81501 970-255-8005 970-255-6818
					AF	AT	AT	GROUND WATER LEVELS:	PROJECT LOCATION	PROJEC	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		SAMPLE TYPE NUMBER	AFTER DRILLING	AT END OF DRILLING	AT TIME OF DRILLING	) WATE	TLOCA	T NAME	
		67	1	RECOVERY % (RQD)	ILLING	DRIL	FDRIL	RLEVE	TION	Las	
		2-2-1 (3)		BLOW COUNTS (N VALUE)	1	ING dry	LING dry	ELS:	Grand Junction, CO	PROJECT NAME Las Colonias Park	
				POCKET PEN. (tsf)					iction	ark	
				ORY UNIT WT. (pcf)							
		ភំ		MOISTURE CONTENT (%)							
		24						4			
		19									PAGE
		UT	Р								-1 우
		34	F	NES CONTENT							ři –

# APPENDIX C Laboratory Testing Results

(IIII)	H		40 W Grand 70-2:	eston- /hite A Junct 55-80	Ave tion 05	nue	, Uı	nit E	3	g &	Test	ting	g, Lì	LC													G	R	AI	N	SI	ZE	C	) {	ST	R	Bl	JT	ION
	S CU			55-68																																			
								_			_	-													-				s Pa			、 、				_		_	
	ROJEC	TNU		SIEVI		_	_	IN I	NCH	IES		1		-			U S	SIE	_	_		_	_	-A I	IUN		sra I	Πα.	Junc	tion	, CC HY	, DRC	ME	TEF	र	-		_	
	100			6	4	3	2	1.5	1:	3/4	1/23	18	3	4	6	81	0 14	16	20	30	40	50	0 60	10	00 14	0 20	00	-		-		-11	11	11	T	-	-		i i
	95			-					-	8		1	1				-	_		I			Y										11						
	90											Ш		1244					Ц					Ì	1					_									
	85													100										$\Lambda$															
						1444																		$\left  \right $	0	N													ļ
	80																				-																		
	75						T					T	Ħ						T						T								1						
	70								_	1		Ħ	Ħ	dia.est.					Ħ						1		T	T					tt	tt			T		
보	65						T	H	_			Ħ	Ħ			_		_	Ħ	Ħ			-		-		Ħ							Ħ		t	+		
VEIG	60								_			+	Ħ			_				H		t		_	-			t		-			╁		t	-	+	—	
PERCENT FINER BY WEIGHT	55		_				+		_	-	-	╫	╈	1. 0.				-	⊬			+	_				+	+		-			╂	$\left  \cdot \right $	+	+	+		
NER	50	==	-						_				$\left  \right $	10.00		_		_				-	_			A				_	-		╂		+	+	+		
LT EI	45		_	_										1.000	_	_	_	_				_	_	_	-	I.		-		_			+		+-	-	+		
RCE	40		_				-	_	_	_						_		_				-	_	_					_	_			#			L	-	_	
PEI	35											Щ									1									_				Щ			$\perp$		
	30													1000													1												
	25													1017U																									
										1				1000																									
	20													11022																									
	15									-		T	T														Π								T				
	10							T				Ħ	İT		1				T	T		1	-	-			Ħ			1		1	T	T	t	T	1		
	5			_		Ħ	T	-	-			Ħ	łt			_	-			T	Ħ	1					Ħ							I	t	t	+	-	
	0		1	1(	00	1.1				+	10	)	1.1.					1			1 1		_		0	.1	Ц	11				0.01			-	1		0.0	01
S															G	RA	IN S	SIZE	IN	MI	LLI	ME	TEF	RS										_					
		СС	DBB	LES			_		_	AVE I						-	_			AN	ID									s	ILT	OF	R C	L/	٩Y				
			-				coa	arse		L	fir	1e		C	oar			mea					Ť	ine	_		_			_	_	-	-		_				
S	Decim				_					_		~	11 7		_		issi	_	_	_	101									L	_	-	2		P		Co	c	Cu
		SS1 pos		9/20 9/20	_									_	_		YE` YY v			_		_				_			-	2	4 6	-	9 8	┢	5 8		_	$\rightarrow$	
	501			5720						_		-		- XI									-/					_		-	-								
Sr			ا م م	(f)	41 -		_		00			- -	000		-			0	1		5	4.0	<u>,</u>	ľ	07	0	<b>.</b>						_	0/	0.1	_	Ť	0/ 5	lev
•	becim B-6.	ss1		ifica: 9/20	_		-	D1 1.1	00 18	_	-		)60 11		-	_	D3	0	-			10		-	%	Gra <b>0</b> .0	_	<b>२</b> ।	-		anc 5.7	1		70	Sil		4.3	_	Clay
X		nposi			_			9.	_				_				_					_				0.	_				3.8				_	_	5.9	_	
																					_									_									
															_			_			_			+							_	_							
						_		_	_	-	_			_		_			_		_	_				_	_	_		_	_								


J

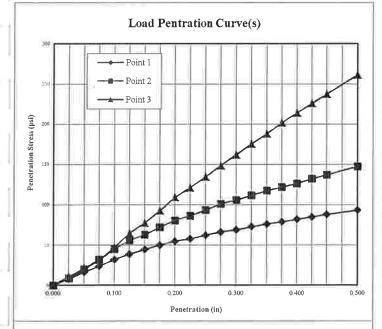

7


1

]

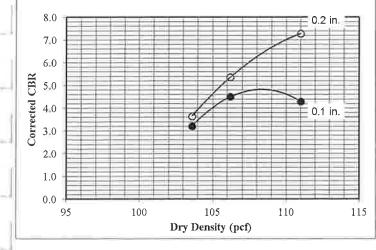
Ĵ








# CALIFORNIA BEARING RATIO ASTM D1883


Project No.:	00208-0044	Authorized By:	Client	Date:	09/12/14
Project Name:	Las Colonias Park	Sampled By:	NB	Date:	09/12/14
<b>Client Name:</b>	City of Grand Junction	Submitted By:	NB	Date:	10/16/14
Sample Number	14-0612 Location: Composite	Reviewed By:	MAB	Date:	10/17/14

<b>Compaction Method ASTM D698</b>	, Method A			Sample Data	
			Point 1	Point 2	Point 3
Maximum Dry Density (pcf):	Blows	s per Compacted Lift:	15	25	56
111.0	Su	rcharge Weight (lbs):	10.0	10.0	10.0
Opt. Moisture Content (%):	Dry Dens	ity Before Soak (pcf):	103.6	106.2	111.0
14.0	Dry Den	sity After Soak (pcf):	102.6	105.4	109.9
Sample Condition:	e t	Bottom Pre-Test	12.7	13.0	12.1
Soaked	Moisture Content (%)	Top Pre-Test	12.2	12.6	12.3
Remarks:	foi On	Top 1" After Test	19.6	18.6	17.5
	2 ~	Average After Soak:	19.4	17.8	15.8
	Perc	ent Swell After Soak;	1.0	0.8	1.0



Huddleston-Berry Engineering & Testing, LLC





	Point 1			Point 2		Point 3				
Dist.	Load	Stress	Dist.			Dist.	Load	Stress		
(in)	(lbs)	(psi)	(in)	(lbs)	(psi)	(in)	(lbs)	(psi)		
0.000	0	0	0.000	0	0	0.000	0	0		
0.025	24	8	0.025	25	8	0.025	32	11		
0.050	49	17	0.050	59	20	0,050	64	22		
0.075	71	24	0.075	95	32	0.075	95	32		
0.100	95	32	0.100	133	45	0.100	140	47		
0.125	115	39	0.125	165	56	0.125	191	65		
0.150	132	45	0.150	186	63	0.150	230	78		
0.175	147	50	0.175	213	72	0.175	274	93		
0.200	162	55	0.200	238	. 81	0.200	323	109		
0.225	171	58	0.225	256	87	0.225	359	121		
0,250	184	62	0.250	276	93	0.250	399	135		
0.275	196	66	0.275	299	101	0.275	440	149		
0.300	204	69	0.300	313	106	0.300	480	162		
0.325	215	73	0.325	331	112	0.325	520	176		
0.350	225	76	0.350	348	118	0.350	557	188		
0.375	233	79	0.375	361	122	0.375	597	202		
0.400	242	82	0.400	374	127	0.400	633	214		
0.425	251	85	0.425	391	132	0.425	668	226		
0.450	260	88	0.450	406	137	0.450	703	238		
0.500	276	93	0.500	436	148	0.500	773	262		

	Corrected CBR @ 0.1"	
3.2	4.5	4.3
	Corrected CBR @ 0.2"	
3.7	5.4	7.3

Penet	ration Distance Correct	ion (in)
0.000	0.000	0.000

Figure:

1 ---Ï 9