Table of Contents

 File
 PDR-1995-159

 Date
 10/6/99

4 A few items are denoted with an asterisk (*), which means they are to be scanned for permanent record on the с r ISYS retrieval system. In some instances, not all entries designated to be scanned, are present in the file. There e a are also documents specific to certain files, not found on the standard list. For this reason, a checklist has been n s included. e, n ń Remaining items, (not selected for scanning), will be marked present on the checklist. This index can serve as a e d t quick guide for the contents of each file. Files denoted with (**) are to be located using the ISYS Query System. Planning Clearance will need to be typed in full, as well as other entries such as Ordinances, Resolutions, Board of Appeals, and etc. X X *Summary Sheet - Table of Contents Application form X X Receipts for fees paid for anything X X *Submittal checklist X *General project report X Reduced copy of final plans or drawings Reduction of assessor's map Evidence of title, deeds XX *Mailing list Public notice cards Record of certified mail X X Legal description Appraisal of raw land Reduction of any maps - final copy *Final reports for drainage and soils (geotechnical reports) Other bound or nonbound reports Traffic studies X Individual review comments from agencies *Consolidated review comments list X X X *Petitioner's response to comments X X X *Staff Reports *Planning Commission staff report and exhibits *City Council staff report and exhibits *Summary sheet of final conditions *Letters and correspondence dated after the date of final approval (pertaining to change in conditions or expiration date) **DOCUMENTS SPECIFIC TO THIS DEVELOPMENT FILE:** X X Zoning and Planning Criteria related to St. Mary's Hospital City of Grand Junction Bikeway Plan - 1980 X X Site Plan X X Memo from Bertis Rasco to Tom Dixon - 6/1/95 Memo of Meeting with Tom Dixon and Keith Estridge, Director X X Letter from Warren Gardner to whom it may concern-9/29/76 X X Facilities Management - 9/19/94 Landscape Plan X Memo of Meeting with Jody Kliska, Tom Dixon, Keith Estridge x x Y and Bertis Rasco - 11/14/94 Memo of Meeting with Tom Dixon and Keith Estridge -X X Letter from Warren Gardner to Planning Commission - 12/3/73 10/18/94 X Traffic/ Pedestrian Impact Study Proposed Pkg Lot Add.- 7/92 Map of Parking Lot XX Posting of Public Signs X X Drainage Study - Parcel #1- January, 1993 X X Aerial Map - Preliminary Plan & Rezone X X Drainage Study - Parcel #2 - June, 1992 X X Map - Proposed Rezoning X Warranty Deed X X Quit Claim Deed X X Transmission Report
 X
 Planning Commission Meeting Agenda – 10/3/95

 X
 X
 Traffic Study Requirements Form
 X X Option to Purchase Property Letter from Kathy Portner to Erle Reid - 7/24/95 Major Site Plan - Draft Letter from Erle Reid to Kathy Portner - 7/24/95 X X X X Memo of Meeting from Bertis Rasco to Ken Tomlon - 8/3/95 X Abstract of Title
 X
 Letter from Jacquelynn Ballew to Michael Drollinger - 9/11/95

 X
 X
 Memorandum of Meeting - 11/1/95
 Handwritten Notes - undated Master Site Plan - 8/95 Meeting Memo - 6/14/95 X X Memo - Bertis Rasco to Michael D. re: Dev. of MSP - 7/13/95

· · · · · · · · · · · · · · · · · · ·	PL	A	Ν	N	E	D	Γ	CE	-Ì	/E	.L	0	P	M	ΙĒ	N	T													
Location: 7th Street	& Patt	er	50	2	R		عد)	F	Proj	jec	ct	Na	ım	e:_'	51		Μ	ar	Υ.	-	k	la	<u>.st</u>	<u>er</u>	R	<u>a</u> ;			
ITEMS					_	_	_		_		-	-	[215	STF	RI	BU	ITI	0	N	_	-	-	-	_		_		_	-
						Γ,	T	Τ	T	T	Т	T	Т	Γ				Π	Π	Π	Γ	Γ					T	Τ	Τ	
		Development								Auth.		GID	24																	
Date Received					Agent	ation	nent	1	sets,	Dev. A	5		1							ars										
Receipt #	ENCE	Community	Dev. Eng.	ty Eng.	lerty Ag	City Parks/Recreation	City Fire Department	rney	P.L. 10	City Downtown Dev. / County Planning	County Flammig County Bldg. Dept.	Lounty Blog. Uer Irrigation District	Drainage District	strict	istrict	tt N	rvice			Corps of Engineers	ield									
File #	SSID REFERENCE	City Com	City Dev	City Utility Eng.	City Property	ity Park	ity Fire	City Attorney	ity u	ity Dov	Vuinty F	ount, -	rainage	Water District	ewer D	U.S. West	Public Service	GVRP	срот	orps of	Walker Field	Persigo	TCI Cable							
DESCRIPTION	•••	•	•	•	11	0 0	•) • •		00		, ,	, •	0 ≤ 0					1	1 1						Ц				
Application Fee Submitted Checklist *	VII-1		\Box	\square			L]	\square	Ŧ	Ţ	Ŧ	Ţ	Ľ	\Box'	\square	\square	\square	\square	\Box'	Ľ	F	Ľ	\Box	Д		1	Ţ	F
Submittal Checklist * Review Agency Cover Sheet*	VII-3 VII-3	Ļ	H	┝╌╢		н	᠇᠇	$\overline{+}$	4	+	+	╉	╉	₽	┟╌╵	+	H	\square	H	H	\dashv	Ļ'	Ļ	'ـــــــــــــــــــــــــــــــــــــ	\vdash	4	+	+	+	╄
 Review Agency Cover Sheet* Application Form* 	VII-3 VII-1	┝┤	H	H	H	⊢╢	╣	+	8	+	1	$\frac{1}{1}$	$\frac{1}{11}$	╀	,┟-;′	+	H	H	Η̈́	H	H'	+	H	<u>+</u> '	\vdash	\vdash	+	+	+'	╀
 Application Form* Reduction of Assessor's Map 	VII-1 VII-1	┝┤		H	1	нH	╡	ł	_		1		$\frac{1}{11}$	╉	╉┽	H	H	H	Η	Η̈́	H	+	H	<u>,</u> –'	\vdash	\vdash	+	+	+-	╇
Evidence of Title	VII-1	1		H	1	Ĥ	<u> </u> +	+	┦	+	╀	+	+	╀	+-'	Ľ	ί	μų	Ļ	Ψ	Ē	Ľ	÷	+'	\vdash	\vdash	+	+	+-	╋
O Appraisal of Raw Land	VII-2 VII-1	1		H		1	+	÷	+	+	+	+	+	┢	+	\vdash	\vdash	1-1	P	\vdash	\vdash	\vdash	┢	+	\vdash	\vdash	+	+	+	┢
Names and Addresses*	VII-1	1		┝╼┦	H	Ĥ	+	+	+	+	+	+	╋	┢	+	\vdash	\vdash	H	Η	\vdash	\vdash	\vdash	┝	+	\vdash	┢┼╋	+	+	+	┢
Legal Description*	VII-2 VII-2	Ļ	┞╌┥	-	⊢╢	\vdash	\dashv	+	+	+	+	+	+	+	+'	Ľ	\vdash	\vdash	\vdash	\vdash	–'	+'	┡	+	\vdash	₊	+	+	+	╄
O Deeds	VII-2 VII-1	┝┤		H	H	\vdash	\dashv	1	+	+	+	+	+	╀	+'	\vdash	\vdash		\vdash	\vdash	\vdash	+-'	╀	+	\vdash	\vdash	+	+	+	╀
O Easements	VII-1 VII-2	H		H	H	-+	-+	$\overline{+}$	+	+	+	╋	+	+	+	\mathbb{H}	H	H	H	\vdash	\vdash	\vdash	┢	⊬	\vdash	┢╍╁	+	+	+	╋
O Avigation Easement	VII-1	+	Ĥ	Η	H	r	-+	+	+	+	+	+	+	+	+-'	ť	ť	H	\vdash	\vdash	1	H	\vdash	+	\vdash	\vdash	+	+	╋	┢
O ROW ·	VII-3			-1		r	\dashv	╗	+	+	+	+	+	+	+	\mathbf{H}	+	H	P	\vdash	\vdash	\vdash	+	┢	\vdash	┢╍╋	+	+	+	╀
O Improvements Agreement/Guarantee*	VII-3	1		-1	Η	\dashv	1	╗	+	+	+	+	+	+	┢	\vdash	\vdash	Η	\vdash	\vdash	\vdash	\vdash	\vdash	+	┢	┢┼┥	+	+	+	╀
O CDOT	VII-3	1		$\left - \right $	Н	\neg	+	<u> </u> +	+	+	+	+	+	+	+	\vdash	\vdash	H	\vdash	\vdash	H	F	\vdash	+	\vdash	\vdash	+	+	+	+
O Industrial Pretreatment Sign-off	VII-4	1	\vdash	1		\neg	1	1	+	+	+	+	+	+	+	\vdash	\vdash	\vdash	Γ	\vdash	\vdash	\vdash	\vdash	+	Η	H	+	+	+	+
General Project Report	X-7	1	1	1		1	寸	1	8	1	1	1	1 1	1 1	1 1		1	1		1	1	1	h	十	H	H	1	+	+	\mathbf{t}
O Elevation Drawing	IX-13	1	1	H	Π	\Box	i T		†	t	t	+	+	t	\mathbf{t}	H		H	\Box	H	\square	t	t	+		H	1	t	+	t
● Site Plan	IX-29	2	2	1	1	LT I	1	,1	1	1	1	1	1 1	1 1	1 1		1	1	1	1	1	1	1	十	\square	H	T		T	T
O 11"x17" Reduction of Site Plan	IX-29				\Box	J	1	1	1	1	1	1	1 1	1 1	1 1	1	1 1	1	$\begin{bmatrix} 1 \end{bmatrix}$	1	1	1		Ē			T	T	T	T
O Grading and Drainage Plan	IX-16	1			\Box	\Box	J	J	J	T	T	T	Γ	ſ	L		\Box	\Box	\Box	1				L	\Box		J	T	Τ	Γ
O Storm Drainage Plan and Profile	IX-30	$\begin{bmatrix} 1 \end{bmatrix}$	2		\Box	\Box			Г	T	T	T	\Box^{1}	Ŧ	T	1		1	Γ'	Ľ			Γ	T				T	T	T
O Water and Sewer Plan and Profile	1X-34		2		\square	Ē]	Д,			1	1	1	Ľ	Į1	1 1	<u>[</u> 1'	$\int 1'$	Ľ	Ľ	Ĺ	L	Ľ	L	Ľ	П	Ĩ	4	\downarrow	╇
O Roadway Plan and Profile	IX-28		2		\square	Ц	Щ	цŤ.	$ \rightarrow $	4	4	\perp	<u> </u>	4	\bot	Ľ	Ľ	⊥'	Ĺ '	L '	L	\bot	\bot	\bot		Ц		+	⊥_	╇
O Road Cross-Sections	IX-27	1			\square	\square	Ц	⊢ –↓	\rightarrow	\downarrow	4	4	\perp	\downarrow	\bot	Ļ	⊥_'	₽'	₽'	Ľ	\bot	Ļ	\bot	\bot	\bot	Ц		4	+	╇
O Detail Sheet	IX-12	1			\vdash	\square	Щ		-	4	4	+	+	+	+	\downarrow	+	₽'	+'	1	\downarrow	\bot	\bot	+	╄	\square		+	+-	╇
O Landscape Plan O Geotechnical Report	IX-20 X-8	2		1	μ	\vdash	H	\vdash	8	\rightarrow	+	+	+	+	╄	+	+	+-'	Ľ	\vdash	┡	+	╄	+	╄	\vdash	-+	+	+	╀
Final Drainage Rerport	X-5,6	L-	2	–	\vdash	\vdash	\vdash	-+	+	-+-	+		+-	╬	+	+	+	+-'	\vdash	–	╞	┡	╄	+-	┢	\vdash	-+	+	+-	╋
O Stormwater Management Plan	X-14		2		\vdash	H	Н	\vdash	\rightarrow	<u> </u>	+	+	+	$\frac{1}{1}$	╋	┢	+	+	+	+	+	┢	+-	+	┢	⊢┤	-+	+	+-	+
O Phase I and II Environmental Report	X-10,11	-1			\vdash	⊢┦	⊢	$ \dashv $	+		+	+	+	+	┢	+	+	+	+-'	+-	+	+	+	╋	┢	H	-+	+	+-	╋
Traffic Impact Study	X-15		2		\vdash	H	\dashv	\vdash	\rightarrow		+	+	+	+	+	+	+	+	\mathbf{h}	ι Γ	⊢	+	+	┢	┢	┢┥	-	+	+	╋
			⊢	\vdash	H	H	\dashv	\vdash	+	+	+	+	+	+	+	+	+	+	+	+	<u>+</u>	+	+	+	+	H	-+	+	+	+
	<u> </u>	┢─	\vdash	\vdash	H	H	\dashv	\vdash	+	+	+	+	+	+	+	+	+	\mathbf{H}	+	+	\vdash	+	+	+	+	Η	+	+	+	+
••••••			┢	⊢	H	1-1	<u> </u>	-+	+	\rightarrow	+	+	+	+-	+-	+-	4-	'	+	┢	+	+	+	+	+	┢╼┥	1	<u> </u>	+	+

APRIL 1995

IV-09

DEVELOPMENT APPLICATION Community Development Department 250 North 5th Street, Grand Junction, CO 81501

- **M**

(303) 244-1430

£ Receipt Dare Rec'd By PDR-95-159 File No.

_0

5

3

08 Date

We, the undersigned, being the owners of property structed in Mesa County. State of Colorado, as described herein do hereby petition this:

PETITION	PHASE	SIZE	LOCATION		ZONE		LAND USE	
Subdivision Phat/Plan	Minor Major Resub							
Resone				From:	To:			
Planned Development	ODP Pretim						· · ·	
Conditional Use							-	
Zone of Annex								
U Variance								
Special Use) 		·····			
🗍 Vacation							Right-of Way	
🗍 Revocable Permit		111 111 111 111 111 111 111 111 111 11						
PROPERTY OWNE	R	X	DEVELOPER			REPRI	SENTATIVE	
Sisters of Chari	ty of Leave	n- St.l	<u>Mary's Hospita</u>	<u> & Medica</u>	1 Ctr		<u>C. Rasco, AIA</u>	
Marneworth, Health 4200 S. 4th St.	Services C		me Box 1628			Name 215 Col	umbia	
Address Leavenworth, KS	66048-5054		dress d Junction, CO	81502-16	28	Address Seattle	e, WA 98104	
City/State/Zip			y/State/Zip			City/State/Z	•	
913-682-1338	682-1338 970-244-2170					206-682-1133		
Susiness Phone No.		Bu	siness Phone No.			Business Ph	one No.	
NOTA: Logal property ev	roer is swace of r	ccord on date o	f submittal.					
784 A 11 F 4 1 F	the states		فغرار بمعيد السيب المعادية		2 Chan	ation of this s		

We hereby acknowledge that we have familiarized ourselves with the rules and regulations with respect to the prop of information is true and complete to the best of our knowledge, and that we assume the responsibility to monitor the status of the application and the review comments. We recognize that we or our representative(s) must be present at all required hearings. In the event that the politicaer is not represented, the item will be dropped from the agenda, and an additional fee charged to cover excluding expenses before it can again be placed on the agenda.

Accorelyn Ballew Signature of Person Completing Application dept. secretary 95 8/31 Date Signature of Property Owner(s) - attach additional sheets if necessary

2945-024-07-005 1140 Associates 225 N 5th St, Ste 401 Grand Junction, CO 81501-2655

2945-024-07-022 Lawrence & Claudia Aubert 211 Country Club Park Grand Junction, CO 81503-1611

2945-024-07-016 1140 Associates 225 N 5th, Street, Suite 401 Grand Junction, CO 81501-2655

2945-024-08-014 Flora L Brynjolfsson 936 Northern Way Grand Junction, CO 81506-8201

2945-111-20-007 Western Rockies Investment Group 1000 Wellington Ave. Grand Junction, CO 81501-8121

2945-111-00-946 City of Grand Junction 250 North 5th St. Grand Junction, CO 81501-2628

2945-111-16-020 Psychological Associates 2530 N 8th St, Suite 204A Grand Junction, CO 81501-8856

2945-111-20-977 Health Services Program, Inc. P.O. Box 40 Glenwood Springs, CO 81602-0040

2945-111-24-006 Village Fair, c/o Real Estate Services P.O. Box 1082 Grand Junction, CO 81502-1082

2945-111-27-005 DJS Foods DBA Quiznos GJ 569 32 Rd Grand Junction, CO 81504 2945-024-07-014 1140 Associates 225 N 5th St, Ste 401 Grand Junction, CO 81501-2655

2945-024-07-021 1140 Associates 225 N 5th, Street, Suite 401 Grand Junction, CO 81501-2655

2945-024-07-025 1140 Associates 225 N 5th, Street, Suite 401 Grand Junction, CO 81501-2655

2945-024-08-015 Angie Lee Brown 936¹/₂ Northern Way Grand Junction, CO 81506-8201

2945-111-21-001 Glenn Ross Kempers, et al 1001 Wellington Ave. Grand Junction, CO 81501-8122

2945-111-16-011 Wellington East Investments 2530 N 8th St, Suite 201 Grand Junction, CO 81501-8856

245-111-16-005 Linda S Tice 752 Centauri Dr Grand Junction, CO 81506

2945-111-20-009 Wellington III Condominium Assoc. Inc. P.O. Box 3025 Grand Junction, CO 81502-3025

2945-111-27-004 Village Fair, c/o Real Estate Services P.O. Box 1082 Grand Junction, CO 81502-1082

2945-111-00-009

610 Rico Way Grand Junction, CO 81506 2945-024-07-019 1140 Associates 225 N 5th St, Ste 401 Grand Junction, CO 81501-2655

2945-024-07-017 1140 Associates 225 N 5th, Street, Suite 401 Grand Junction, CO 81501-2655

2945-024-08-001 Carol Lovato 804 Jamaica Way Grand Junction, CO 81506-8635

2945-024-08-016 Lynn B Cary 2405 Palmer Ave. Glenwood Springs, CO 81601

2945-111-21-002 Stella M Shanks & Georgia D Munroe 1001 Wellington Ave Grand Junction, CO 81501-8122

2945-111-16-012 Lichini Joint Venture 2530 North 8th St, Suite 203 Grand Junction, CO 81501-8856

2945-111-16-018 Dan M & Kimberly R Babbel 2530 N 8th St, Suite 102 Grand Junction, CO 81501-8856

2945-111-27-001 Mesa National Bank 131 N 6th St. Grand Junction, CO 81501-2725

2945-11-27-003 Village Fair, c/o Real Estate Services P.O. Box 1082 Grand Junction, CO 81502-1082

2945-111-27-005 DJS Foods DBA Quiznos GJ 569 32 Rd Grand Junction, CO 81504 2945-111-21-001 Glenn Ross Kempers et al 1001 Wellington Ave. Grand Junction, CO 81501-8122

l

2945-111-25-009 Michael J Corbett & David P Noffsinger 1120 Wellington Ave Grand Junction, CO 81501-6129

2845-111-25-019 Lepisto-Rottman Limited Liability Co 1120 Wellington Ave, Suite 106 Grand Junction, CO 81501-6130

2945-013-00-955 Bookcliff Baptist Church 2702 Patterson Rd Grand Junction, CO 81506-4031

2945-111-15-046 Alison L Dean P.O. Box 2026 Grand Junction, CO 81502-2026

2945-111-15-049 Paul & Virginia S Northup 2525 N 8th St, Suite 102 Grand Junction, CO 81501

2945-111-15-034 HIJM Investments 2525 N 8th St, Suite 202 Grand Junction, CO 81501-8844

2945-111-15-058 Gregg K Omura 1120 Wellington Ave. Grand Junction, CO 81501-6129

2945-111-15-038 S W P Investments et al P.O. Box 3025 Grand Junction, CO 81502-3025

2945-111-15-051 Wellington Orthopaedic Properties LLC 790 Wellington Ave Grand Junction, CO 81501-6126 2945-111-21-002 Stella M Shanks & Georgia D Munroe 1001 Wellington Ave Grand Junction, CO 81501-8122

2945-111-25-005 Gregg K Omura et al 1120 Wellington Ave Grand Junction, CO 81501-6129

2945-111-25-003 Mestern Colorado Surgery Center Assoc 2550 I Rd. Grand Junction, CO 815015-9531

2945-013-04-001 Rexell D & Deborah J Clifton 1211 Hermosa Ave. Grand Junction, CO 81506-4054

2945-111-15-028 Gilmert Madison, Madison Investments 2525 N 8th St. Grand Junction, CO 81501-8845

2945-111-15-032 Barbara Hartshorn 818 26 Road Grand Junction, CO 81506-8608

2945-111-15-035 Gary Andreoletti & Marcia Forrest 790 Wellington Ave, Suite 10 Grand Junction, CO 81501-6126

2945-111-15-057 Maida L Burrow 790 Wellington Ave, Ste 103 Grand Junction, CO 81501-6127

2945-111-15-039 Urology Associates Limited 790 Wellington Ave. Grand Junction, CO 81501-6126

2945-111-15-052 Wellington Orthopaedic Properties LLC 790 Wellington Ave Grand Junction, CO 81501-6126 2945-111-25-008 Michael J Corbett & David P Noffsinger 1120 Wellington Ave Grand Junction, CO 81501-6129

2945-111-25-018 John M Field P.O. Box 3025 Grand Junction, CO 81502-3025

2945-111-19-003 Richard G & Annie R O'Connor P.O. Box 1193 Grand Junction, CO 81502

2945-111-15-045 Thomas Towner dba Towner Investments P.O. Box 2026 Grand Junction, CO 81502-2026

2945-111-15-029 Floy E Young, dba Young Investments 2303 N 1st St. Grand Junction, CO 81501-2027

2945-111-15-033 Balanced Rock LLC 2136 Baniff Ct. Grand Junction, CO 81503-1032

2945-111-15-0355 Gary Andreoletti & Marcia Forrest 790 Wellington Ave, Suite 10 Grand Junction, CO 81501-6126

2945-111-15-037 W & R Investments P.O. Box 3025 Grand Junction, CO 81502-3025

2945-111-15-040 Urology Associates Limited 790 Wellington Ave. Grand Junction, CO 81501-6126

2945-111-15-042 Alpha Investments P.O. Box 3025 Grand Junction, CO 81502-3025 2945-111-02-004 Wm A Cohan & Marilyn B Calabrese 1410 Santa Fe Dr. Encinitas, CA 92024

2945-111-02-009 Minrec Inc 773 Valley Ct. Grand Junction, CO 81505-9714

2945-111-02-012 Richard Hurd 2352 N. 7th St. #6 Grand Junction, CO 81501-8133

2945-112-11-024 Helen M Benton 3098 I-70 Bus Loop Grand Junction, CO 81504-4406

2945-112-12-002 William B Rosenthal 2547 Mira Vista Dr. Grand Junction, CO 81501-2056

2945-112-12-009 Wesley A & Lucille M Henderson 328 Mayfair Dr. Grand Junction, CO 81501-2053

2945-023-15-003 Cheryl Lane Duree 605 26½ Rd. Grand Junction, CO 81506-1904

2945-023-14-006 Wm R Patterson 662 26 Rd. Grand Junction, CO 81506-1405

2945-023-00-037 Angela R Boyer 324 patterson Rd. Grand Junction, CO 81506-1954

2945-023-00-040 Joseph J Palermo P.O. Box 60263 Grand Junction, CO 81506-8758 2945-111-02-007 Minrec Inc 773 Valley Ct. Grand Junction, CO 81505-9714

2945-111-02-010 Thomas G & Carol L Tadvick 2352 N 7th St., #4 Grand Junction, CO 81501-8133

2945-111-02-951 Bishop of Bueblo, c/o Diocese of Pueblo 1001 N. Grand Ave. Pueblo, CO 81003-2915

2945-112-11-025 Jay Dee, Barbara & Christie Nitzel 346 Belaire Dr. Grand Junction, CO 81501-2050

2945-112-12-005 Shirley E Arney, Trustee 2547 Mira Vista Dr. Grand Junction, CO 81501-2056

2945-023-15-001 Robert B Christensen, Trustee P.O. Box 3025 Grand Junction, CO 81502-3025

2945-023-14-010 Edith Sisac 440 N. 13th St. Grand Junction, CO 81501-81501-4406

2945-023-14-009 Robert L Orr 500 Patterson Rd. Grand Junction, CO 81506-1938

2945-023-00-038 William O & Joyce D Campbell 2648 Patterson Rd. Grand Junction, CO 81506-1941

2945-023-00-042 F M & I M Rasmussen 2634 Patterson Rd. Grand Junction, CO 81506-1941 2945-111-02-008 Minrec Inc 773 Valley Ct. Grand Junction, CO 81505-9714

2945-111-02-011 Minrec Inc 773 Valley Ct. Grand Junction, CO 81505-9714

2945-023-00-041 Mildred Vandover 604 Meander Dr. Grand Junction, CO 81505-1414

2945-112-12-001 Phillip S & Doris E Lanham 2557 Mira Vista Dr. Grand Junction, CO 81501-2056

2945-112-12-006 John R & C Jane Knipe 2527 Mira Vista Dr. Grand Junction, CO 81501-2056

2945-023-15-002 Cheryl Lane Duree 605 26½ Rd. Grand Junction, CO 81506-1904

2945-023-14-007 Sisters of Charity, Health Services Corp P.O. Box 1628 Grand Junction, CO 81502-1628

2945-023-14-008 Richard F Gilmore 698 Crestridge Dr. Grand Junction, CO 81506-8310

2945-023-00-039 Jacquelyn A Moran 515 Rado Dr. Grand Junction, CO 81503-9738

2945-111-00-034 Sisters of Charity Health Services Corp 4200 S. 4th St. Leavenworth, KS 66048-5054 2945-111-00-970 Sisters of Charity Health Services Corp P.O. Box 1628 Grand Junction, CO 81502-1628

2945-111-00-956 Sisters of Charity 4200 S. 4th St. Leavenworth, KS 66048-5054

2945-111-00-972 Sisters of Charity Health Services Corp P.O. Box 1628 Grand Junction, CO 81502-1628

2945-111-00-998 Sisters of Charity Health Services Corp 4200 S. 4th St. Traffic Way Leavenworth, KS 66048

2945-112-10-016 Guy D Cherp & Martha Hart 448 Bookcliff Dr Grand Junction, CO 81501-2039

2945-112-10-024 Larue Olson Marital Trust, c/o Norwest P.O. Box 4010 Grand Junction, CO 81502-4010

2945-112-11-008 Gordon S & Judith L Harbert 2512 Mira Vista Dr. Grand Junction, CO 81501-2057

2945-112-11-026 Harold B & Ruth Summons 333 Mayfair Dr. Grand Junction, CO 81501-2052

2945-112-00-978 Sisters of Charity Health Services Corp P.O. Box 1628 Grand Junction, CO 81502-1628

2945-024-09-012 Moorgate 11999 San Vicente Blvd. Los Angeles, CA 90049-5042 2945-111-00-976 Sisters of Charity Health Services Corp P.O. Box 1628 Grand Junction, CO 81502-1628

2945-111-00-959 Sisters of Charity Health Services Corp 4200 S. 4th St. Leavenworth, KS 66048-5054

2945-111-00-974 Sisters of Charity Health Services Corp P.O. Box 1628 Grand Junction, CO 81502-1628

2945-112-10-010 Mary C Douglass 301 Bookcliff Ct. Grand Junction, CO 81501-2021

2945-111-00-979 Sisters of Charity Health Services Corp P.O. Box 1628 Grand Junction, CO 81502-1628

2945-112-10-975 Sisters of Charity Health Services 4200 S. 4th St. Leavenworth, KS 66048-5054

2945-112-11-009 Stephen D & Susan Fante 353 Mayfair Dr. Grand Junction, CO 81501-2052

2945-112-00-045 Sisters of Charity Health Services Corp 4200 S. 4th St. Leavenworth, KS 66048-5054

2945-024-09-010 James C Burke 636 26 Rd. Grand Junction, CO 81506-1969

-

2945-024-08-013 Stanley Siligman & Eugene Haskin Trust 3032 I-70 Bus Loop Grand Junction, CO 81504-5722 2945-111-00-037 Sisters of Charity Health Services Corp 2536 N. 7th St. Grand Junction, CO 81502-1628

2945-111-00-971 Lincoln Park Osteopathic Hospital Assoc. P.O. Box 220 Grand Junction, CO 81502-0220

2945-111-00-977 Sisters of Charity Health Services Corp P.O. Box 1628 Grand Junction, CO 81502-1628

2945-112-10-015 Scott A & Susan G Hall 308 Bookcliff Ct. Grand Junction, CO 81501-2022

2945-112-10-023 Larue Olson Marital Trust, c/o Norwest P.O. Box 4010 Grand Junction, CO 81502-4010

2945-112-10-998 Sisters of Charity Health Services 4200 S. 4th St. Leavenworth, KS 66048-5054

2945-112-11-010 Elizabeth H Miles 343 Mayfair Dr. Grand Junction, CO 81501-2052

2945-112-00-066 Sisters of Charity Health Services Corp P.O. Box 1628 Grand Junction, CO 81502-1628

2945-024-09-011 Moorgate 11999 San Vicente Blvd. Los Angeles, CA 90049-5042

2945-024-07-023 1140 Associates 225 N 5th St, Ste 401 Grand Junction, CO 81501-2655 2945-111-15-053 Donald P Aust P.O. Box 3025 Grand Junction, CO 81502-3025

2945-112-01-003 James R Dunn & P D Wubben 601 Center Ave. Grand Junction, CO 81501-2041

2945-012-02-002 William D Merkel 2525 N 8th St. Grand Junction, CO 81501-8845

2945-112-02-007 Donald R & Carolyn E Burkholder 540 Cedar Ave Grand Junction, CO 81501-7428

2945-112-10-007 Arthur W Arney 402 Bookcliff Dr. Grand Junction, CO 81501-2036

2945-112-10-023 Larue Olson Marital Trust Norwest P.O. Box 4010 Grand Junction, CO 81502-4010

2945-112-10-015 Scott A & Susan G Hall 308 Bookcliff Ct. Grand Junction, CO 81501-2022

Bertis C. Rasco, AIA 215 Columbia Seattle, WA 98104 2945-111-15-054 Wellington Orthopaedic Properties LLC 790 Wellington Ave Grand Junction, CO 81501-6126

2945-112-00-043 Richard L Schnell 2305 N 7th St Grand Junction, CO 81501-8117

2945-112-02-004 Lynn W Hamilton 560 Cedar Ave Grand Junction, CO 81501-7428

2945-112-02-008 David E & L P Flatt 536 Cedar Ave Grand Junction, CO 81501-7428

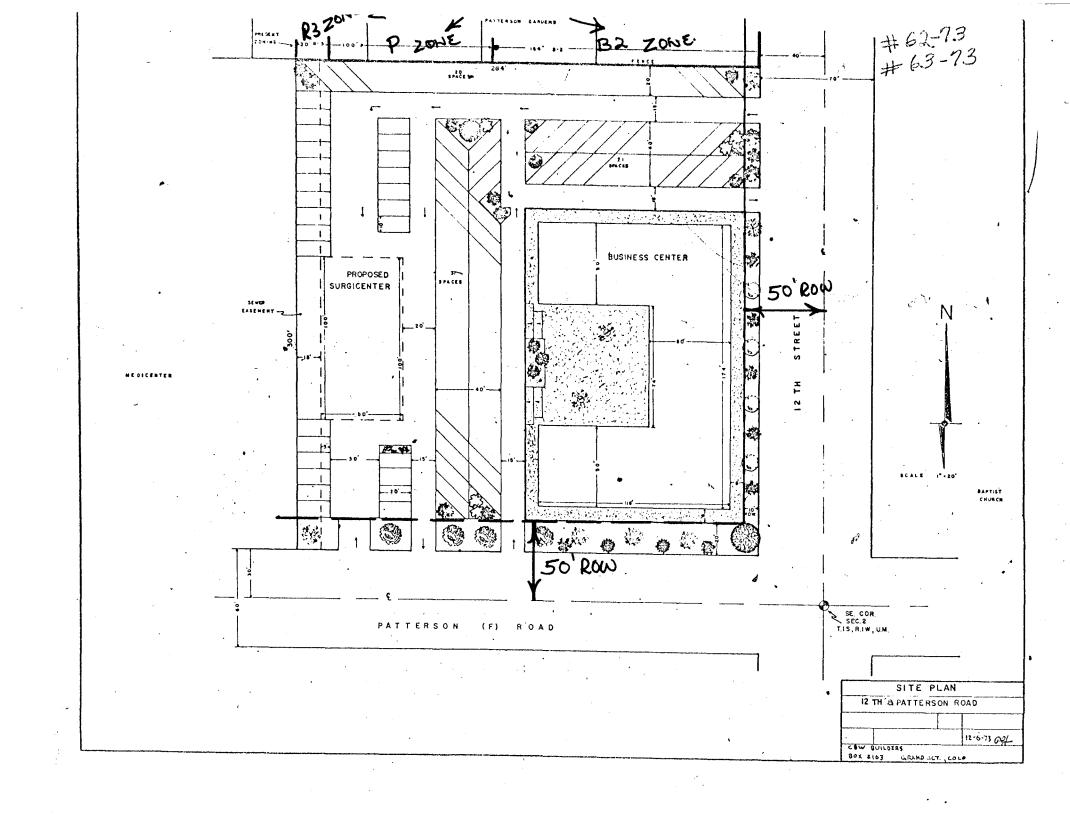
2945-112-10-009 Virginia C Raso 507 Bookcliff Dr Grand Junction, CO 81501-2037

2945-112-10-024 Larue Olson Marital Trust c/o Norwest P.O. Box 4010 Grand Junction, CO 81502-4010

Sisters of Charity of Leavenworth 4200 S. 4th Street Leavenworth, KS 66048

City of Grand Junction Community Development Dept. 250 N 5th Street Grand Junction, C0 81501 2945-111-15-044 Paul B Jones & Robert D Hackett 2525 N 8th St Grand Junction, CO 81501-8845

2945-112-02-001 Dale Schwarz 2211 N 6th St. Grand Junction, CO 81501-7415


2945-112-02-005 Robin L & Sandra L Cherp 550 Cedar Ave. Grand Junction, CO 81501-7428

2945-112-10-008 Robert Traylor & Karen Hayashi 535 Bookcliff Dr. Grand Junction, CO 81501-2037

2945-112-10-017 Leland A Schmidt 536 Bookcliff Dr. Grand Junction, CO 81501-2038

2945-112-10-016 Guy D Cherp & Martha Hart 448 Bookcliff Dr. Grand Junction, CO 81501-2039

St. Mary's Hospital ATTN: Keith Estridge P.O. Box 1628 Grand Junction, CO 81502

.

٩

.

* !

Grand Junction, CO

Master Site Plan

August 1995

St. Mary's Hospital and Medical Center

Grand Junction, CO

Master Site Plan

Introduction

Existing Property

St. Mary's Hospital and Medical Center located at the corner of North 7th Street & Patterson Avenue in Grand Junction, Colorado currently owns approximately 35.67 acres of land in seven parcels separated by streets or other lots and has an understanding regarding an eighth parcel.

Parcel #1 is the central portion of the main campus, a 19.86 acre plot when including the 2.08 acre park St. Mary's Park.

Parcel #2 is 9.11 acres East of N. 7th Street used for hospital employee parking, three separate residence for Sisters and four other properties (T. Carr residence, G. V. P. T., Seniors, & E. M. S.) owned by the Medical Center.

Parcel #3 is .69acres immediately North across Patterson Road, formerly the Oncology Clinic of Dr. Matchett.

Parcel #4 is a one acre vacant lot approximately 980 feet East of parcel #2 that fronts on Wellington Avenue.

Parcel #5 is St. Mary's Rehabilitation Center formerly Hilltop Rehabilitation Hospital 1100 Patterson Road.

Parcel #6 is the Employee Parking Lot at the corner of Patterson and 26 3/4 Road.

Parcel #7 is St. Mary's Family Practice Residency the former Centennial Plaza Property 2721 North 12th Avenue.

Parcel #8 is owned by Bookcliff Baptist Church and is located across North 12th Street from St. Mary's Family Practice Residency. During the recent property acquisiton from Hilltop it was understood St. Mary's would continue to use the Church's parking lot under the current agreement with the Church provided additional parking was required for the buildings new use.

Planning Objectives

This Master Site Plan (MSP) develops Parcels #1 and #2 in three phases which bring the properties up to the City's current Zoning and Development Code, dated: October 1, 1994.

Parcel #3 is small, isolated from the Medical Center by Patterson Avenue and Zoned B-1

It is vacant and for sale.

Parcel #4 is 980 feet to the East of Parcel #2. The maximum distance permitted by City Code for off site, off street parking is 200' (may be 500' for employee use). It is recommended Parcel #4 be used for Employee Parking for Parcel #5 or for Periodic Employee Parking with shuttle bus service should the Main Campus, Parcel #1 and #2 have a major construction activity that limit on site parking. As permanent development occurs, Parcel #4 may be developed as related medical offices, research, a child development center, retail outlet, engineering services or general administrative offices.

Parcel #6 Employee Parking formerly Hilltop Rehabilitation Hospital Employee Parking is on a acre site has 48 parking stalls (for the handicapped) and (square feet of site landscape.

Parcel #7 St. Mary's Family Practice Residency formerly Centennial Plaza is on a 2.08 acre site (29,260 square feet) zoned P-B, contains 29,700 square feet of space with a building site foot print of 21,900 square feet, 130 parking stalls () for the handicapped)..

Parcel #8 Bookcliff Baptist Church Parking lot located on the East side of 12th Street,a??? square foot lot zoned??? contains 95 to 125 unimproved parking stalls.

This Master Site Plan does not describe the expected on going internal remodeling and upgrades for the existing buildings.

St. Mary's Hospital and Health Center Grand Junction, CO

Master Site Plan Goals

1. Parcel #'1 Building Expansion

Phase #1

high priority	_	Family Practice Residency	25,000
		Out patient Rehabilitation	10,000-12,000
		Occupational Health	5,000
		Bldg. support areas	1,200
		Parking and Landsca	ping

Phase #2

Entry Chapel Saccomanno Center Expansion Pedestrian Bridges between Parcel #1 Buildings Parking and Landscaping

Phase #3

Ambulatory Services/Medical Offices Pedestrian Bridge across N 7th Street Parking and Landscaping

Including:

Improve on-site circulation Zoning of all St. Mary's properties to P-B Parking, Landscaping, Site Lighting etc. Razing of temporary buildings Bridge across North 7th Street Internal remodeling all buildings Bridge GVIC canal Razing temporary buildings, #1 to 7; 12 to 18;Engineering; Laundry Remodel interior of buildings as required to accommodate depts

2. Parcel #2 Expansion of Surface Parking and Phase #3 Building & Bridge

3. Parcel #3 Medical Related Use Building current vacant and for sale

4. Parcel #4 Staff Parking or Flexible Support Services Building

5. Parcel #5 St. Mary's Rehabilitation Center (former Hilltop Rehabilition Hospital)

Rehabilitation Out Patients	11,340	annual OPV
Rehabilitation Inpatients		28 Beds
Skilled Nursing Inpatients		22 Beds
Staffing		
a.m.		

p.m. night

off site

6. Parcel #6 St. Mary's Family Practice Residency (former Centennial Plaza) All existing tenants to vacate premise --Notice served to each Aug 1, 1995 29,260 gsf estimate 26 physicians at 4parking stalls each (code)=104stalls

7. Parcel #7 Staff Parking at Patterson & North 26 3/4

Improvement *verify* Parcel size *verify*

8. Parcel #8 Bookcliff Baptist Church Parking East side of N. 12th St. (across 12th from Centennial Plaza)

> 96 to 125 stalls *verify* Lot size *verify* Status with City *verify* Understanding 3 year agreement

Property For Rezoning

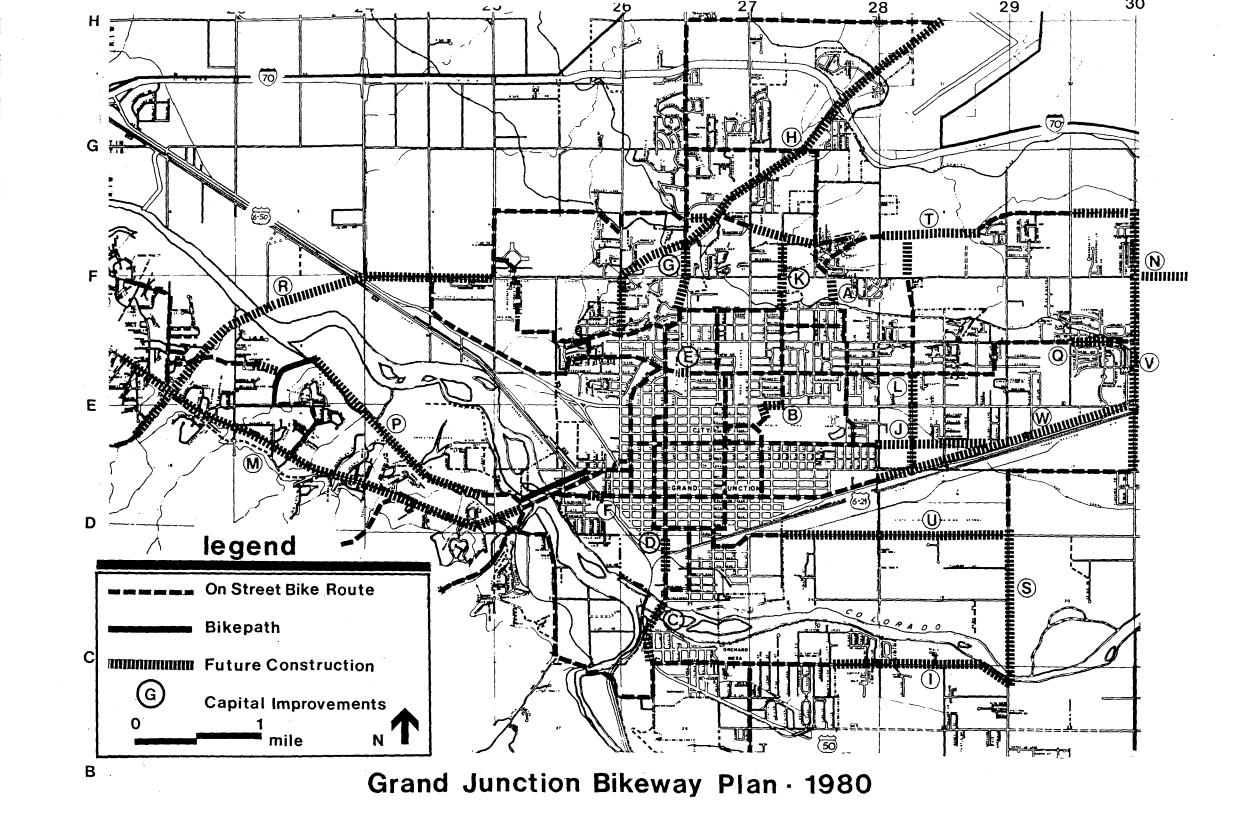
.

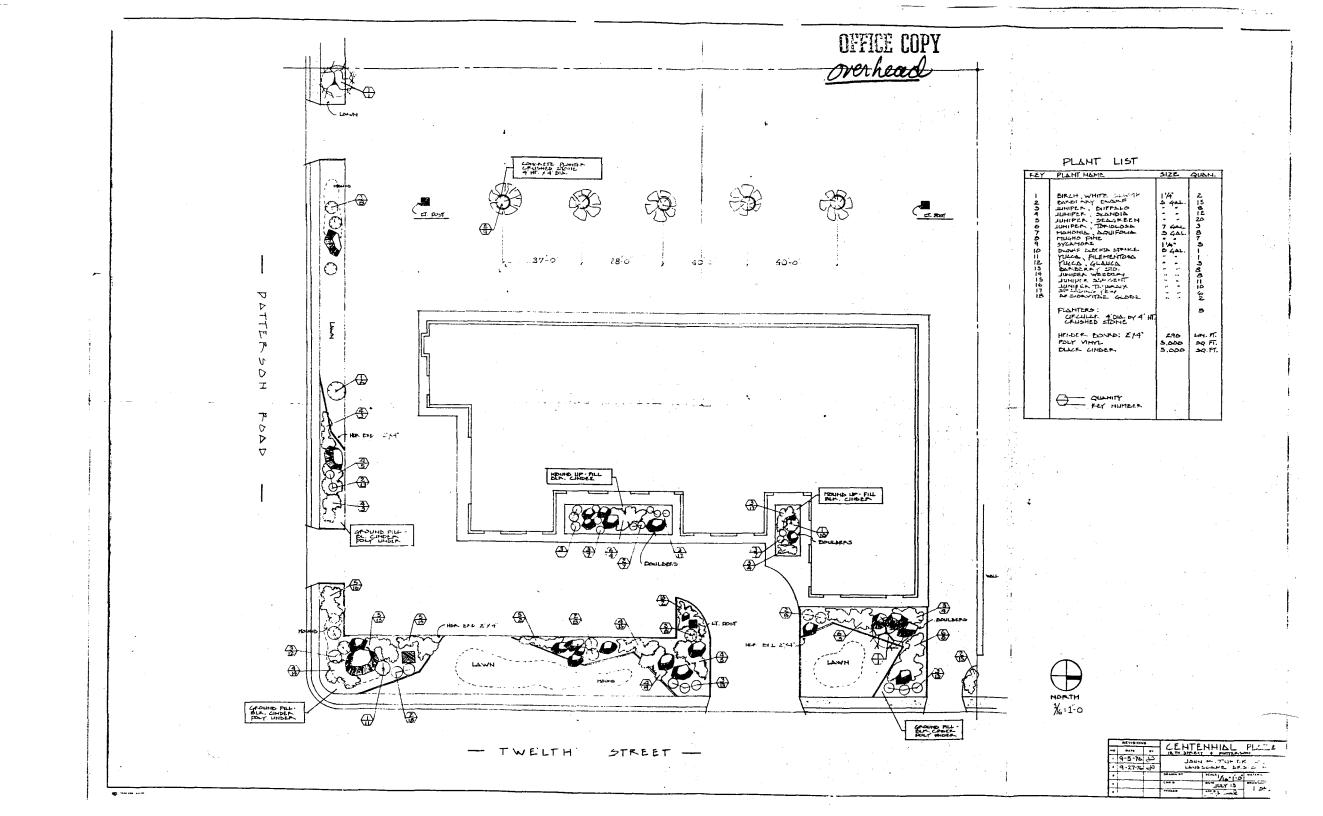
	Description	Current Zone	New Zone
1.	T. Carr	RMF-64	P-B
2.	G V P T	RMF-64	P-B
3.	Seniors	RMF-64	P-B
4.	EMS	RMF-64	P-B
5.	H illtop Reh Hosp st. Mary's Reh Certer	RMF-64	P-B
6.	St. Mary's Park	RSF-4	P-B

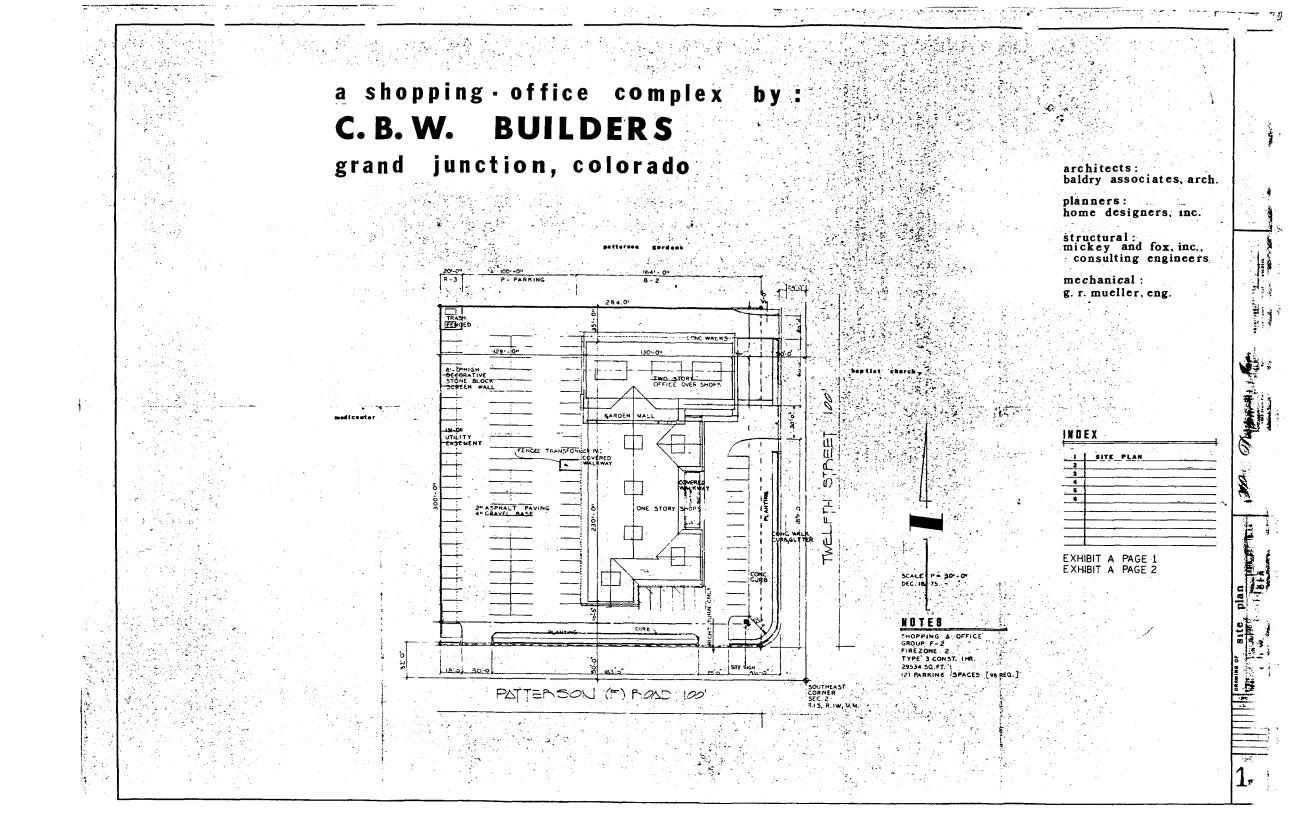
Potential for Medical Corridor Zone

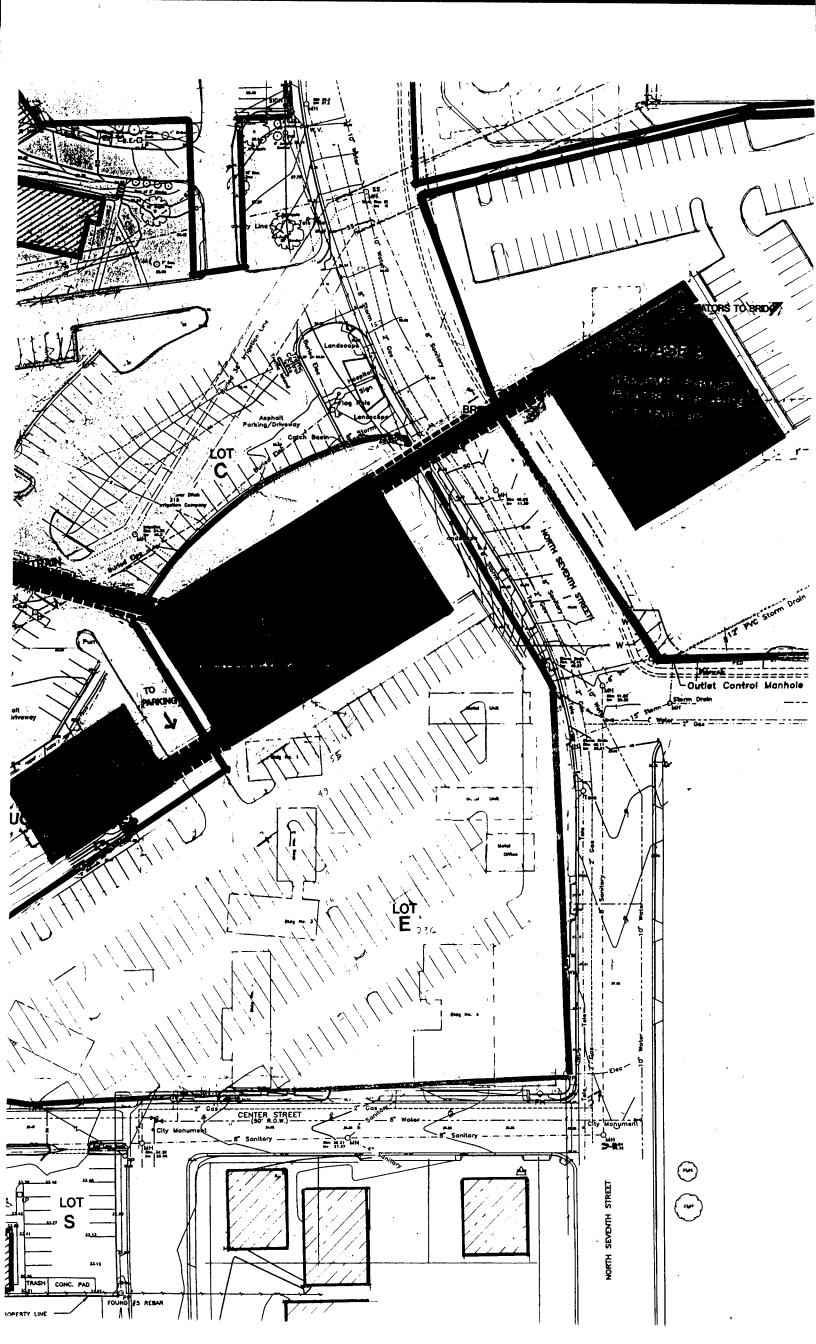
St. Mary's Hospital and Medical Center St. Mary's Rehabilitation Center St. Mary's Family Practice Residency Wellington I, II, III & IV Western Rockies Eye Center La Villa Grande Care Center Pharmacies

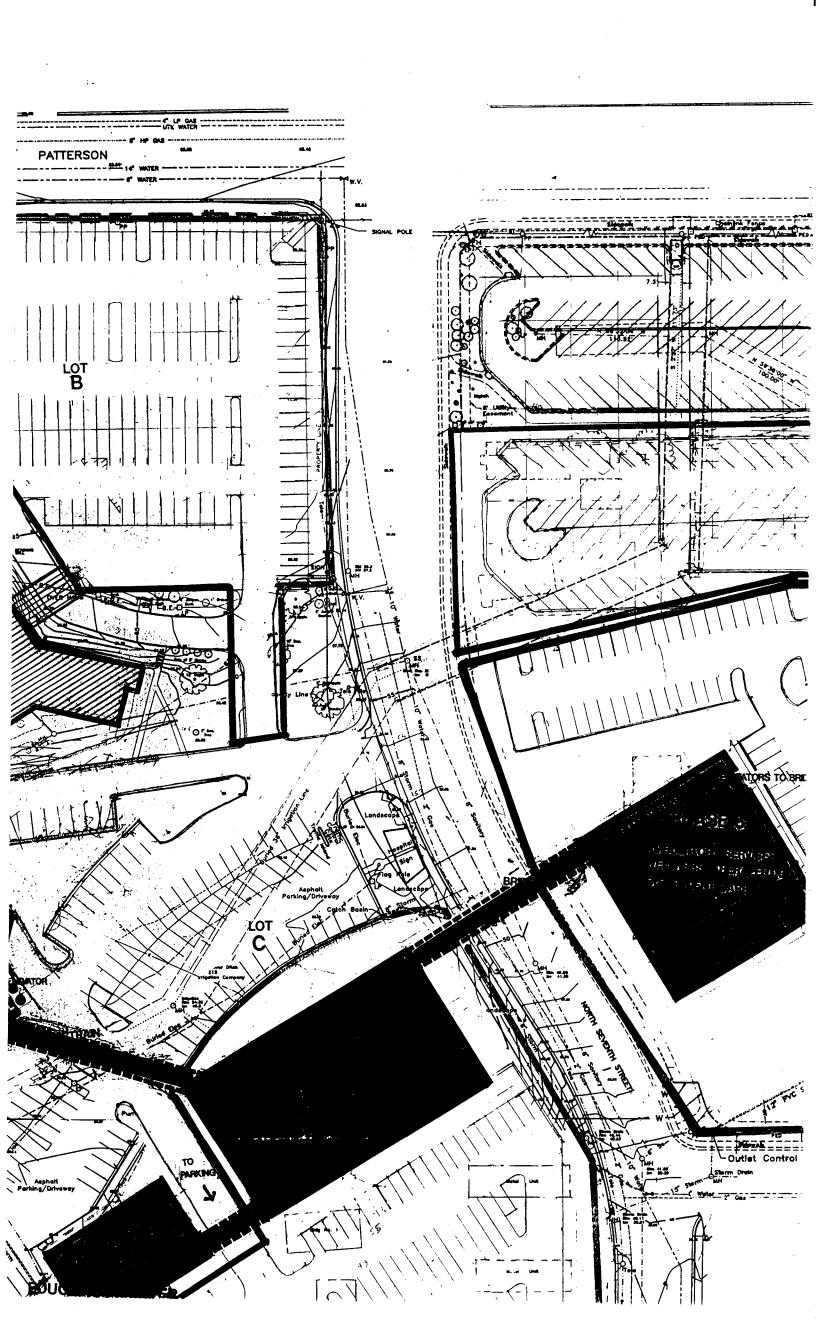
$\begin{array}{c} x_1 = -\cos(x_1 + \cos(x_1 + $			
NAME ST.	TRAFFIC STUDY REQUIN	REMENTS FORM	E Date: 8-10-95
DEVELOPEN	TRAFFIC CONSULTANT	CITY	APPROVAL PROCESS
274 	Company	Project Engineer	City 💢
:::::	Project Engineer	Project Planner	срон []
	Phone	Phone	Other []
TRAFFIC STUDY FOR	: CONTENT OF REPORT TO	INCLUDE	METHOD
		Site Study Site Area Impacts Impacts	
Zoning	Land Use Description	$\times \times$	
Platting	Trip Generation (+ Reduction Factors)	\times	ITE
Suilding Permit	Trip Distribution/Trip Assignment	×	

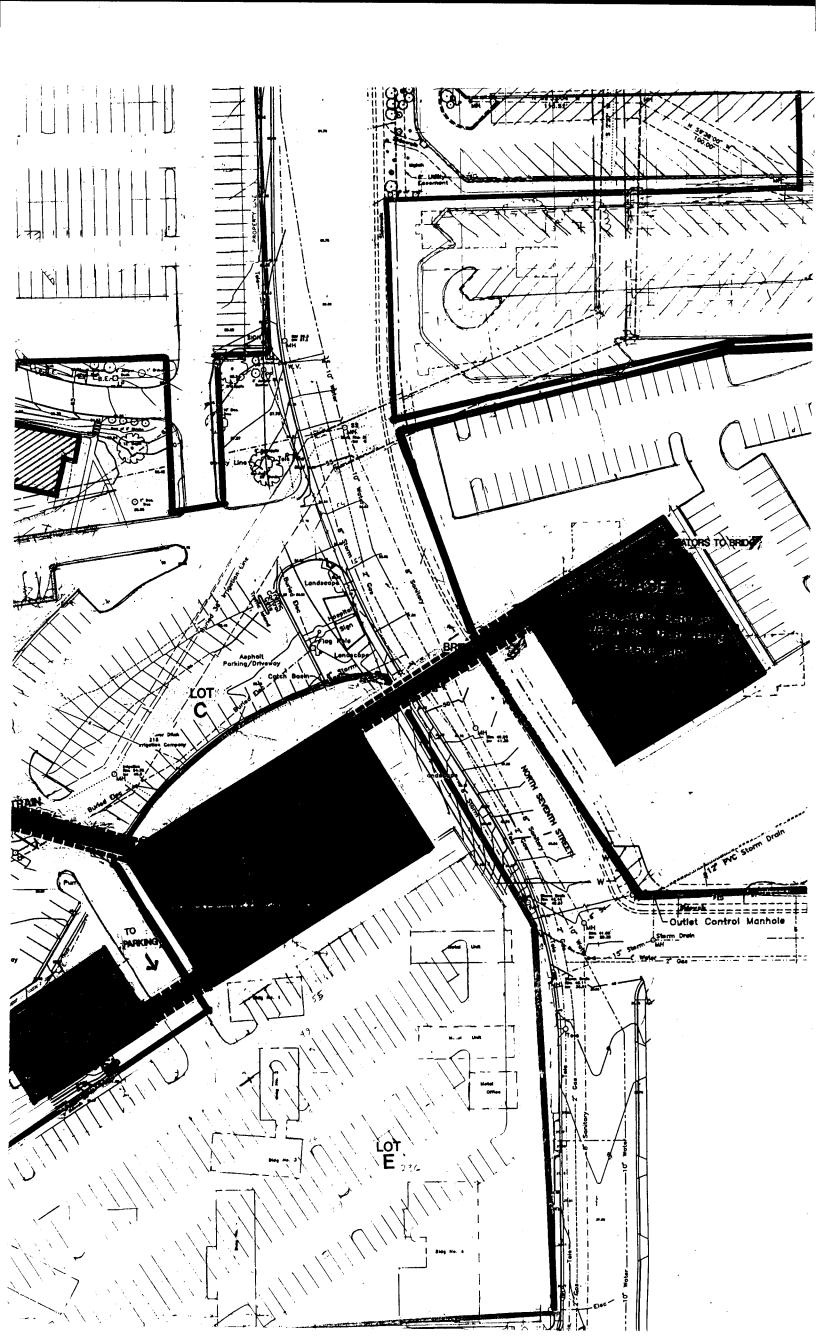

	Traft	ic Signal Progression		ang the sum of a grade to be to be to be the sum of a grade to be the s	×	PATTELSON RO, 7TH ST.	
nnexation	Accie	dent Analysis		X		CITY TO PROVIDE DATA	
coess Permit	Parki	ing Analysis (+ Shared Parking	,	X			
illeling Permit	Trip	Distribution/Trip Assignment		\times	ann ganar i ye sakinge ya ganakakan g		

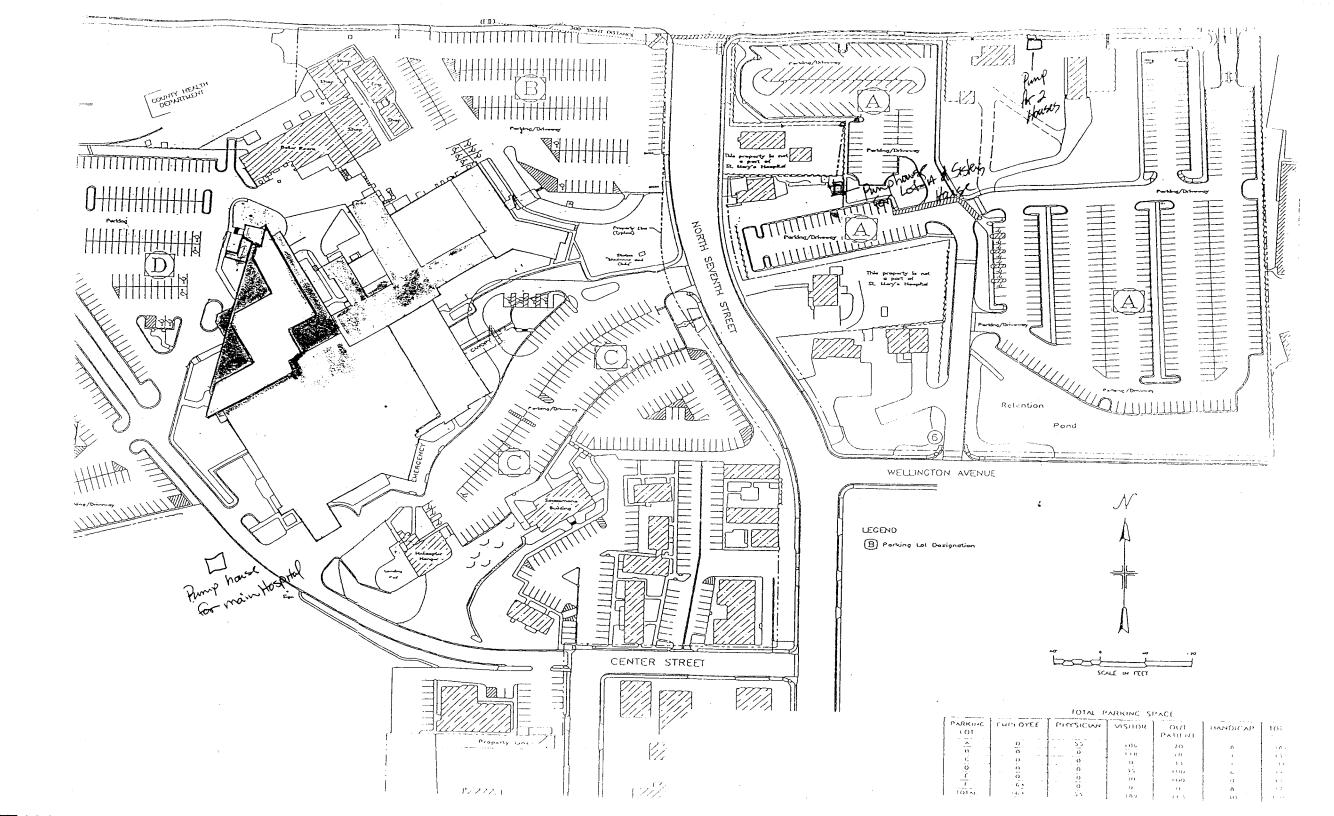

REDESTRIAN FLOW ANALYSIS - IDENTIFY DEFICIENCIES INTERNAL GIRCULATION - IDENTIFY DEFICIENCIES, RECOMMEND IMPROVEDERS


INTERSECTION CAPACITIES TO BE ANALYZED *	PEAK PERIODS			S	STREET A.D.T.S. TO BO	PROJECTION		
	A.M.	Noon	P.M.	Other	na mananana a sana a sana ang sana ang P	Existing	Build Out ST. MANS	20 Yr.
7TH & PATTERSON	\boldsymbol{X}	$\left \right\rangle$	\times		2774	×	×	X
THE WELLWETON	Х	\times	\times		PATTERSON	×	×	\times
DRIVEWAYS ON PATTERSON	X	X	\times		WELLINGTON	<u>×</u>	×	×
WELLNGTON & LITTLE BOOKCLIFF	\times	\times	\times					
11TH & WELLWOON (PARKINGLOT)	\times	\times	\mathbf{X}					
	a,							


For Existing and Build Out Conditions.
Traffic Consultants must meet with City staff to complete form. Traffic studies submitted without form being completed prior to study may not be accepted. All studies must conform to City Ordinance.
Study Area Definition (see map if attached):
North:South:
Fact. Michael


ALC: NO





Master Site Plan

1995

Introduction

Property

Existing Conditions

Proposed Development

Appendix 5

1

2

3

4

St. Mary's Hospital and Medical Center

Engineering

Addendum 1^r

St. Mary's Hospital & Medical Center Master Site Plan

September 8, 1995

The following addendum is submitted to the St. Mary's Hospital & Medical Center Master Site Plan:

General Project Report (3-ring binder)

Page 4-8:	¶ 3	Line 2 Line 3 Line 5 Line 6	Reference to Parking Lot A should read Parking Lot B. Reference to Parking Lot A should read Parking Lot B. Reference to Parking Lot A should read Parking Lot B. Reference to Parking Lot A should read Parking Lot B.
Page 4-8:	¶ 4	Line 2	Reference to Parking Lot A should read Parking Lot B.

Saint Mary's Hospital and Medical Center Grand Junction, CO

MASTER SITE PLAN

Index

content		description	Section/page
Introductio	on		Section 1
		d and Purpose	1-1
	Process		1-2
	Mission		1-3
	Existing Pr	operty	1-4
	Aerial Pho	to	1-5
	Planning C)bjectives	1-6,7
	Assessor's	1-8	
Property			Section 2
	Vicinity Ma	IP	2-1
	-	# 1 and # 2	2-2
	Plat # 3 an	d # 4	2-3
	Plat # 5, #	6 and # 7	2-4,5,6
	Land Use	Zoning Map	2-7
Existing F	acilities		Section 3
3		uilding Use	3-1
	5	Parcel # 1 and # 2	3-2,3
		Parcel # 5 and # 7	3-4
Proposed			Section 4
•	Major Goa	ls	4-1
	Phase 1		4-2
		Site Plan Phase 1	4-3
	Phase 2		4-4
		Site Plan Phase 2	4-5
	Phase 3		4-6
		Site Plan Phase 3	4-7
	Circulation	I	4-8
	Traffic		4-8
	Parking		4-9
	2	Existing	4-10
		Code Criteria	4-11
		Proposed	4-12

i

Saint Mary's Hospital and Medical Center Grand Junction, CO

MASTER SITE PLAN

content	description	page
	the state of the state of	
	Landscaping/Table 1	4-13,14
	Surface Drainage	4-15
	Bridges	4-16
	Proposed Development Standards	
	Setbacks	4-17
	Heights	4-17
	Site Coverage/Table 2	4-18,19
	Density/Table 3	4-20,21,22
	Open Space	4-23
	Rezone	4-23
	Infrastructure Improvements	4-23
Appendic	es	

5-1

Acknowledgements

i i

Introduction

1

St. Mary's Hospital and Medical Center

Grand Junction, CO

Master Site Plan

Introduction

Background And Purpose

St. Mary's Hospital and Medical Center (St. Mary's) is a 294 bed Regional Tertiary Medical and Trauma Center. It provides the residents of western Colorado and eastern Utah with high quality health care services. It is the largest medical center between Denver and Salt Lake City. St. Mary's is a teaching affiliate of the University of Colorado Health Sciences Center Family Practice Residency program.

St. Mary's has a rich history of providing health care. As reflected in its mission and day to day operation, St. Mary's is dedicated to promoting health care access for those in need and provides a significant amount of charity care for those individuals without personal resources. The spirit of charity care is also supported through the development of health services for which reimbursement is inadequate but which are needed by the community. St. Mary's consciously and deliberately establishes systems to identify and assist those in financial need. Beyond these commitments, there is a concerted effort not only to meet the health needs of the poor and elderly, but to increase the awareness of others regarding these needs. The mission of the Sisters of Charity of Leavenworth continues to be the main focus of St. Mary's efforts and future direction.

The purpose of this Master Site Plan (MSP) is to obtain City of Grand Junction approval to upgrade, improve, and expand St. Mary's facilities within its property boundaries in order to continue to be responsive to health care demands. St. Mary's seeks approval of its master site plan concept and phased projects over the next 10 year period following master site plan approval.

The improvement projects included in the master site plan are intended to better serve the community by improving functionality, responding to changing technologies and medical practices, and reducing cost. The improvement projects under the proposed master site plan will result in the additional area needed to alleviate crowed conditions, expand cramped and outdated space and facilities, provide space necessary to accommodate the latest medical technologies and services, and to up grade and enhance campus grounds and open spaces to improve the aesthetic appearance of the medical center.

1-1

This Master Site Plan is for St. Mary's entire campus. The west end of the campus is anchored by the hospital located at the intersection of Patterson Road and North 7th Street and the East by St. Mary's Rehabilitation Center and Family Practice Residency building on the corner of Patterson Road and North 12th Street. Figure 1 shows the neighbor hood context. The plan has been developed to reflect the Zoning and Development Code last printing October 1994.

The stated goal of the Zoning and Development Code is to respond to the demands of change while promoting the health, safety and general welfare of the residents of the City of Grand Junction. This Master Site Plan (MSP) seeks to meet that goal and assure that the Master Site Plan improvements are appropriate within the community.

Process

While a great majority of code issues fall easily identifiable, St. Mary's with it's long term presence in Grand Junction and extensive facility assets at the present locations falls outside of the normal code process and requirements.

Through staff discussion the following process has been established for St. Mary's MSP:

- St. Mary's prepares "Preliminary" Master Site Plan in compliance with agreed outline and files it with the City Community Development Department (CCDD) targeted for September 1st.
- A public Hearing by the Planning Commission is held with in 30 days. Normally the 1st Tuesday of following month (assume October 3rd) This is followed by a 3 day window for Appeals
- St. Mary's must then satisfy items from the hearing and staff reviews or If no agreement is reached or if an Appeal is filed a City Council decis

If no agreement is reached or if an Appeal is filed a City Council decision will be required

• If no appeal is filed and the staff comments are satisfied the MSP will go to the City council with the Planning Commissions recommendation to approve. Assuming the City Council approves the MSP becomes officially adopted and may be implemented the first month after the City Council's approval.

1-2

Mission

In 1895, Sisters Balbina Farrel and Lousia Madden embarked on their mission from Leavenworth, Kansas, to bring a hospital to the relatively new town of Grand Junction. By 1896, their dream became reality with the opening of a ten bed wooden frame hospital.

As the community grew so did St. Mary's Hospital. In response to the commitment and perseverance of the Sisters, the community graciously donated the funding for expansion in 1923 and 1940. By 1950 continued growth demanded additional facilities and again the community supported St. Mary's need. This time with landed donated by Mesa College St. Mary's moved to the current Rose Hill site. Progress over the years has brought about the much needed expansion in 1978, 1985 and 1995.

As those early Sisters began their work for the good of others, they reached out to those in need, never turning away anyone who could not pay for care. Their door was always open.

Through times changed, need has not. The Sisters continue to be concerned that people in need are cared for. St. Mary's Medical Center maintains an open door policy, never turning a patient in need of care away.

St. Mary's is a non-profit institution. Any income in excess of expenses for personnel, payment of debt, and operations is reinvested in facilities, community and medical education, charity care and other services to the community.

St. Mary's has provided far more to the Grand Junction community than dollars can attest. St. Mary's offers a wide range of community services, education, research and special programs for the elderly. Each is made of people who are givers of care with a deep concern for others.

The proposed development will enable St. Mary's to continue to be responsive to the Sisters of Charity of Leavenworth public purpose mission to provide the highest quality for all members of the public, and will enable this to occur in a more efficient manner. The benefits to the community are reflected in St. Mary's Hospital & Medical Center vision statement:

We will provide compassionate health care And make it affordable for all by being passionate about our work and our relationship. We shall be here for life.

Sister Lynn Casey

In addition to meeting these fundamental aspirations, responding to changing health care needs and improving the efficiency of the institutions, benefits will include better accessibility of services and improvement of facility appearance. Some public services will be expanded as they are relocated to larger, more efficient space.

Existing Property

St. Mary's Hospital and Medical Center located at the corner of North 7th Street & Patterson Avenue in Grand Junction, Colorado currently owns approximately 35.67 acres of land in seven parcels separated by streets or other lots and has an understanding regarding an eighth parcel.

Parcel #1 is the central portion of the main campus, a 19.86 acre plot when including the 2.08 acre park St. Mary's Park.

Parcel #2 is 9.11 acres East of N. 7th Street used for hospital employee parking, three separate residence for Sisters and four other properties (T. Carr residence, G. V. P. T., Seniors, & E. M. S.) all owned by St. Mary's.

Parcel #3 is .69 acres immediately North across Patterson Road, formerly the Oncology Clinic of Dr. Matchett.

Parcel #4 is 1002 Wellington Avenue a one acre vacant lot approximately 980 feet East of Parcel #2.

Parcel #5 is St. Mary's Rehabilitation Center the former Hilltop Rehabilitation Hospital 1100 Patterson Road.

Parcel #6 is the Employee Parking Lot at the corner of Patterson and 26 3/4 Road.

Parcel #7 is St. Mary's Family Practice Residency the former Centennial Plaza Property 2721 North 12th Avenue.

Parcel #8 is a parking lot owned by Bookcliff Baptist Church across North 12th Street from St. Mary's Family Practice Residency. During the recent property acquisition from Centennial Plaza it was understood St. Mary's could continue to use the Church's parking lot under the current agreement.

1-4

Saint Mary's Hospital and Medical Center Grand Junction, CO

AERIAL PHOTO

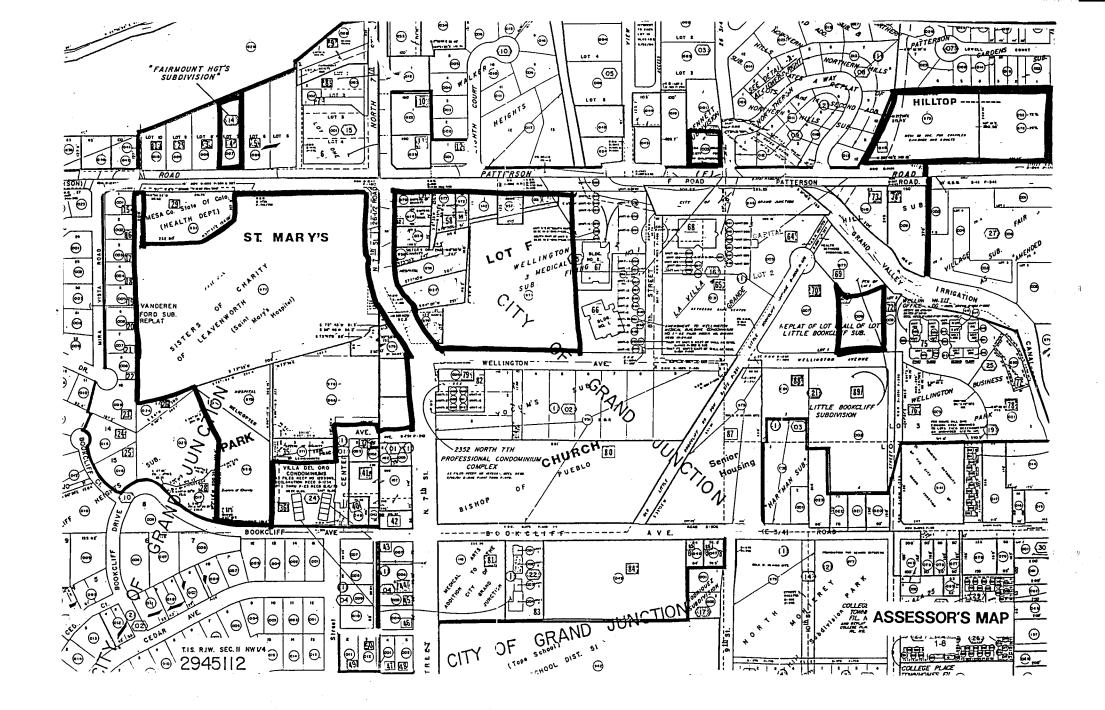
1-5

Planning Objectives

This Master Site Plan (MSP) develops Parcels #1 and #2 in three phases which bring the properties up to the City's current Zoning and Development Code, dated: October 1, 1994. Major planning elements for Parcel # 1 include landscaped setbacks along Patterson Road; additional on site landscaping; on site traffic circulation changes that result in reduction of curb cuts along N.7th Street; razing of temporary buildings; construction of permanent buildings; structured parking at N.7th Street and Center Drive; and pedestrian bridge across N. 7th Street to Parcel #2 for access to additional surface parking and planned outpatient facilities.

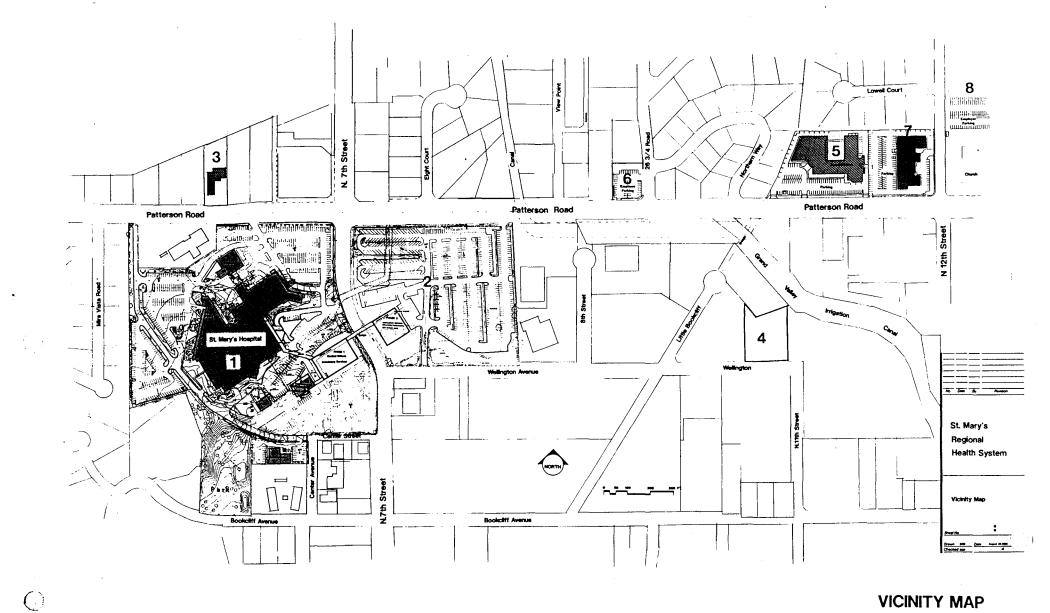
Parcel #3 is a .69 acre lot with a 5,000sf Doctor's Office building isolated from the Medical Center by Patterson Avenue. It is in Zoned B-1. It is vacant and for sale.

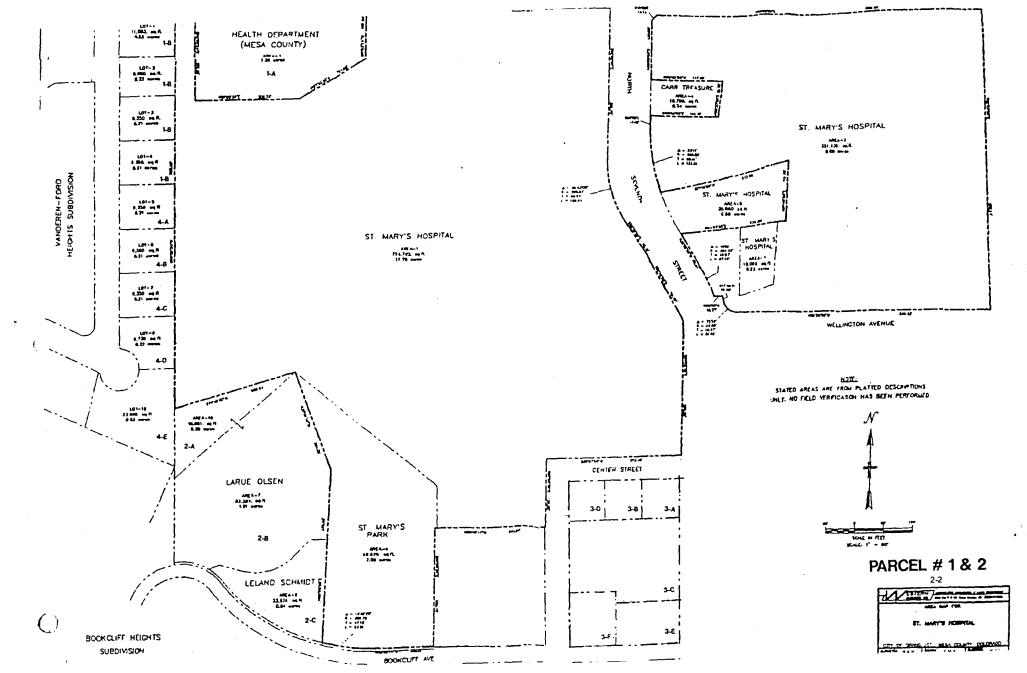
Parcel #4 is a 1 acre vacant lot 980 feet to the East of Parcel #2 and approximately 450' due south of Parcel #5. It is initially planned to developed as surface parking for St. Mary's Rehabilitation Center Employees (serving Parcel #5) and/or for Periodic Employee Parking (serving Parcel #1 and /or Parcel #2). When permanent development occurs, Parcel #4 is planned to be developed as medical office, research, a child development center, retail outlet, engineering service or general administrative office use. In order to enhance the relationship between Parcel #4 and Parcel # 5 it is planned to upgrade the existing pedestrian bridge now over the Grand Valley Irrigation Canal at the North extension of Little Bookcliff Avenue R.O. W..


Parcel #5 St. Mary's Rehabilitation Center formerly Hilltop Rehabilitation Hospital is on a 2.93 acre site zoned RMF-64, contains 53,276 square feet of space with a building site foot print of 39,200 square feet, 103 parking stalls (11 for the handicapped), has 22 Skilled Nursing Home beds, 28 Rehabilitation beds and an Outpatient Rehabilitation Service that provides the region with approximately 11,500 OPV annually.

Parcel #6 is St. Mary's Rehabilitation Center Employee Parking Lot, formerly Hilltop Rehabilitation Hospital Employee Parking, a .36 acre site, with 48 surface parking stalls (2 for the handicapped) and 1,539 square feet (9.5%) of the site landscaped.

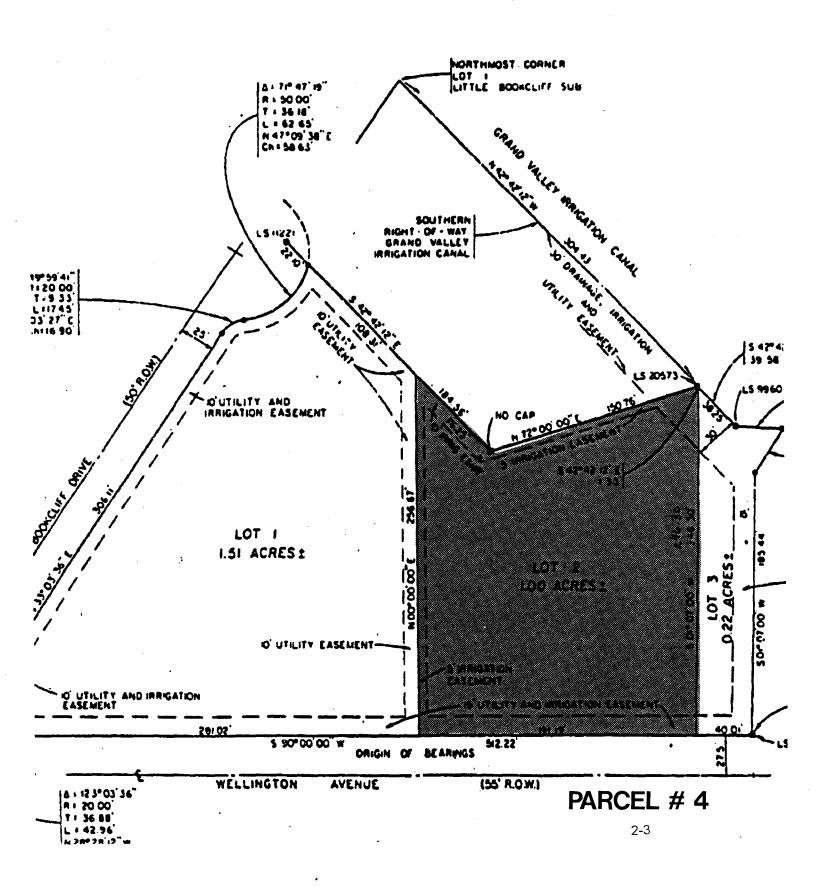
Parcel #7 St. Mary's Family Practice Residency formerly Centennial Plaza is on a 2.08 acre site (29,260 square feet) zoned P-B, contains 29,700 square feet of space with a building site foot print of 21,900 square feet, 130 parking stalls (7 for the handicapped).

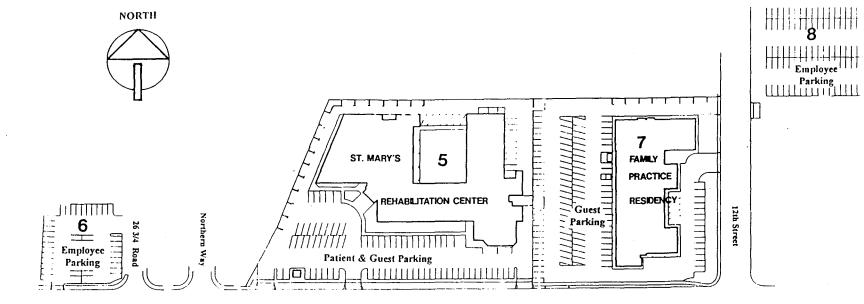

Parcel #8 Bookcliff Baptist Church Parking lot is located on the East side of 12th Street. It can park 95 to 125 cars on gravel surface. This area has been used by the past owner of Centennial Plaza under an verbal agreement with the Church. There are 3 years remaining under the agreement. It has been passed on to the St. Mary's. It's future use has not been defined at this time. Numerous on going internal remodeling, tenant improvement and upgrade projects are expected over the life of this plan. This is a Master Site Plan and as such it does not address on going internal remodeling, tenant improvement and upgrade projects in side of the buildings.



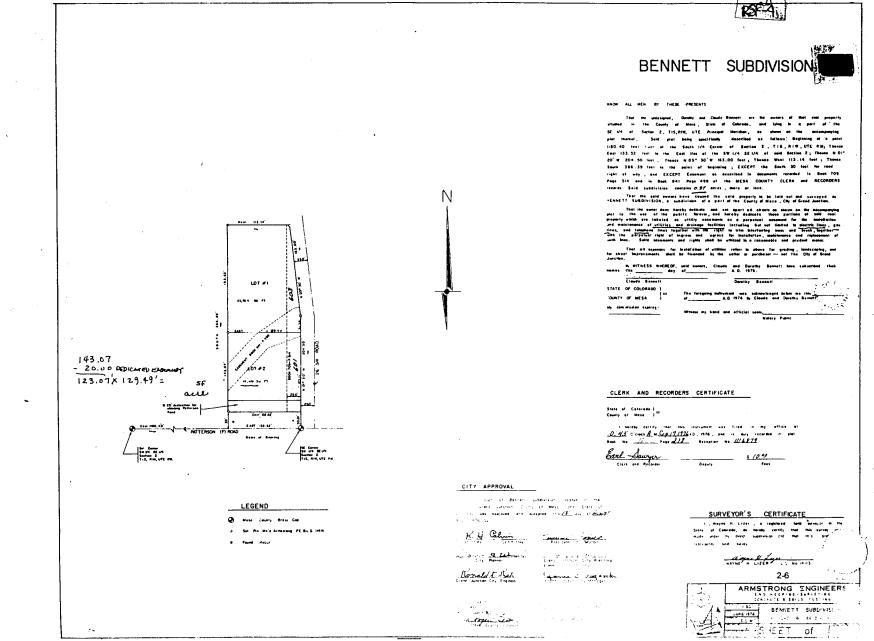
Property

2




VICINITY MAP

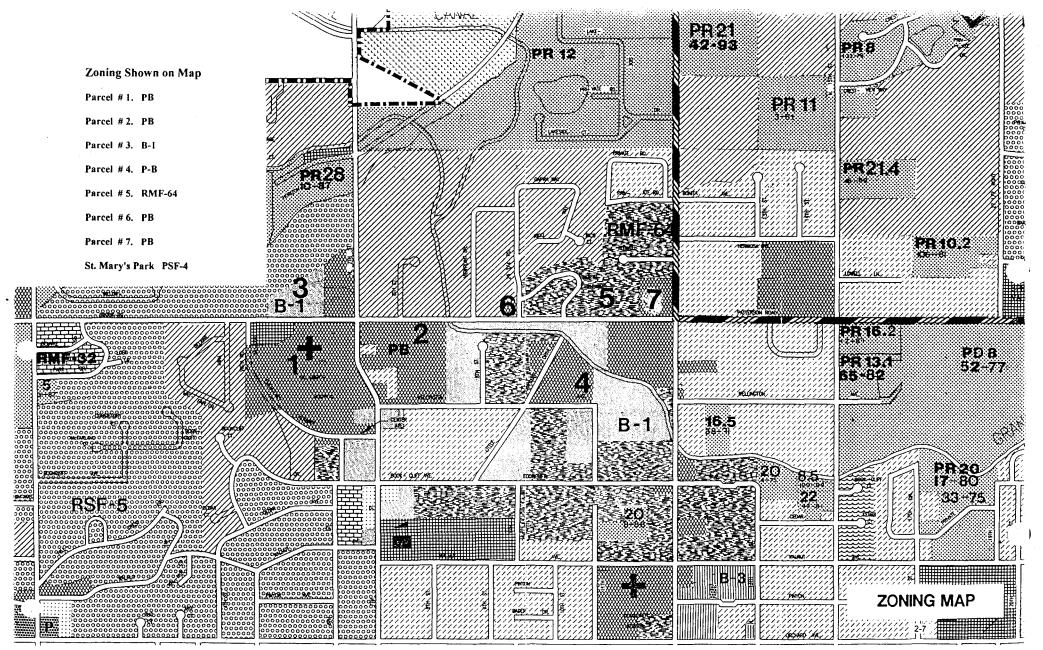
- ()



Patterson Road

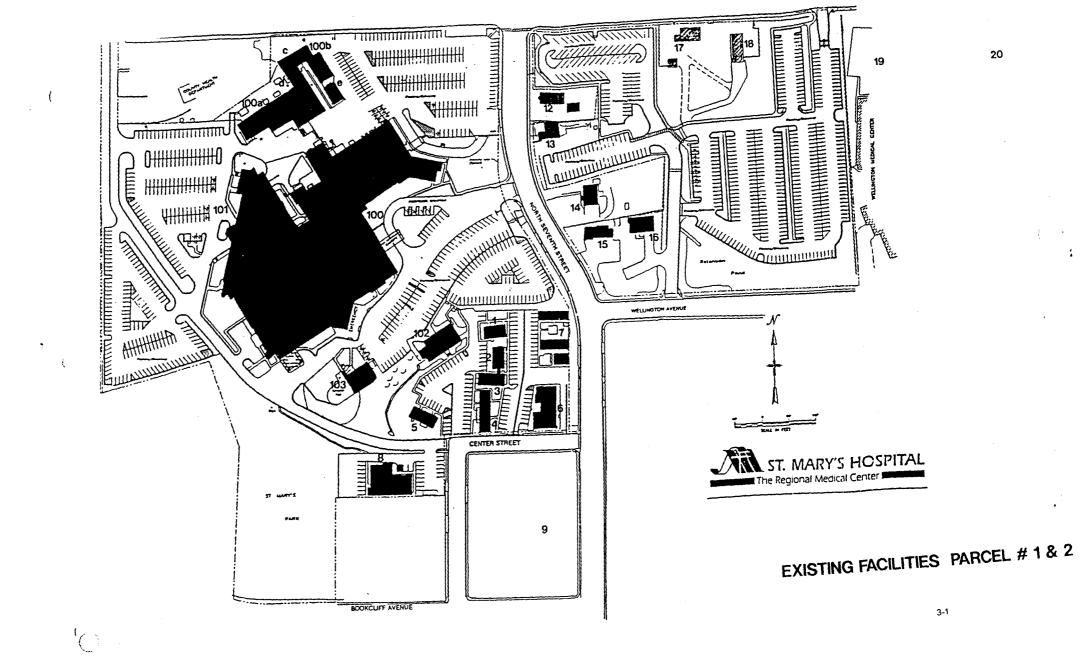
PARCEL # 5,6,7,8

BIELLI / DR. County of Wasa 1 10 Remetion No. 1140211 -Burceder. Patterson Gardens, Inc. a corporation daily organized and existing under and by virtue of Bine Documentary Pee the laws of the State of Colorado Date AUG 2 4 7977 whose address is ' 1100 Batterson Road, Grand Junction 37.2 , and State of County of Massa Colorado , for the consideration of Valuable consideration Ten dollars and other good and dollar X Colarado in hand paid, bereby sell(a) and convey (a) to The Hesa County Society for Unippled Children and Adults, A Colorado Non-profit Organization whose address is 515 Patterson Road, Grand Junction , Comiy of , the following real property in the and State of Colorado Moga. Meso , and Bists of Colorado, to wit: County of Commencing on the South Line of Section 2, Township I South, Range 1 West of the Ute Meridian at a point 324.67 first Nest of the Southeast Corner thereof; thence North 0°01' East 330.56 feet; thence Mest 324.95 fort; thence South 21°58' Mest 215.43 fort; thence South 28°46' West 149.18 feet; thence East 477.23 feet to the point of beginning 1100 Patterson Road also known as street and number with all its appurtenances, and warrant(s) the title to the same, subject to the lien of that certain Deed of Trust dated July 18, 1968, and recorded July 19, 1968, in Book 924, Page 916 of the Mesa County records given to secure a promissory note, which note and deed of trust Granize hereby assumes and agrees to pay. Also subject to 1977 real property taxes due and payable in 1978, and all subsequent taxes and all easurents, restrictions and rights of way of mounds. , 19 77 . Signed this lst day of August Patterson Gardens, <u>.</u> tor a By Bacretary. President. STATE OF COLORADO. County of Mess The foregoing instrument was acknowledged before me this lst day of August 19 77 by Robert F. Ball the President and #5 the Scornizzy of NAREK. Parcel Patterson Gardens, Inc. . a corporation. OTARY Feb 9, 1980 My commission expires 1 ->-**O**-**O**-Witness my hand and afficial soal. UBLICA 2-5 Ben A site


đ,

041

 $\{1, 2, 1\}$


()

ST. MARY'S PROPERTY #1,2,3,4,5,6,7

Existing Conditions

3

Development of Existing Facilities

Description	Remarks	Proposed Location
Permanent Buildings		
100 Hospital		To Remain
Boiler Plant		To Remain
Laundry		Analyze Move
Eng Offices		To Hospital
Maintenance Shops		To Hospital
Parts Warehouse		To Hospital
Bio-med Shop		To Hospital
Print Shop		To Hospital
Medical Office Building # 1		To Remain
Saccomanno Center	*1	To Expand
Helistop / Maintenance Hanger	*2	To Remain
201 Rehabilitation Center		To 1100 Patterson Road
301 Family Practice Residency Prog		To 12th & Patterson
Temporary Buildings		
Nutrition Clinic	*3	Move/Demolish
Marillac Dental	*3	Move/ Demolish
Marillac Clinic	*3	Move/Demolish
Family Practice Annex	*4	Move/Demolish
Mesa Midwives	*5	Move/ Demolish
Occupational Health	*6	Move/Demolish
Credit Union	*6	Move/ Demolish
Blood Bank	*6	Move to Hospital
Guest House Motel 2425 N7th	*7	Demolish
Family Practice Residency Bldg	*4	Move/Reuse Bldg
Rehab Clinic 2323 N.7th	*8	Move at end of lease
Matchett Clinic 520 Patterson		For Sale
Wellness Clinic 666 Patterson	*8	Move at end of lease
T. Carr 2604 N.7th		Move/Demolish
Sister's 2556 N.7th	*9	Move to New Home/D.
G.V.P.T. 2536 N.7th	*10	Vacant/Demilosh
Senior Life Center 2515 N.7th	*11	Move/Demolish
Foster Grandparents	*11	Move/demolish
Senior Companions (Partners)	*11	Move/Demolish
E.M.S. Outreach 710 Patterson	*12	Move/Demolish
Sister's 2655 Patterson	*9	Move to New Home/D.
Sister's 2657 Patterson	*9	Move to New Home/D.
Wellington II 2525 N.8th		Condo . to Remain
Wellington IV 2530 N.8th 104,106		Condo . to Remain
1002 Wellington Ave LOT	*13	Develop 43,560sf Site

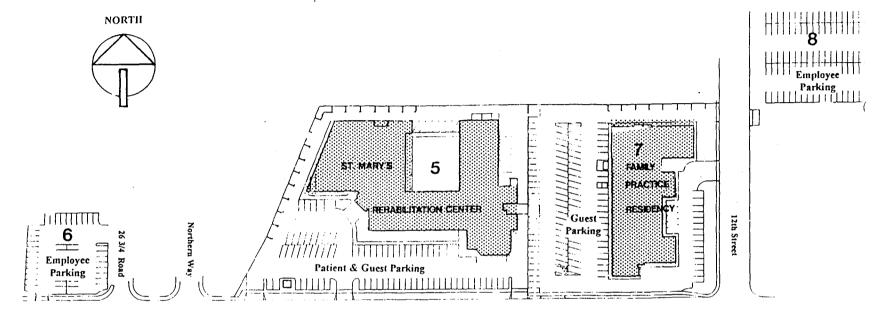
Remark

******'

See notes next page.

Remarks

(continued)


Notes:

*1	Saccomanno Center
	Additional Growth
	Combine with Health Education
	H. Educ etc. 12,818sf
	Maintain idenity of Saccomanno

- *2 Heliport/Maintenance Hanger Maintain at existing location
- *3 Marillac Clinics Combine Clinics, Dental & Nutrit Near F.P.Residency Clinics or to Ex F.P.R. Bldg Existing 3,915 sf Growth to 6,414 sf
- *4 Family Practice Residency Existing 13,634+2,295sf Growth forecasted 25,000 sf Phase 1
- *5 Mesa Midwives Private program move to rental area
- *6 Occupational Health Existing Strong Outpatient Function Combine with H.Ed.& OP Rehab 5,000sf Phase 1
- *6 Blood Bank Existing To area in Hospital near Lab 2,783sf
- *6 Credit Union Existing move to rental area
- *7 Guest House Motel Existing 24 units To be discontinued
- *8 Rehabilation Clinic Existing 1,200sf Move to 1100 Patterson

- *9 520 Patterson (Matchett Clinic) Possible Temporary Use: Child Development Center Marillac Clinic Mesa Midwives Credit Unioin Seniors Foster Grandparents Senior Companions-Partners
- *10 G.V.P.T. 2536 N.7th Vacant Building Demolish/ use for Parking
- *11 Seniors 2515 N.7th Demolish Use for surface Parking
- *12 E.M.S. 710 Patterson Periodic Classes To Health Education
- *13 1002 Wellington 18,000sf Footprint Flex-space 1 or 2 story frame structure For Health RelatedActivities and/ or Surface Parking
- *14 Employee Residences Move Off Site For Surface Parking
- *15 Employee Day Care Center locate as space becomes available

- 3-3

Patterson Road

 $\xi_{2}^{(4)}$

PARCEL # 5,6,7,8

Proposed Development

St. Mary's Hospital and Health Center Grand Junction, CO

Major Master Site Plan Goals

- Provide required facilities for Family Practice Residency Program.
- Consolidate existing departments now found in several locations on and off site.
- Develop medical office building on Parcel # 1 for patients access to the hospital's sophisticated costly equipment and to house physicians adjacent to the hospital in order to extent their time for patients.
- Connect major on-site buildings with enclosed pedestrian bridges.
- Expand existing educational facilities to accommodate the need of the medical staff, hospital in-service training, patients and health related activities.
- Bridge from Parcel # 1 across North 7th Street to permit easier access to parking on Parcel # 2.
- Move Engineering Services; raze the vacated buildings and provide a landscaped view from Patterson Road.
- Investigate the possibility of a central regional hospital laundry off site.
- Move all services into permanent quarters and raze the vacated temporary buildings
- Maximize the existing land for surface parking before building structured parking.
- Obtain permission of the Community Development Department and the Planning Commission to proceed with the elements in the Master Site Plan without further Zoning and Development Code submission(s) and review(s).

Master Site Plan

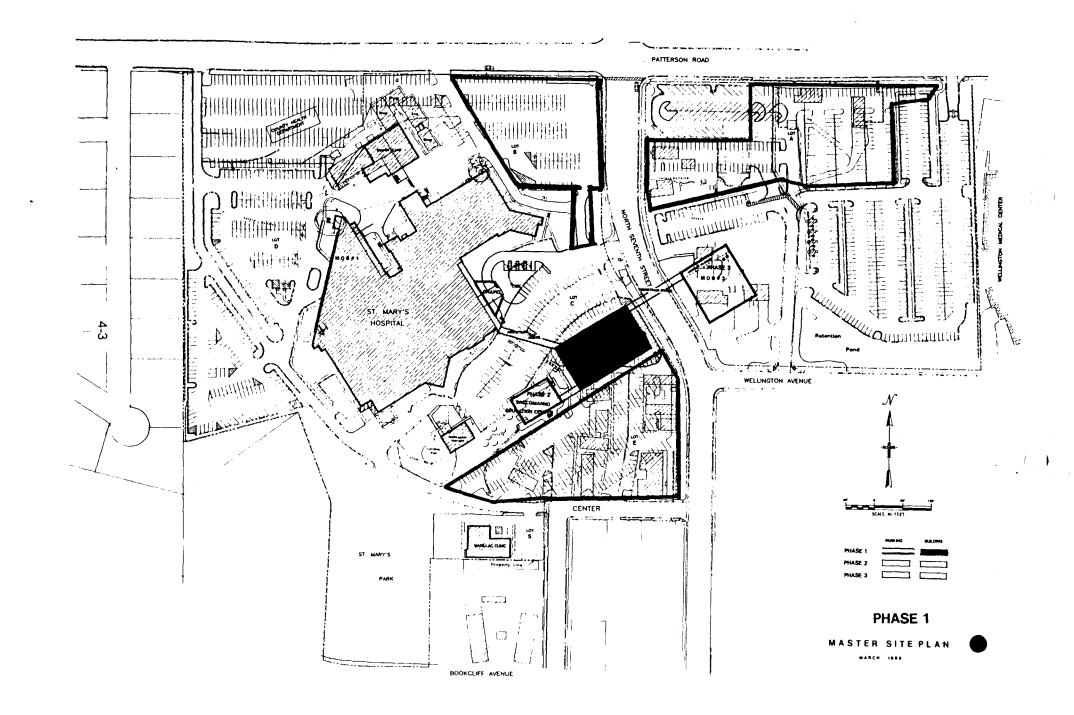
Phase 1

General Description

The Family Practice Residency (FPR) Program is in critical need of additional space. The current buildings are not fully accessible to the handicapped. Space is required for patient waiting, clinical lab area, record storage, exiting circulation, nurse charting areas, supplies, etc.. Access is also needed in the FPR for diagnostic and therapeutic services. As a part of continuing health care reform, Family Practice Educational Programs such as this must grow to provide Primary Care Providers. Adequate space for the Family Practice Residency Program is St. Mary's #1 Facility goal.

In addition to space for the Family Practice Residency Program, the demand for Out Patient Services have brought about over crowding conditions and a requirement for more space in (1) Occupational Health; (2) Outpatient Rehabilitation (physical therapy, occupational therapy, and speech therapy); and (3) the building's facility support areas. The first phase of construction will provide space for these services.

PHASE 1 Areas:	
Occupants	area sf
Family Practice Residency	25,000 sf
Occupational Health	5,000 sf
Out Patient Rehabilitation	10,000 sf
Building Facility Support Areas	1,200 sf
Medical Office Building #2	41,000 sf


Phase 1 Notes:

1. MOB #2 will be designed to receive a future circulation corridor for Pedestrian Bridges. Bridge 1 will be to the First Floor of the Main Hospital; and bridge2 will be to the Saccomanno Education Center, both in Phase 2. A pedestrian bridge from MOB #2 crossing N.7th Street will be in Phase 3.

2. MOB #2 will also designed to expand vertically by two future floors.

3. Phase 1 includes refurbishing the existing Family Practice Residency building after it is vacated for occupancy by Marillac Clinics, Mesa Midwives, Nutrition Clinic and Dental Clinic.

4. Phase 1 includes the razing temporary Buildings #1 through #6, Buildings #12 through #18 and the existing Guest House Motel; improving on site automobile circulation;

.

<u>,</u> 4

landscaping Lot B, and adding approximate 216 additional on site parking stalls on Parcel #2 (refer to Section 3 Parking).

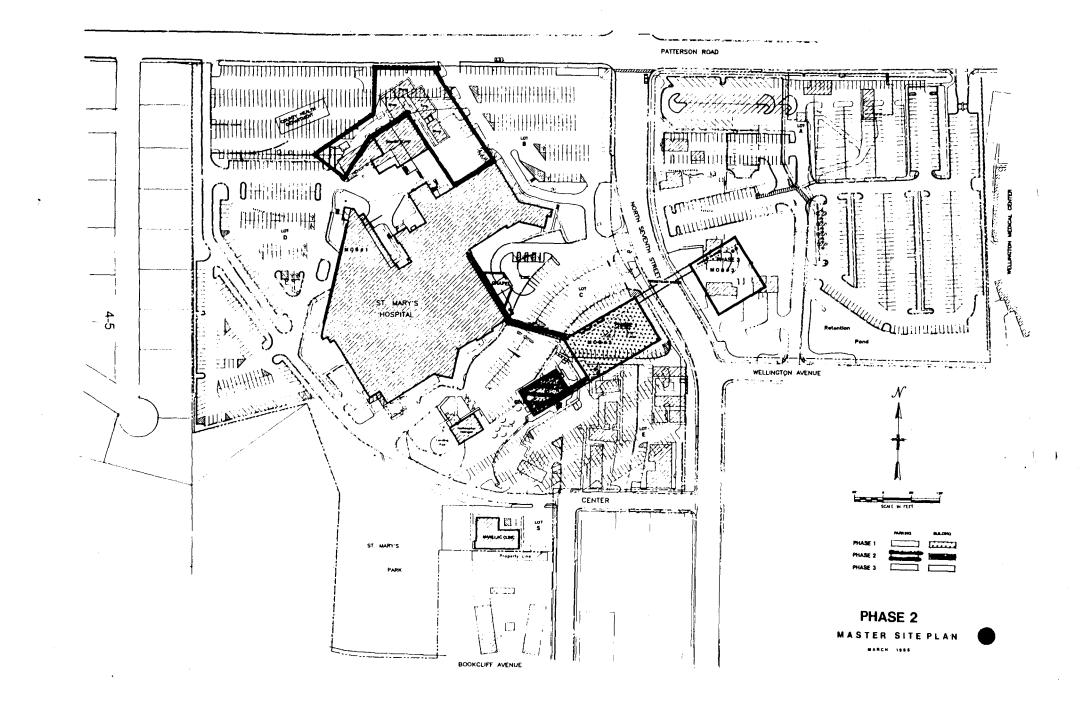
Master Site Plan

PHASE 2

General Description:

Expansion of Saccomanno Education Center

Connect major on site buildings with Pedestrian Bridges Hospital to M O B #2 M O B #2 to Saccomanno


Strengthen idenity of Main Hospital; Add Chapel above Entry

Analysis potential of off site laundry

Move Engineering into permanent quarters

Raze vacated buildings and increase surface parking

Continue internal remodeling and tenant improvements for Out Patient access to the Medical Center's sophisticated Diagnostic & Therapeutic equipment and services.

Master Site Plan

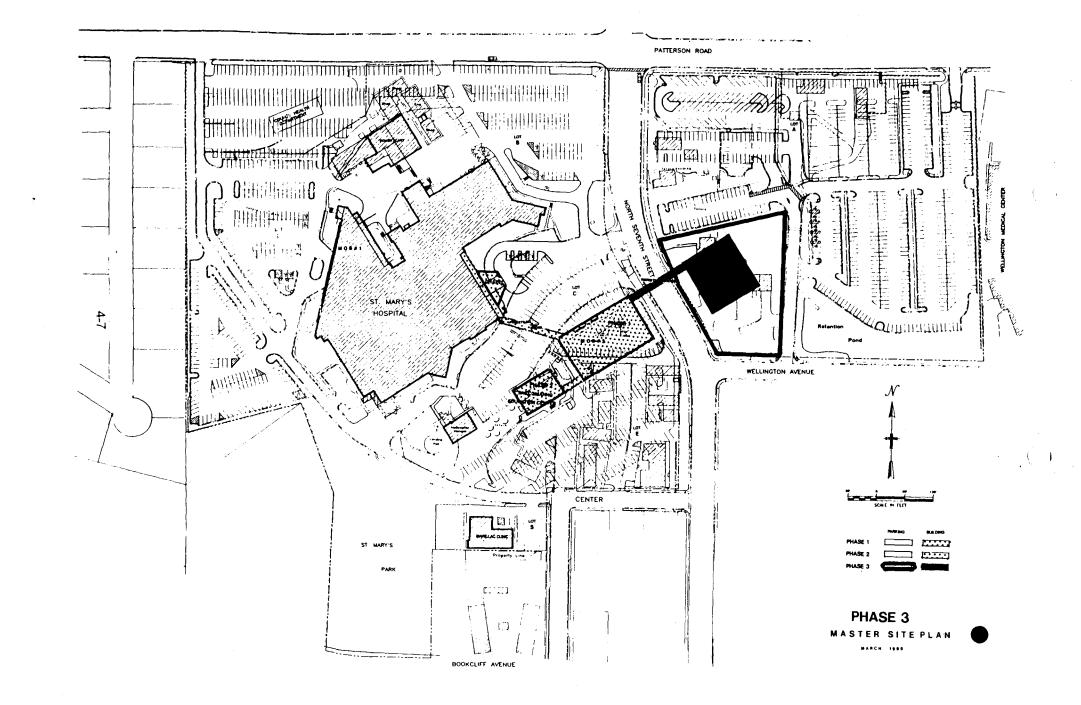
PHASE 3

General Description

Bridge acrosss North 7th Street

Add bridge across Street connecting the Hospital, Medical Office Buildig # 2 and the Saccomanno Education Center on Parcel #1 with Ambulatory Services Building #3 and the maximum surface parking on Parcel #2

Ambulatory Services Building


Develop Ambulatory Services Building #3 on the East side of North 7th Street for high volume services requiring quick patient access, short turn around time and easy access to parking. Wellness Programs, Rehabilitation Services, Patient Screening, Preadmission activities, Eye Care, Pharmacy, Medical Equipment sales, Primary Care Physicians are anticipated to be the principal tenants.

Miscellanous Items:

1. The Guest House Motel will not be replaced.

2. There will be no overnight RV parking provisions.

3. Parcel #3 currently Zoned B-1 may be used for temporary relocation housing for Seniors, Emergency Medical Service Outreach Programs or other hospital services temporary dislocated during construction activities.

Circulation

The development in this MSP will provide modifications to the existing site access and internal circulation systems. The majority of the differences are primarily related to additional parking areas and revisions to the existing parking areas to add landscaping.

The primary Parcel #1 entry/exit locations remain along Patterson for East bound traffic and along North 7th Street for North/South bound traffic.

To enhance internal (on-site) circulation the MSP proposes closing the North most curb cut on the West side of N. 7th Street and opening on site drives between parking Lot A & parking Lot C and also between Lot A & Lot D. This internal circulation drive system provides access between all Parcel #1 parking. It eliminates the need to return to a public street in order to go to another on site parking space. Today, when lot A is full, one must leave Parcel #1 lot A; go back into the street traffic; proceed to another Parcel #1 entry/exit and continue to search for a parking space.

The location for the drive shown in the MSP on the North side of the Power Plant, connecting Lot A & Lot D is subject to an economically viable outcome of a Central Hospital Laundry Study involving a new facility on a new site.

After Temporary Buildings #1 through #7 are vacated and razed, Lot E will become surface parking. Later, Lot E provides an excellent location for a two level parking deck with the upper deck located near the Hospital's Main Entrance Level. The upper deck is proposed to be entered via a new road between the existing Saccomanno Education Center and the Phase 1 Medical Office Building.

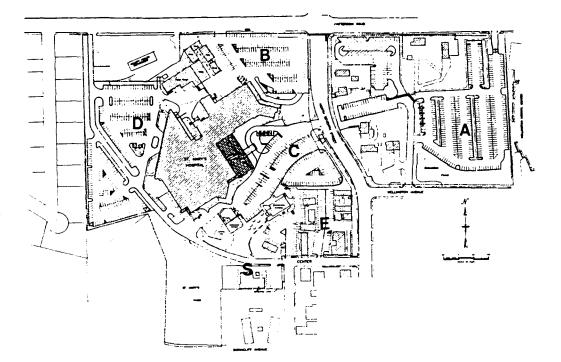
Traffic

The development of the MSP is not anticipated to significantly affect the traffic volumes of the recent Traffic/Pedestrian Impact Study by Western Engineers Grand Junction, CO dated July 1992 other than to reduce the pedestrian traffic now crossing at the corner of Patterson and N.7th. A bridge across N. 7th will provide a more direct weather enclosed rout to the hospital and the medical office buildings. Copies of the Traffic Report are included in the Appendices for easy reference.

Parking

A summary of the minimum code parking requirements, the existing stalls and the proposed parking stall count is shown on the following chart:

Code/Existing/Proposed Parking by Parcel


Parcel	Min. Code	' ADA	Exis - St'd =	C .	Proposed Total
# 1& #2	958	37	1166	1203	1453
#3		To be	Sold		
#4	8/60	Vaca	nt Lot		8/60
#5 & #6	149	11	140	151	151
#7	104	8	114	122	122
#8	Not F	Required	to meet	Code M	linimum
	1219/1271	-		1476	1734/1786

Detail calculations for each parcel's parking follows.

In purchasing Parcels # 5, #6 & #7, the seller passed on to St. Mary's a verbal agreement for the use of the Brookcliff Baptist Parking Lot (referenced in this report as Parcel #8) for employee parking as needed. The proposed parking summary above indicates use of Parcel # 8 is not required.

St. Mary's Hospital and Medical Center Grand Junction, CO

Existing Parking Stall Count

Lot	Standard Stalls	Handicapped Stalls	Lot Totals
A East	478	0	478
B North	164	9	173
C Main	141	13	154
D West	260	7	267
E Southeast	95	6	101
S South	28	2	30
	1166	37	1203

Count conducted by Ron Greenhow and Bertis Rasco on January 17,1995

St. Mary's Hospital and Medical Center

Grand Junction, CO

City Minimum Code Required Parking Phase 1

A. HOSPITAL - One space per each two beds (excluding bassinets), plus one space per employee on the largest shift, plus one space per hospital vehicle. 214beds/2 + 500 + 12 = 619 spaces
B. MEDICAL OFFICES - Four spaces for each doctor on duty during the

3. MEDICAL OFFICES - Four spaces for each doctor on duty during the busiest shift

M O B #1 = 42,000 rentable sf divided by 1,000 sf per doctor = 42

42 doctors x 4 spaces per doctor = 168 spaces

M O B #2 = 31,500 rentable sf divided by 1,000 sf per doctor = 32 32 doctors x 4 spaces per doctor = <u>128</u> spaces

296 spaces for MOB #1

C. MOTEL - To be Razed

0 units x = 0 spaces

D. EDUCATION CENTER -

7,200 sf Operates only for Hospital personnel who are on site during normal working hours. Others who use the facility do so during off hours when existing parking exceeds the demand. No Additional Parking Required

E. CLINICS (Marillac, Dental, Nutrition/Diabetes)

10,225 of usable sf divided by 1,000 sf per doctor = 10 doctors 10 doctors x 4 spaces = 40 spaces

F. OFFICES (Blood Bank)

Note: Credit Union and Midwives will rent off campus.

One space per 300 square feet of gross floor area, plus one space for each office-owned/leased vehicle

630sf divided by 300sf per unit =2+1 Blood Bank vehicle = 3 spaces conter Hanger

G. Helicopter Hanger

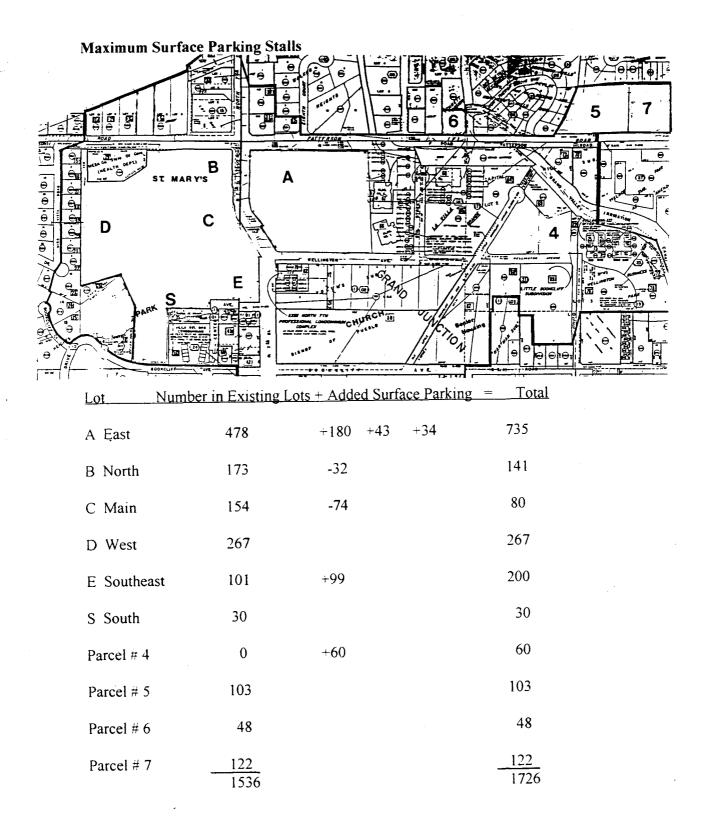
No requirements

H. Rehabilitation Center (SNF)

One space per Employee on the largest shift + one per 4 beds 136 employees + (50 beds/4=12.5) = 149 spaces

I. Family Practice Residency Program

Four spaces per Doctor


4 X 26 = 104spaces

Total Parking Spaces Required by Grand Junction Code:

A + B + C + D + E + F + G + H + I = Required Parking Spaces 619 + 296 + 0 + 0 + 40 + 3 + 0 + 149 + 104 = 1211 Spaces

St. Mary's Hospital and Medical Center

Grand Junction, CO

Landscaping

The existing landscaped areas were estimated using a Computer digitized (see Pervious Area list below) and are also shown in Table 1. These areas include lawns, ground cover, patio/court yards, detention ponds and tree plantings. It does not include sidewalks, roadways and parking lots.

The landscaping concept envisioned by the MSP uses xeriscape with the plant materials published in the City's C D D Approved Plantings List. Landscaping is proposed throughout the campus and within setbacks. Street trees will be provided. Trees, shrubs, ground cover, grass and flowers will reinforce a uniform campus concept and enhance the existing vegetation.

Landscape plans are to be prepared with each development phase illustrating that portion of the landscape plan included in each phase (ref: Phase 1, Phase 2 & Phase 3 diagrams). The plans for each phase will specify the specific landscape elements including a sprinkler system as appropriate.

A summary list of the pervious areas of each parcel are as follow:

Pervious Areas

Location	Existing	Propo	osed
Remarks			
	%	%	
Parcel #1	13.2	15.1	
Parcel #2	42.5	33.8	
Parcel #3	N/A		
Parcel #4	100.0	15.0	Existing
Parcel #5	8.4	8.4	Existing
Parcel #6	1.6	1.6	Existing
Parcel #7	1.5	1.5	Existing

Note: The Average percent Pervious Coverage for all the properties is 18.4%. This exceeds the goal of 15% for Landscaped Areas

St. Mary's Hospital and Health Center Grand Junction, CO

4-14

.

Table 1

()

()

Summary of Existing and Proposed Pervious Areas

Parcel	l Existing Site Area	Existing Pervious Area	Existing Site Percent	Proposed Site Area	Proposed Pervious Area	Proposed Site Percent	Remarks
#1	865,102 sf 19.86 acre	114,067sf	13.2%	865,102 sf	129,868sf	15.1%	
#2	396,832 sf 9.11 acre	168,410sf	42.5%	396,832 sf	134,414sf	33.8%	
#3	30,056 sf .69 acre	21,956sf	73.1%	0	0		To Be Sold
#4	43,560 sf 1.00 acre	43,560sf	100.0%	43,560 sf	6,534 sf	15.0%	
#5	129,808 sf 2.98 acre	10,860sf	8.4%	129,808 sf	10,860sf	8.4%	No Change Existing
#6	15,936 sf .36 acre	250sf	1.6%	15,936 sf	250 sf est.	1.6%	No Change Existing
#7	90,795 sf <u>2.08 acre</u> 1,572,089sf	1,387sf 360,490sf	1.5%	90,795 sf 1,542,033sf	1,387sf 283,313sf	1.5%	No Change Existing
		Pervious	22.9%	P Proposed Pe	ervious	18.4% 15.0%	
Total	Property this	Tabulation	36.12acre	Proposed Pro		35.43acre	

•

Surface Drainage

The existing surface water drains through the parcel's pervious areas or directly to the drainage system, except for Parcel # 1 and # 2. Parcel #1 and Parcel # 2 each have a detention pond that temporary stores excessive surface drainage water until it can be released into the Buthorn drain system.

Additional impervious surface is added by buildings, parking and drives in the MSP. This increase in impervious surface area is proposed to be accommodated by (1) an additional detention pond at the corner of N.7th Street and Center Avenue and (2) an additional detention pond at the corner of N. 7th Street and Wellington (west of the existing detention pond). Both areas are envisioned to be landscaped similar to the existing detention pond at St. Mary's Park and/or the detention pond at Wellington Avenue. The additional detention ponds are to be designed to accommodate the 100 year flood requirements for the MSP build out.

Copies of earlier Drainage Studies for St. Mary's Parcel #1 dated January 1993 and #2 dated June 1992 both by Western Engineers Grand Junction, CO are submitted for your reference.

Bridges

Bridges are an important linkage to the future development for convenience and safety. They will enable the necessary 24 hours a day movement of people, wheelchairs, food carts, equipment and beds between the hospital buildings in a safe and secure manner.

There are three types of bridges proposed in the MSP (1) on site elevated pedestrian bridges, (2) R.O.W. enclosed cross street bridge and (3) pedestrian/bike cross canal bridge.

On Site Elevated Pedestrian Bridges are proposed to connect the major buildings on Parcel #1 and extend to the Cross Street bridge which connects the building and expanded parking on Parcel #2. These all weather enclosed bridges will connect the buildings above street level permitting foot traffic to move easily between buildings and land parcels with out concern for automobile traffic or weather conditions. To minimumize cost, the MSP envisions the bridge's circulation route and structural provisions to be designed into the corridor system of each new building. The continuous floor level elevation of the bridge is set at the existing hospital's 1st floor level (one floor above the new ground floor main entry).

For the Cross Street Bridge above N. 7th Street an air rights street vacation/street use permit is requested. This Elevated Pedestrian Bridge connects Parcel #1 from it's new Medical Office Building to Parcel #2's Ambulatory Services Building and expanded parking areas. Conceptually the bridge will be 14' in over all width with a clear inside dimension of 12'; clear span 80' across the street R.O. W. with structural columns immediately inside the property lines; then span each side to the receiving buildings which have a 20'set back from the property line. The clearance at the center of the street is proposed to be 14' 6".

To improve neighborhood circulation for foot traffic and bicycles it is requested that the City improve the existing Pedestrian/Bike Bridge at the North end of Little Bookcliff Avenue R.O.W. that crosses over the Grand Valley Irrigation Canal. This improvement will benefit the apartment complex, the biking community, the retail mall, the rehabilitation center, the physician offices in the area and the general neighborhood.

Proposed Development Standards

The MSP proposes the following standards for St. Mary's P-B Zone Master Site Plan:

Setbacks

These set backs are intended to provide efficient and functional facility siting, an achievement of aesthetic design values and continue compatibility with surrounding activities.

Proposed for Parcel #1 on the corner of Patterson & N. 7th Street (1) a low triangular landscaped area; on the South side of Patterson Road, (2) a 10' landscaped setback; between N. 7th Street and the Parcel's Patterson entry/exit; between the Patterson entry/exit and the Mesa County Public Health property,(3) a 5' landscape setback; from the corner of Patterson & 7th Street South to the Main Hospital entry/exit, (4) a 10' landscape setback; at the N. 7th Street property line to the face of the new Medical Office Building #2, (5) a 20' setback.

Proposed for the South side of Parcel #1 at the corner of N. 7th Street and Center Avenue, (6) triangular setback with a landscaped detention pond; from the north point of the triangle extending North, (7) a 5' setback extending northward parallel with N. 7th Street to the center line extension of Wellington Avenue.

Proposed for East property line of Parcel #2, (8) a 20' setback for the building line and the existing setbacks to remain as they are from the property line fro the remainder of the parcel except for the detention pond at the corner of N 7th & Wellington which is to be determined by engineering hydrology studies.

Other than the above mentioned setbacks, all other existing setback are to remain as they exist.

Height

The maximum height of existing permanent structures and those proposed follow:

Structure	Existing Height	Proposed I	Proposed Height	
Hospital				
Main Roof	60'	72'	One	Patient Floor
Stair Roof	72'	84'	Fire	man's Access
Elevator Pe	enthouse 85'	85'	Built	t to Serve Fut.
Medical Office Blo	ig 0	38'	+ M	ech Penthouses
	•		Fut.	+ 2 Floors
Ambulatory Servic	es Bldg 0	38'	+ M	ech Penthouses
	2		Fut.	+ 2 Floors

Customary code exceptions for roof top features are proposed to apply.

Site Coverage

Site coverage is that portion of the parcel occupied by the principal structure and its accessory structures, expressed as a percentage of the total parcel area.

The existing site coverage and the proposed site coverage are as follows:

Location	Existing % Site Coverage	Proposed % Site Coverage	Remarks
Parcel # 1	20.1	18.7	
Parcel # 2	3.9	3.4	
Parcel # 3			To Be Sold
Parcel # 4	0	5.7/20.1	
Parcel # 5	30.2	30.2	Existing/No Change
Parcel # 6	0	0	Existing/No Change
Parcel # 7	20.4	20.4	Existing/No Change

The proposed site coverage goal for the sum total average for all properties is 20%. The existing parcel that individually exceed 20% was built with out parcel coverage limitations.

See Table 2 for Detail Site Coverage calculations.

St. Mary's Hospital and Health Center Grand Junction, CO

Table 2

()

Summary of Existing and Proposed Site Coverage

Parcel	Existing Site Area	Existing Site Coverage	Existing Site Coverage Percent	Proposed Site Area	Proposed Site Coverage	Proposed Site Coverage Percent	Remarks
#1	865,102 sf 19.86 acre	173,515sf	20.1%	865,102 st	f 162,128sf	18.7%	
#2	396,832 sf 9.11 acre	15,648 sf	3.9%	396,832 st	f 13,200sf	3.4%	
#3	30,056 sf .69 acre	5,000 sf est.	16.6%	0	0		To Be Sold
#4	43,560 sf 1.00 acre	0	0.0%	43,560 st	f 2,500/9,000s	sf 5.7/20.1%	Future 2 level 18,000gsf Bldg
#5	129,808 sf 2.98 acre	39,200sf	30.2%	129,808 st	f 39,200sf	30.2%	No Change Existing
#6	15,936 sf .36 acre	0 sf	0.0%	15,936 st	f Osf	0.0%	No Change Existing
#7	90,795 sf 2.08 acre	18,500sf	20.4%	90,795 sf	18,500sf	20.4%	No Change Existing
	1,572,089sf	251,863sf		1,542,033sf	235,528sf	15.7%	
Existi	ng Overall Av	verage % coverage	= 16%	Proposed Ov	verall Average %	coverage= 2	0%
Total Notes	Property this	Tabulation	36.12acre		Proposed	35.43acre	

Notes:

2

4-19

Site Coverage Area is area at grade.
 Pedestrian bridges are above grade and not included in the site coverage.

Density

The Floor Area Ratio (FAR) is used her to express density. FAR is a ratio between building area and site area. Table 3 summarizes the existing and proposed densities.

Both existing and proposed are approximate. Note that for FAR calculation purposes, parking is excluded. Parking is an accessory use serving the buildings functions and is typically excluded from density calculations.

The proposed building areas will likely change as the projects are architecturally programmed and designed. Since flexibility is required by St. Mary's, a density standard is proposed some what higher than calculated. A proposed maximum density development standard of FAR 0.75 is proposed. This amounts to +0.104 FAR over the concepts forcasted requirement for Parcel #1. The basis for density calculations is shown for each parcel and also for the average when all parcels combined. See Table 3.

St. Mary's Hospital and Health Center . Grand Junction, CO

•

4-21

Comparison of Existing and Proposed DensityFloor Area RatioF A R for Buildings Excluding Surface ParkingFloor Area Ratio

Parcel	Existing Site Area	b.g.=	Existing Area Bl'dg Gross F A R_area	Existing F A R	Proposed	Proposed Site	b.g.=	osed Building Gross FAR area	s Proposed FAR	Remarks
-	Sile Area	1. <u>d</u> . –	r A R alea	FAR	Site Area	Sequence	; I.d	FAR died	<u>ran</u>	Remarks
#1	865,102 sf	b.g.	513,720 sf		865,102 sf	1-A	b.g.	539,602sf		Phase 1:
	19.86 acre	-	491,161 sf	0.567			f.a.	512,543sf	0.592	34,218sf Razed 58,569sf New C.
						1-B	b.g.	543,771sf		Phase 2
						1-B	f.a.	516,551sf	0.597	Chapel,Bridge & Ed Fac Future :
						1-C	b.g.	586,196sf		1 floor add'n Patient Towe
						1-C	f.a.	558,976sf	0.646	2 floor add'n Med. Offices
#2	396,832 sf	b.g. '	15,648 sf		396,832 sf	2-A	b.g.	44,580sf		Phase 3 :
	9.11 acre		15,648 sf	0.039			f.a.	41,280sf	0.104	15,648sf Razed 41,280sf New C.
						2-B	b.g.	70,980sf		Future :
							f.a.	67,680sf	0.171	2 Add'n Floors
#3	30,056 sf	b.g. (5,000 sf est.		0	3-A	b.g.	0		As Possible :
	69 acre	f.a.4	4,000 sf est.	0.133			f.a.	0	0	To Be Sold
										Phase 1 :
#4	43,560 sf	b.g.	0 sf		43,560 sf	4-A	b.g.	2,500sf		Initial Const.
	1.00 acre	f.a.	0 sf	0		4-A	f.a.	2,500sf	0.057	
										Future
							b.g.	18,000sf		Built Out
						4-B	f.a.	18,000sf	0.413	

Table 3

 $\left(\right)$

()

Parcel	Existing Site Area	1	Existing Area Bl'dg Gross F A R area	Existing F A R	Proposed Site Area		Proposed Building Area	Proposed F A R	Remarks
#5	129,808sf 2.98 acre	-	52,000sf 52,000sf	0.401	129,808sf	b.g. f.a.	52,000sf 52,000sf	0.401	Existing
#6	15,936sf .36 acre	b.g. f.a.	0 sf Osf	0	15,936sf	b.g. f.a.	0 0	0	Existing
#7	90,795 sf 2.08 acre	-	26,300sf 26,300sf	0.289	90,795 sf	b.g. f.a.	26,300sf 26,300sf	0.289	Existing
#8	Shared	b.g. f.a.	0 sf 0 sf	0	Shared	b.g. f.a.	0 0	0 0	0 0
	1,572,089sf 36.08 acre	site			1,542,033sf 35.39 acre	proposed site	is 30,056sf les	SS	
	BI'dg Gross FAR Area		612,668 sf 598,109 sf	0.375		bl'dg FAR	gross 753,476 area 722,95		Proposed F A R 0.75
1	The most common device for regulating bulk is the "Floor Area Ratio". This ratio is computed by adding the area above grade and dividing the total by the lot (parcel) area. T. William Patterson, Land Use Planning: Techniques of Implementation.								
2	-		•		a above grade	, area on grade	,and		
3	area below grade. F A R Area is floor area at grade and floor area above grade. It excludes area below grade and roof areas.								

()

.

- It excludes area below grade and roof areas.
 Site Coverage Area is area at grade.
 Pedestrian bridges are included in building gross and FAR. They are not included in site coverage.

clear (below bridge) at the centerline of the street.

4-22

.

Open Space

The existing landscaped open space area of St. Mary's was estimated. It was defined to include lawns, groung cover, park, and tree plantings. Impervious surfaces such as paved areas that are open, such as parking lots, private streets, service areas, and sidewalks were not included. Currently this includes 4 residential lots and 2 vacant lots. Existing is approximately 8.7 acres or 378,972 sf (24.2 % of the properties). The MSP proposes a higher utilization for the land and improvements in the landscaped open space resulting in approximate 18 % of the total area as open space.

Since the landscaped open space plan is conceptual, the actual designed landscaped open space will likely differ in detail, but be consistent with the overall concept. The Plan envisions places to eat lunch outdoors, flowering plants, overlooks, and xeriscape with native plant materials.

Rezoning

The MSP proposed rezoning for the existing lots owned by St. Mary's that are not currently zoned P-B. They are s follow:

Proposed for Rezoning

Description	Existi	ng Zone	Proposed Use	Proposed Zone
Former T. Carr Resid	lence	RMF-64	Surface Parking	P-B
Former G V P T		RMF-64	Surface Parking	P-B
Former-Seniors Bldg		RMF-64	Ambulatory S Bldg	P-B
Former E.M.S. Hous	e	RMF-64	Detention Pond	P-B
St. Mary's Park		RSF-4	Park & Detention Por	nd P-B

A single uniform zone will make it simpler to develop and administer these properties.

Infrastructure Improvements

Public services and utilities all exist at the site. The increased development proposed in the Master Site Plan may increase demands on public services and utilities. The condition and capacities of systems is expected to be adequate.

No major changes to the infrastructure are planned. However, St. Mary's does propose to continue to upgrade and maintain it's physical plant to the latest cost-effective environmental and energy efficient standards. Utilities improvements will be completed as required for each project.

4-23

Appendix

.

Acknowledgments

Significant amount of time and energy from the President's Administrative Council and their Administrative Assistants have made this report possible in a limited time frame.

Many thanks are due to all who have contributed. Special thanks are due to:

Sister Lynn Casey, President Kenneth Tomlon, Executive Vice President Elizabeth Hanckel, Vice President Human Resources Donna Crouch, RN, MS, Vice President Patient Services Francis Raley, M.D, Vice President Medical Services Carolyn Bruce, Director Planning Keith Estridge, Director Planning Keith Estridge, Director Facilities Management Laurie Fehlberg, Chief Financial Officer Mary Fran McCarthy, Director Development Tish Wells, Director of M I S M.J. Brown, Executive Secretary

For sources of information thanks go to :

Denzel F. Hartshorn, M. D. Medical Staff President Randall K. Unter, Integrated Medical Campus Jody Kliska, Director of Planning for the City of Grand Junction Tom Dixon, A C I P Senior Planner for the City of Grand Junction Bruce Marvin, P.E. Principal Western Engineers, Inc. Matt Lohon, P.E. Project Engineer, Western EngineeRs, Inc. Phil Bertrand, Superintendent, Grand Valley Irrigation Company Ron Greenhow, General Supervisor, Engineering Lois Fisher, Controller Pat Steinkirchner, Financial Analyst Peter Moberg, Director of Public Relations & Marketing Chuck Morris, Graphics Louie Herrera, Facilities Service Coordinator

Plus the many department heads who took time from their busy day to answer the lengthy questionnaire regarding space requirements and parking criteria of their department.

5-1

inodgrass, Esq.
21, 1995
2

Also enclosed are updated pre-closing checklists for both

Set forth below is our reasoning regarding why some of the hanges which you requested were not made.

1. The purchased assets are required to be conveyed free and clear of all liens and encumbrances. Further, neither SMRC nor St. Mary's intends to assume any of the liabilities or obligations of Mesa County or the Foundation, respectively, except for certain contracts and leases which are scheduled. Therefore, many of the knowledge qualifiers which were proposed to be added to the representations and warranties have not been added because we believe that to limit such representations and warranties to knowledge would shift the risk of any unknown liabilities with respect to the matter addressed in the representation to the buyer in each case, which is not the intention of the parties.

2. As we discussed, we understand that most of the occupants of the Centennial Plaza property are on month-to-month tenancies since the leases entered into with such tenants have expired. We understand that there are only two existing leases with respect to the Centennial Plaza property (the liquor store and one physician). St. Mary's intends to assume these two leases. We have revised the Centennial Plaza Agreement to address such leases and the month-to-month tenancies at Centennial Plaza. Please let us know as soon as possible if there are any other leases still in effect with respect to either the rehabilitation Hospital or Centennial Plaza. The Centennial Plaza Agreement does not require the Foundation to deliver estoppel certificates from the lessees under the leases. We need to confirm with St. Mary's whether it will require the delivery of such estoppel certificates in connection with the assumption of the foregoing leases.

3. We have not eliminated the reference to drugs, pharmaceuticals and medicines in the description of the Purchased Assets in the Rehabilitation Hospital Agreement since we understand that there is a drug room at the Hospital and there likely will be a supply of these items on the closing date which would be purchased by SMRC.

DV

4. While we understand that the real property will be transferred subject to zoning and building regulations, we believe that it is appropriate for the seller in each transaction to make a representation to the buyer in each transaction with respect to the proper zoning of the real estate which is being acquired, as well as compliance with applicable subdivision laws and access to ر. Snodgrass, Esq. 1995 ير 29 age 3

the premises. Therefore, the representations and warranties with respect to these matters have not been eliminated.

5. We have not eliminated the reference to the Medicare and Medicaid certification surveys in Section 2.8(b) because while the Medicare and Medicaid programs often rely on the JCAHO surveys and do not independently survey a facility, if deficiencies are revealed on the JCAHO survey, Medicare and Medicaid may elect to conduct an independent survey. Therefore, we only request pursuant to Section 2.8(b) that to the extent there are Medicare and Medicaid surveys, such surveys be included in the representation. Section 2.8(b) has been revised to clarify this.

6. While St. Mary's has agreed to eliminate HHSC as a party to the Centennial Plaza Agreement, St. Mary's will still require that HHSC stand behind all of the representations and warranties and covenants of Mesa County in the Rehabilitation Hospital Agreement. Therefore, we have not eliminated any references to HHSC in the representations and warranties included in the Rehabilitation Hospital Agreement.

7. We have not eliminated the requested language in the insurance representation in each agreement because we feel it is appropriate for Mesa County and the Foundation to represent that they have maintained insurance that is customarily maintained with respect to the Hospital and Centennial Plaza, respectively, prior to Closing.

8. We have not made the change requested to Section 2.15 of the Rehabilitation Hospital Agreement with respect to inventory and supplies because we feel that if the supplies and inventory which are purchased are obsolete or unusable, this should be disclosed. Otherwise, Mesa County should represent that the inventories and supplies are of good quality and not obsolete.

9. The representation included in Section 2.18 of the Rehabilitation Hospital Agreement is intended to address transfers of the assets out of the ordinary course of business. St. Mary's would need to know that such transfers have not occurred during a reasonable period of time prior to the closing date. Therefore, we have inserted January 1, 1995 rather than the effective date.

10. We do not believe that a one year survival on the representations and warranties will give the purchaser in each agreement adequate protection with respect to any post-closing problems which may appear and result in liability which was not intended to be assumed by either purchaser. Therefore, we have

2.6 <u>Title to and Condition of Premises</u>.

(a) Seller is the sole and exclusive legal and equitable owner of all right, title and interest in and has good, clear, indefeasible, insurable and marketable title in fee simple to the Premises which, as of the Closing Date, will be free and clear of any and all mortgages, deeds of trust, mechanics or other liens or encumbrances of any kind or character, direct or indirect, whether accrued, absolute, contingent or otherwise and are subject only to the "Permitted Exceptions" listed on Exhibit 9.1 attached hereto. There Except as set forth in Exhibit 2.6(a) attached hereto, there are no purchase contracts, leases, options or other agreements of any kind, oral or written, formal or informal, choate or inchoate, recorded or unrecorded, whereby any person or entity other than Seller will have acquired or will have any basis to assert any right, title or interest in, or right to the possession, use, enjoyment or proceeds of, any part or all of the Premises.

(b) Except as set forth in Exhibit 2.6(b) attached hereto, the Real Estate is zoned to permit the uses for which is it presently used and/or intended to be used, including, without limitation, use as a rehabilitation hospital, skilled nursing facility and home health agency without variances or conditional use permits.

(c) The Real Estate constitutes a valid subdivided parcel in accordance with all applicable subdivision laws, statutes, ordinances and codes presently in effect, and the sale of the Real Estate to Buyer as contemplated herein will not violate any subdivision statute, ordinance, law, code or plat presently in existence. Seller has all easements and rights-ofway necessary for access to the Premises.

(d) Neither the whole nor any portion of the Premises owned, occupied or used by Seller has been condemned, requisitioned or otherwise taken by any public authority (a "Public Taking"), and no notice of any Public Taking has been received by Seller with regard to the Premises. To the best knowledge of Seller and HHSC, no such Public Taking is threatened or contemplated. Neither Seller nor HHSC has any knowledge of any public improvements which have been ordered to be made and/or which have not heretofore been assessed, and there are no special, general or other assessments pending, threatened against or affecting the Premises. All installments of any assessments pending on or before the Closing will be paid by Seller.

(e) There are no facts that would adversely affect the ownership, possession, use or occupancy of the Premises ("Adverse Facts") relating to the physical condition of the Premises or any portion thereof, including, without limitation, Adverse Facts relating to soil conditions, sinkholes or geologic faults, or

80AGTLVS.003/80AGTLVS.008 LA\31032\016\80AGT008.CMP

-11-

Adverse Facts contained in architectural drawings, building or construction plans, inspection reports and related documents.

(f) Seller has previously complied, and Seller is currently complying, in all material respects with all federal, state and local environmental statutes, laws, ordinances, orders, rules, regulations and moratoria relating to the operation of the Hospital or occupancy of the Premises, including, without limitation, the Clean Air Act, as amended; the Federal Water Pollution Control Act, as amended; the Safe Drinking Water Act, as amended; the Resource Conservation and Recovery Act, as amended ("RCRA"); the Hazardous Material Transportation Act, as amended; the Occupational Safety and Health Act of 1970, as amended ("OSHA"); and the Comprehensive Environmental Response, Compensation and Liability Act, as amended by the Superfund Amendments and Reauthorization Act of 1986, as amended ("CERCLA"). Seller has not received any notice alleging any noncompliance with or potential liability pursuant to any of such statutes, or any other laws, ordinances, orders, rules, regulations or moratoria.

Except as identified in Exhibit 2.6(f) attached hereto, no hazardous wastes, as defined in Subtitle C of RCRA or under applicable state law, and no hazardous substances, as defined in CERCLA or under applicable state law, or any other toxic or noxious substances and/or any waste or recycled products thereof (as such substances are defined by applicable state and federal statutes and regulations) have ever been generated, treated, used, stored, spilled, leaked, or disposed of by Seller or, to the best knowledge of Seller and HHSC, any prior owners of the Premises, on the Premises or at any location in the immediate area of the Premises. There has not been during the time Seller owned the Premises, and is not occurring, at the Hospital, and release or threatened release, as those terms are defined in anv CERCLA, of any hazardous substance or petroleum, including crude oil or any fraction thereof, nor has Seller any reason to believe such a release is occurring or has occurred at any time in the past. Further, there are no polychlorinated biphenyls ("PCBs"), asbestos, hazardous wastes, substances, chemicals, or other conditions or uses of the Premises or property in its vicinity, whether natural or man made, which pose a or hazardous wastes, which pose a material present or potential threat of damage risk or hazard to the health of persons, to property, to natural resources or to the environment. No underground storage tanks, as defined in RCRA or under applicable Colorado statutes or regulations, are present on the Premises, and, to the best knowledge of Seller and HHSC after due investigation, no such tanks were previously abandoned or removed on or from the Premises.

To the best knowledge of Seller, Seller has no liability, responsibility or obligation, whether fixed, unliquidated, absolute, contingent or otherwise, under any

80AGTLVS.003/80AGTLVS.008 LA\31032\016\80AGT008.CMP

-12-

REVIEW COMMENTS

Page 1 of 2

FILE **#PDR-95-159**

TITLE HEADING:

Planned Development Review - St. Mary's Hospital & Medical Center

9/13/95

<u>242-2762</u>

LOCATION: 2635 N 7th Street

PETITIONER: St. Mary's Hospital & Medical Center

PETITIONER'S ADDRESS/TELEPHONE:

P.O. Box 1628 Grand Junction, CO 81502 244-2170

PETITIONER'S REPRESENTATIVE:

Bertis A. Rasco, AIA

STAFF REPRESENTATIVE: Michael Drollinger

NOTE: THE PETITIONER IS REQUIRED TO SUBMIT FOUR (4) COPIES OF WRITTEN RESPONSE AND REVISED DRAWINGS ADDRESSING ALL REVIEW COMMENTS ON OR BEFORE 5:00 P.M., SEPTEMBER 25, 1995.

MESA COUNTY BUILDING DEPARTMENT	9/7/95	
Bob Lee	244-1656	
No comments at this time.		

GRAND JUNCTION IRRIGATION Phil Bertrand

The GVIC has a large 36" irrigation pipe line and large canal that abuts or cuts across St. Mary's property and/or is affected by the St. Mary's master site plan proposal. Every effort is needed to avoid causing undo hardship and impacting our right to manage, operate, replace or repair those irrigation structures in a reasonable and beneficial manner. No encroachment of the rights-of-way that causes undo financial burden will be allowed. No restriction of our right of ingress or egress for the regular and frequent inspection of our irrigation delivery system. No permanent structures will be allowed, over the pipeline or canal, unless a detailed design and working knowledge of how those proposed structures will be installed, operated, managed and maintained. There may be a need to sign a bridge crossing agreement that addresses these proposed crossings. Reconfirming present delivery points or establishing new delivery point of the irrigation water for the new proposed landscaping would be most helpful.

CITY PROPERTY AGENT	9/15/95	
Tim Woodmansee	244-1565	
The proposal contemplates "an air rights street v	acation/street use permit" for the cross street bridge	
above North 7th Street. The mechanism to allo	by this encroachment, pursuant to City Charter, is a	

above North 7th Street. The mechanism to allow this encroachment, pursuant to City Charter, is a Revocable Permit. The application for a Revocable Permit needs to include a metes and bounds description of the permit area.

PDR-95-159 / REVIEW COMMENTS / page 2 of 2

GRAND JUNCTION FIRE DEPARTMENT Hank Masterson	9/18/95 244-1414	
The Fire Department has no comments at this time.		
GRAND JUNCTION DRAINAGE DISTRICT	9/18/95	
John L. Ballagh	242-4343	

The tracts near 7th and Patterson are within the Grand Junction Drainage District. The Hilltop site and the tract at 26 3/4 and Patterson are not within the District. **HOWEVER**, all the site drain into the Buthorn Drain, correctly stated on page 4-15 of the Master Site Plan.

That Buthorn Drain is at capacity for storms much more frequent than 100 year events. The Western Engineer's report of June 1992 should be followed.

Detention facilities should be required as building and paving proceed. All reasonable efforts to reduce inadvertent contamination of surface runoff should be exercised.

CITY UTILITY ENGINEER	9/18/95
Trent Prall	244-1590

SEWER & WATER - CITY Sewer and water concerns will be evaluated at each phase.

	DEVELOPMENT ENGINEER Kliska	9/19/95 244-1591	
<u>1</u> .	The multi-modal plan calls for a bicycle facili	ty which connects from Patterson Road so	

along 7th Street and cuts over to 6th Street in the vicinity of this property. This may require either right-of-way or an easement on St. Mary's property. Further discussion between staff and the petitioner is needed to determine the best alternative.

2. Additional right-of-way along Patterson may be desirable to straighten out the offset in Patterson Road at the 7th Street intersection. The signal timing was recently changed due to the increase in left turn accidents most likely due to this offset.

- 3. Pedestrian circulation in the parking areas east of 7th Street should be reevaluated to provide an easy and direct path to the pedestrian bridge.
- 4. AASHTO requirements for overhead clearances is 16 feet. Since 7th Street is envisioned to be the future connection from I-70 to downtown, it is necessary to maintain overhead clearances for large vehicles.
- 5. Please clarify the statement in the drainage study for parcel 1 the sentence on page 2, under #2 "Any future construction of these facilities will be performed by the City." Is there a written agreement somewhere and if so, please provide a copy.

COMMUNITY DEVELOPMENT DEPARTMENT	5/19/95	
Michael Drollinger	244-1439	<u> </u>
See attached comments.		

TO DATE, NO COMMENTS HAVE BEEN RECEIVED FROM:

City Attorney

Review Comments Response

Page 1 of 5

File: #PDR-95-159

Title Heading: Planned Development Review-St. Mary's Hospital & Medical Center

Location: 2635 N 7th Street

Petitioner: St. Mary's Hospital & Medical Center

Petitioner's Address/Telephone:	P.O. Box 1628
	Grand Junction, CO 81502
	244-2170

Petitioner's Representative: Bertis C. Rasco, AIA

Staff Representative: Michael Drollinger

Note: Comments by various City Agencies appear first followed by the Petitioner's response in italic text.

Four (4) copies of written response and revised drawings addressing all review comments are transmitted here with.

MESA COUNTY BUILDING DEPARTMENT	9/7/95
Bob Lee	244-1656

No comments at this time.

Request for a building permit will be filed for each construction project as the contract documents for that phase are developed.

GRAND JUNCTION IRRIGATION

Phil Bertrand

9/13/95 242-2762

The GVIC has a large 36" irrigation pipe line and large canal that abuts or cuts across St. Mary's property and/or is affected by the St. Mary's master site plan proposal. Every effort is needed to avoid causing undo hardship and impacting our right to manage, operate, replace or repair those irrigation structures in a reasonable and beneficial manner. No encroachment of the rights-of-way that causes undo financial burden will be allowed. No restriction of our right of ingress or egress for the regular and frequent inspection of our irrigation delivery system. No permanent structures will be allowed, over the pipeline or canal, unless a detailed design and working knowledge of how those proposed structures will be installed, operated, managed and maintained. There may be a need to sign a bridge crossing agreement that addresses these proposed crossings. Reconfirming present delivery points or establishing new delivery point of the irrigation water for the new proposed landscaping would be most helpful.

Present delivery points are shown on the attached site diagram. New delivery points may be necessary to serve the Landscape Plans which will be developed with each phase of construction. Prior to filing for a building permit it is our intent to review the practicality of any desired new delivery points with the GVIC Superintendent.

CITY PROPERTY AGENT	9/15/95
Tim Woodmansee	244-1565

The proposal contemplates "an air rights street vacation/street use permit" for the cross street bridge above North 7th Street. The mechanism to allow this encroachment, pursuant to City Charter, is a Revocable Permit. The application for a Revocable Permit needs to include a metes and bounds description of the permit area.

St. Mary's will apply for "an air rights street vacation/street use permit" with the City Property Agent during the initial part of the schematic design development for the N 7th Street pedestrian bridge.

GRAND JUNCTION FIRE DEPARTMENT	9/18/95
Hank Masterson	244-1414

The Fire Department has no comments at this time.

We anticipate reviewing preliminary plans with the Fire Marshal as soon as the owner has given approval of the building form and conceptual plan. We will request a final review and approval by the Fire Marshal regarding the Life Safety elements during the building permit process mentioned above with Mesa County Building Department.

GRAND JUNCTION DRAINAGE DISTRICT	9/18/95
John L. Ballagh	242-4343
The tracts near 7th and Patterson are within the Grand	Junction Drainage District. The Hilltop site
and the tract at 26-3/4 and Patterson are not within th	e District. HOWEVER, all the site drain into

the Buthorn Drain, correctly stated on page 4-15 of the Master Site Plan.

That Buthorn Drain is at capacity for storms much more frequent than 100 year events. The Western Engineer's report of June 1992 should be followed.

Detention facilities should be required as building and paving proceed. All reasonable efforts to reduce inadvertent contamination of surface runoff should be exercised.

As recommend, we proposed to follow Western Engineer's report of June 1992 .

Additional Detention Facilities are proposed for construction as required to accommodate new impervious site areas. As each phase is designed the resulting need for surface water detention areas will be established, designed and integrated into the construction documents which will be submitted for final review and approval during the building permit process.

CITY UTILITY ENGINEER	9/18/95
Trent Prall	244-1590

SEWER & WATER - CITY

Sewer and water concerns will be evaluated at each phase.

Cursory review of the area utilities reveled no major unresolable problem in accommodating the requirements of the preliminary Master Site Plan.

Precise utility requirements will be established as each project proceeds into the Contract Document development. Any increase in demand will be reviewed at that time with the City Utility Engineer and the Private Utilities

CITY DEVELOPMENT ENGINEER	9/19/95
lody Kliska	244-1591

1. The multi-modal plan calls for a bicycle facility which connects from Patterson Road south along 7th Street and cuts over to 6th Street in the vicinity of this property. This may require either right-of-way or an easement on St. Mary's property. Further discussion between staff and the petitioner is needed to determine the best alternative.

1. We are not aware of the City's proposed multi-modal plan for a potential bicycle facility connecting 7th Street to Patterson Road.

In the vicinity of this property, the Preliminary Master Site Plan suggested the City improve the existing pedestrian bridge across the GVIC at the end of Little Bookcliff for foot traffic and bicycles.

2. Additional right-of-way along Patterson may be desirable to straighten out the offset in Patterson Road at the 7th Street intersection. The signal timing was recently changed due to the increase in left turn accidents most likely due to this offset.

2. Recently St. Mary's was unwilling compensated for land taken by the City to widen Patterson. This resulted in surface parking loss to one of the most convenient parking areas of the hospital; extensive loss of landscaping; and on site circulation difficulties. The preliminary Master Site Plan addresses these problems but cannot replace the number of desirable parking spaces lost by the forced land sale.

What is the actual increase in traffic accidents at Patterson and 7th?

Provided the increase is out of proportion to the increase in traffic volume, it is recommended that consideration be given to additional signal lights along Patterson; reduction of the speed limit; rigid enforcement of the speed limit; traffic diverted to other roads; improvement of signal light timing; etc. or other steps taken prior to claiming more densely used valuable private owned property.

3. Pedestrian circulation in the parking areas east of 7th Street should be reevaluated to provide an easy and direct path to the pedestrian bridge.

3. Pedestrian circulation in the parking areas east of 7th Street will be evaluated to assure easy access to the 7th Street bridge during the design of the bridge.

4. AASHTO requirements for overhead clearances is 16 feet. Since 7th Street is envisioned to be the future connection from I-70 to downtown, it is necessary to maintain overnead clearances for large vehicles.

4. In discussions regarding the City Traffic Plan we are told that 12th Street will remain as the major connection with I-70. From our understanding 12th Street is straight; has less schools; less residental neighborhoods; better sight lines and is favored with more traffic than 7thStreet. We can not envision a great volume of overheight interstate vehicles attempting to use 7th Street. The Maximum allowable vehicle height in the State of Colorado is 14'6' and length is 105'. The average height for double semitrailers, semitrailers and straight body trucks is 13'6'.

The proposed 14'-6" under side clearance for the 7th Street pedestrian bridge is derived by the existing first floor elevation of the hospital extended with out ramps or steps to the opposite side of the street. It is desirable to eliminate stairs and ramps to accommodate the volume of wheelchairs, stretchers, hospital carts. and handicapped persons who will use the bridge.

5. Please clarify the statement in the drainage study for parcel 1 the sentence on page 2, under #2 - "Any future construction of these facilities will be performed by the City." Is there a written agreement somewhere and if so, please provide a copy.

5. In the process of developing the Western Engineering Study dated January 1992, it was concluded with the City Utility Engineer that the existing contours of St. Mary's land presented 3 drainage basins (shown on Figure 1 of the report). It was agreed that basins 1 and 3 would drain into the St. Mary Park detention pond; basin 2 located at the corner of Patterson & 7th would drain into 7th Street; then in 7th & Center; then west in 6th & Center where it turns south and continues to the Buthorn Drain.

There was discussion regarding the potential for a future tie between a 6th and Center main and St. Mary's Park Detention Pond. The tie was not needed to satisfy St. Mary's requirements, so it was agreed that if it was desirable or practical in the future the construction of these facilities would be by the City.

COMMUNITY DEVELOPMENT DEPARTMENT	5/19/95
Michael Drollinger	244-1439

See attached comments.

TO DATE, NO COMMENTS HAVE BEEN RECEIVED FROM:

City Attorney

STAFF REVIEW

FILE:	#PDR- 95-159
DATE:	September 19, 1995
STAFF:	Michael Drollinger
REQUEST:	Preliminary Plan & Rezone - St. Mary's Hospital
LOCATION:	Patterson Road & 7th Street
ZONING:	Various at present

STAFF COMMENTS:

1. As per early discussions with the petitioner's consultant, the 12th and Patterson sites ARE NOT PART OF THIS PRELIMINARY PLAN AND REZONE REQUEST and reference shall be made in the project narrative to that effect. The sites which are part of this request are limited to those on the "Master Site Plan" map dated August 1995 (revised). The 12th and Patterson site will be processed with a later application when the petitioner has completed the formulation of future plans for this site.

a server a server a server a server a server and a server and a server and a server and server a server a server server and a server

NEX LINE TO AN A TRANSPORT OF THE AND A SHORE AN ANTAL AND A SHARE THE A SHARE THE A SHARE A SHARE A

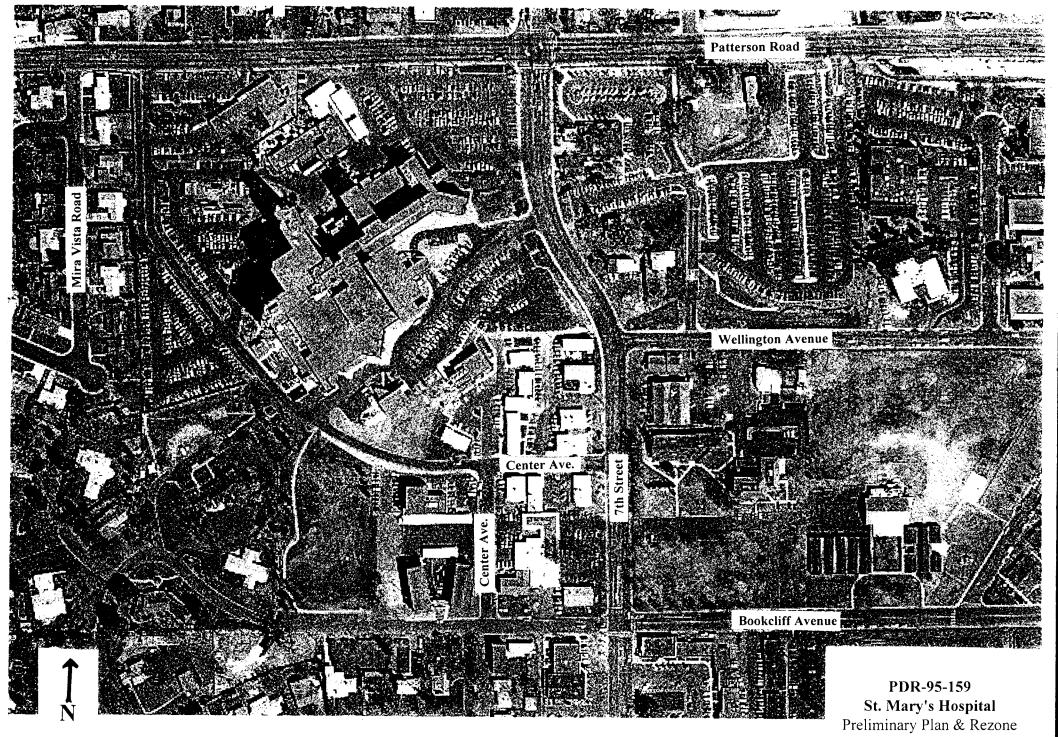
1. As per conversations with the planning staff the entire submittal will be heard at the October 3,1995 meeting.

2. The correct terminology for this project should be "Preliminary Plan" not "Master Site Plan" and it should be referenced this way on future submittals (including maps) to avoid confusion.

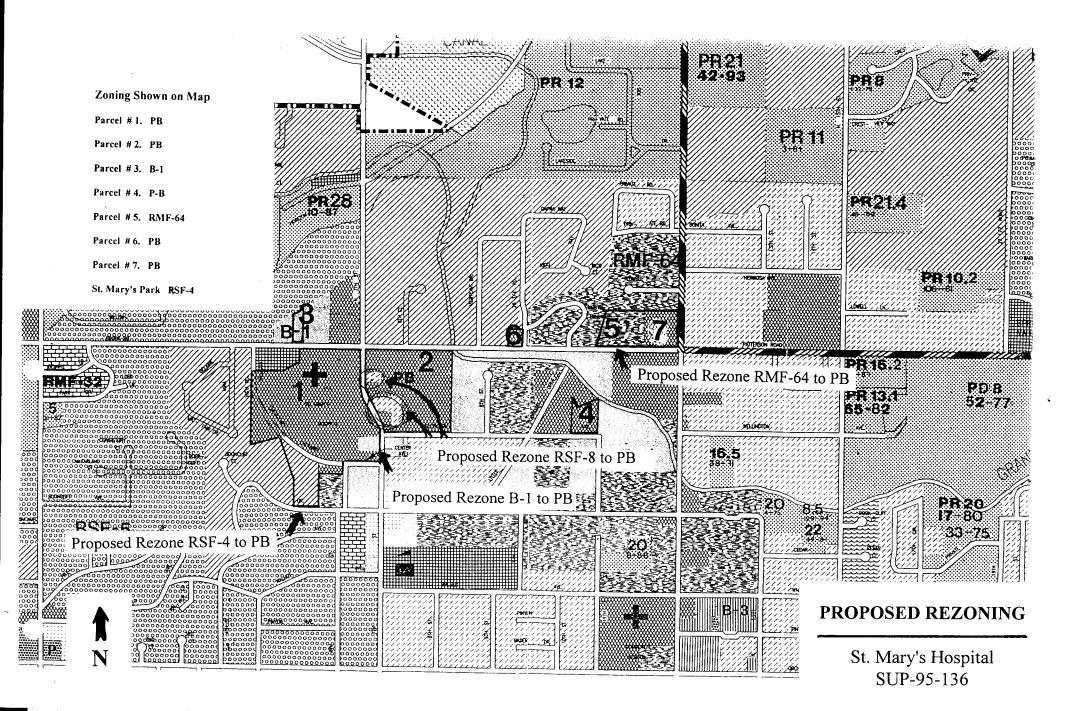
2. At the staff request, future reference to the Master Site Plan will be "Preliminary Plan" until accepted by the Planning Commission and/or City Council.

IEW
#PDR-95-159
September 27, 1995
Michael T. Drollinger
Rezone RMF-64, RSF-8 & RSF-4 to PB and Preliminary Plan
E & W side of 7th Street S of Patterson Road and NW Corner of Patterson Road and 12th Street
 Sisters of Charity of Leavenworth, Health Services Corp. 4200 S. 4th Street Leavenworth, Kansas

EXECUTIVE SUMMARY:


The preliminary plan (also referred to as Master Site Plan) for St. Mary's Hospital has been prepared at the direction of the Planning Commission. The purpose of the plan is to set forth the plans for upgrade, improvement and expansion of St. Mary's facilities over a ten (10) year planning horizon. The preliminary plan includes proposed phasing, density of development, setbacks, height and involves rezoning parts of St. Mary's property to PB (Planned Business) to be consistent with the remaining lands. Staff recommends approval of the preliminary plan and rezone.

EXISTING ZONING:PB (Planned Business); RMF-64 & RSF-4 (see attached map)PROPOSED ZONING:PB (Planned Business)


STAFF ANALYSIS:

a star in the second second

The property descriptions, details of existing conditions and proposed development phasing are all covered in the "Master Site Plan" document and will not be repeated in this report. Particular attention should be paid to Chapter 4 which details the scope and phasing of improvements. Parking and circulation are proposed to be improved and meet Code requirements. Landscaping improvements to parking lot areas are also part of the proposed improvements. The proposed rezonings are beneficial because the entire St. Mary's complex will fall under a consist zone with development occurring consistent with the preliminary plan.

AERIAL MAP

Outstanding Issues

The major outstanding issues related to the preliminary plan concern comments from the City Public Works comments. Public Works staff will discuss these issues in more detail at the hearing, however, they are summarized below:

- 1. Additional right-of-way may be required along Patterson Road to straighten the offset in Patterson Road at the 7th Street intersection.
- 2. Based on accepted engineering standards, Public Works will require that the clearance for a pedestrian bridge over a City right-of-way such as 7th Street offer a minimum of 16 feet of underside clearance.

Staff recommends that the development standards in Chapter 4 of the "Master Site Plan" document be the adopted standards for the complex. Variation from height and FAR (Floor Area Ratio) standards of up to 5% should be permitted without requiring an amendment to the preliminary plan. Staff also recommends that the Planning Commission require that the Plan be valid for five (5) years after which it must be readopted (w/ or w/o changes) after a new public hearing process. The Planning Commission also needs to consider whether St. Mary's should be permitted have final plans for each phase (assuming they are consistent with the preliminary plan) approved administratively or if final plans shall require a Planning Commission hearing.

Mode Conditions of Approval

Should the Planning Commission and/or City Council choose to favorably consider the subject application, staff believes that the conditions listed below should be met:

- 1. Resolution of the above-issues with the Public Works Department.
- 2. Adoption of Chapter 4 of the document entitled "Master Site Plan" as the required development standards and permitting up to a $\frac{5\%}{10\%}$ variation in the standards without requiring an amendment to the preliminary plan.
- 3. The adopted preliminary plan shall be valid for five (5) years from date of adoption after which the plan must be reconsidered at a Planning Commission hearing for readoption, with or without modifications.

The Planning Commission should also include a condition regarding approval of final plans.

4. Plane plans PC review of final plans (parking lots & bldgs)
5. The welli-story street PALAT Lot be not in approved use for
Process Ins
Approved 6-0
AAA.

STAFF RECOMMENDATION:

Staff recommends approval of the rezoning request and preliminary plan subject to conditions #1-#3 in this staff report.

RECOMMENDED PLANNING COMMISSION MOTION:

#10

Mr. Chairman, on item PDR-95-159, a request for rezone and preliminary plan approval, I move that approve the preliminary plan with conditions #1-#3 in the staff report dated September 27, 1995 and that we forward the rezone to City Council with a recommendation for approval.

h:\cityfil\1995\95-1594.wpd

We need to establish the "FAR" Floor area Ratio for the city. 7-18 FLOOR AREA Post-It * brand fax transmittai memo 7571 / olpages + RESULTS BERTIS RASCO RON GREENHAW BELOW CA BOR/AIA COMPLETED 9600 SMHMC 206-682-1133 ENGINEERING Farig70.244-2893 Far+206-621-8782 MERSonne (intermediate floor) DETAILS 2 story "Floor area" is the sum of the gross areas of the several floors of a MODE building or buildings, measured from the exterior faces of exterior walls or from the center lines of walls separating two buildings. In particular, floor -----REPOR area generally includes: _ #PAGES a. Basement space except as specifically excluded \sim b. Elevator shafts or stairwells at each floor c. Floor space in penthouses SEE **I** RMED DURATION Grade d. Attic space (whether or not a floor has been faid) providing structura: L1ª story 56" 56" line headroom of eight feet or more S .00:0 0 e. Floor space in interior balconies or mezzanines g. Any other floor space used, and the space of the space where (\mathcal{O}) located within a building CONF SCANNED CONF I RMED 3:42PM h. Floor space in accessory buildings, except for floor space used for Ń ABOVE TOTAL accessory off-street parking -START 1 IME TRANSM ≻ Cellar k. Any other floor space not specifically excluded However, the floor area of a building shall not include: WAS 7-18-95 a. Cellar space, except that cellar space used for retailing shall be SAMPLE ncluded for the purpose of calculating requirements for accessory off street parking spaces and accessory off street loading berths DOCUMENT * * 28:93 b. Elevator or starr buildheads, accessory water tanks, or cooling towers COUNT * PAGES PAGES c. Uncovered steps STATION d. Affic space (whether or not a foor actually has been laid) providing 24.4 structural headroom of less than eight feet 303 h. Floor space used for mechanical equipment (REDUCED REMOTE * ** Floor area included TOTAL TOTAL SEND Ron, an acuse te determination of the grass floor area is needed for the MSP (monter site Plan), ilere is the defination. Do you have this? Please call, Bertis THIS * * No TE: No TE: MB : : Coor area excluded *** * No. -Copy: Keith Estridge Kin Tomlon een.

G2 COMMENICATION RELAY STATION RECEIVE TO MEMORY

..

RSS R C

ERROR CORRECT RELAY INITIATE MULTI-POLLING

• • • • • •

N N N N

SELECTED FORWARD A REMOTE

4800BPS STORE & POLLING

..

\$ 5 C

OPERATION NUMBER POLLED BY REMOTE SEND TO MAILBOX

BERTIS CRAWFORD RASCC A.I.A.

Post-It brand fax transmittal memo 7671 # of pages > 3

TO TOM DIXON	From BERTIS RASCO
CO. CITY GRAND JUNCTION	CO. BCR/AIA
Dept. PLANNING	Phone # 206-682-1133
Fax # 970-244-1599	Fax# 206-621-8782

June 1, 1995

TOM. Please read this letter and if you find any corrections necessary - mark'st up with your comments and FAX it back to me. I would like this to be a letter of our understanding Should you want to discuss this I would appreciate your phone call. Sincerely. Bester

In our last telephone conversation you requested an outline of the tasks remaining to complete the Master Site Plan. To define this, I have worked closely with Tom Dixon, the City's Senior Planner assigned to the St. Mary's Master Site Plan project. This letter describes two major remaining tasks and their major subtasks. Task One is to prepare the final material necessary to obtain the hospital's commitment to the 'draft'' Master Site Plan. Task Two is to file the 'draft' as required for the City's approval.

This outline is based on the October 1994 City of Grand Junction Zoning and Development Code along with phone conversations and meetings at City Hall that Keith Estridge and I have had with Tom and Kathy Portner the City's Supervisor for Planning.

Task One Prior to submitting the 'draft' Master Site Plan to the City:

Collect comments, review them and revise the materials (plans, slides, 3 ring binders etc. sent to the hospital earlier) as required per the President's Council, the Hospital Board and the various committees that have reviewed the circulated materials.

A. Focus the Plan on the property currently owned.

- B. Formalize the parking stall count-considering the City's Landscaping Area requirements
- C. Develop Landscape Plan with plant & materials list 5-4-15
- D. Develop a Parking Lot lighting layout (iso-candle diagram) as per the Zoning and Development Code Section 5-5-1-F-2-i.

E. Upgrade Estimate of Probable Cost

2553 W. MONTLAKE PLACE EAST SEATTLE, WASHINGTON 98112-2253 206-682-1133 FAX 205-621-8782

F. Obtain commitment from the hospital to a 'draft' Master Site Plan for submittal to the City.

Summary of Major Sub-tasks:

- 1. Complete In-house Hospital Committee reviews.
 - Phasing
 - Parking Landscaping
- 2. Finalize Parking Layout and Stall Count
- 3. Develop Landscaping Plan
- 4. Prepare iso-candle diagram.
- 5. Integrate light diagram with Parking Plan
- 6. Estimate of Probable cost
- 7. Obtain Hospital's Commitment to Plan

Task Two Submit 'draft" Master Site Plan to the City

Process for Obtaining Master Site Plan Approval

i limit potrondjute

WITH-IN n

, o have

RITAC (1) must 2 In lieu of starting from scratch and going through the full Planned Development Administrative Procedures and Requirements for PB (Planned Business) Zone as outlined in Chapter 7-5-1, St. Mary's as an existing Institution with large amount of fixed assets on an existing site is permitted to file a request for approval of the above outlined 'draft' Master Site Plan as follows:

- A. City reviews 'draft' Master Site Plan (60 day period)
 - 1. Planning Department receives the 'draft" and reviews the submittal with the appropriate agencies.

2. Planning Staff collects the various agency reviews and then meets with the owner to present recommendations. Owner and the Planning Staff then meet to agree to the extent of modifications appropriate (if any) for the 'draft''.

3 During the 60 day process neighboring property owners are properly notified by the Planning Staff of St. Mary's submittal
 and the Planning Commission Public Hearing.

4. Planning Commission holds a public hearing

5. If no objections are received the Plan is 'Approved'

Should any Appeals be filed they require a final action by the City Council. Any Appeal to City Council requires additional time beyond the 60 day period.

B. Submittals to the City made by the 1st day of the month fit into the City's hearing cycle and normally are heard during the following month i.e., a submittal the first of August would be heard in September and if appealed would go to the City Council for a hearing in mid October. Any hearing by the City Council requires time beyond the previously mentioned 60 day period. An appeal to the City council is estimated to required an additional 15 days. The Total process time is assumed to be 75 days should an appeal filed.

C. Should additional adjacent land be acquired beyond what is shown on the "Approved" Master Site Plan or the shown buildings significantly change, the Master Plan would need to be amend to reflect the difference brought about by the change(s).

D. Once the Master Site Plan is Approved the Hospital may develop on site projects shown by the Plan with out going to the Planning Department, the Planning Commission or the City Council as long as the Plan is followed. A Master Plan can save time for every one involved and also save the Hospital cost.

In documenting this process with the City, I have been informed that Tom Dixon is leaving the City and that Michael Drollinger will take Tom place as the City's Planner for this Master Site Planning Project. Tom has gone over the project and this process with Michael. After Tom leaves, Michael will be our contact and will help guide the Plan through the City Agencies. Tom has set up a meeting on June 14th at 3pm for me to meet Michael and to review the project status. I would appreciate it if Keith (or some one you choose from the hospital) can be available to attend the meeting with me.

I will call you next week to confirm plans for the meeting on the 14th with the City and to obtain any update regarding the Board meeting on the 15th.

If you have any questions about the above process or the meetings, please do not hesitate to call.

Sincerely,

Bertis C. Rasco

Bertis C. Rasco, AIA

TOM, GOOD LUCK and Best Wishes on your new job Bestes

Meeting Memorandum June 14, 1995 City Planning Department Grand Junction, CO

	# of pages > 2
MICHAEL PROLINGER	From BETLTIS RASCO
CO. CITY OF GRAND J.	CO. BOR/AIA
Dept. COMM. DEVEL. DEPT	Phone # 206-682-1133
	Fax # 206-621-8782

Present: Michael T. Drollinger, AICP Senior Planner City of Grand Junction, CO

> Bertis C. Rasco, AIA BCR/AIA representing St. Mary's Hospital Grand Junction, CO

RECEIVED GRAND JUNCTION PLANNING DEPARTMENT
JUN 21 RECT

Subject: Zoning & Planning Criteria related to St. Mary's Hospital

1. Michael Drollinger has replaced Tom Dixon as the City's Senior Planner for the hospital's Master Site Plan (MSP). Michael will help guide the hospital's M S F through the City's Review and Approval Process.

2. All property now owned by the hospital and planned for medical center use should be included in the MSP submittal. Re zoning should be requested for all the property not currently zoned PB Zone.

Examples:

Parcel # 1 St. Mary's Park Rezone from PSF-4 to PB Zone Parcel # 2 2604 N 7th; 2556 N 7th; 2536 N 7th; 2515 N 7th and 710 Patterson to PB Zone Parcel # 3 520 Patterson to remain Zoned B-1 Parcel # 4 1002 Wellington is currently Zoned PB

3. The location and size of all planned buildings, parking, pedestrian bridges and street overpasses should be described in the MSP. As long as there is no significant change from what is shown on an Approved MSP, the hospital will be able to go through the City's Site Plan Review Process (which is an administrative review only) without resubmitting each time for a Planning Commission Review.

4. If there are alternate locations for a helistop in order to accommodate horizontal expansion of the Saccomanno, the alternate locations should be included.

5. The minimum number of street trees to be provided is determined by the street frontage divided by 40 (5-4-15). Street Frontage Landscaping shall include one (1) tree for every 50 linear feet of frontage or fraction thereof (5-5-1 F.2 a).

6. The code list the distance to Parking from principal property to be 500 feet maximum. Parcel # 3 (1002 Wellington) is approximately 980 feet to the East of Parcel # 2. The City is willing to work with hospital to allow use of Parcel # 3 for Employee Parking during construction periods if the Hospital has not committed the property to other Medical related use.

7. Parking developed now above the code requirements can be credited to satisfying the parking code requirements of future buildings when they are built. The number of parking stalls required by the code for the various phases should be tabulated in the MSP.

8. The circulated time and procedures Outline of City Requirements for Submission, Review and Approval for St. Mary's MSP that was drawn up by Tom Dixon and Bertis (see Fax and letter dated) was reviewed and confirmed as correct. Michael felt it might be possible to reduce the assumed early approval time by 30 days. Both agreed to do every thing possible to reduce the overall time.

9. The next step is to up collect all the various review comments regarding the proposed MSP that has been circulated to various committees, etc., revised the plan as required and then gain authorization from St. Mary's to submit the MSP to City Planning.

Distribution:

Michael Drollinger Sister Lynn Casey, President St. Mary's Ken Tomlon, Exec. Vice Pres. Keith Estridge, Director of Facilities Mgt.

michael, Thanks for your prompt attention Beites

Project ST. MARY'S MASTER SITE PLAN

Subject DEVELOPMENT OF MSP

U Memorandum

- Telephone Record
- Note to the File
- □ To be Typed
- Minutes of Mtg
- I FAX 2 pages

TO MICHAEL DROLLINGER	From BERTIS RASCO
CO. CITY OF G. JUNCTION	CO. BCR/AIA
Dept. PLANNING	Phone # 206-682-1133
Fax #970-244-1599	Fax # 206-621-8782

Project No. 09406

RECEIVED GRAND TUNCTION PLANNING Dr.

JUL 13 RECD

1. ST. MARY'S IS IN PROCESS OF ACQUIRING HILLTOP REHAB HOSPITAL, SKILLED NURSING FACILITY AND CENTENNIAL PLAZA LOCATED AT 1100 PATTERSON ROAD.

WE PLAN TO FILE THE MSP ON ANG 31, 1995 AND LEXPECT THE ABOUT ACQUISITION TO BE COMPLETE. TO KEEP THE MSP FROM BECOMING OBSOLETE SHOULD WE EXTEND THE (TOBEALED) MSP TO INCUDE THE NEWLY ACQUIRED PROPERTIES ?

Date JULY 13, 1995 By BCR

@ HILLTOP REHAB HOSPITAL AND SKILLED NURSING HOME NOW APPEARS ON THE CITY ZONING MAP AS RMF-64. WILL THIS REQUIRE REZONING ? WHAT SPECIAL USE OR CONDITIONAL USE DO THESE PACILITIES HAVE WITH THE CITY ?

@ WILL THE NEW OWNERS BE REQUIRED TO DEVOTE 15% OF THE GROSS LAND AREA TO LAND SCAPE (CODE 4-2-9) ?

@ WHAT ARE THE PARKING REQUIRE MENTS FOR THE ; I REHAB HOSPITAL

- 3 THE P-B ZONED CENTENNIAL PLAZA .

Antreaction of the second @ CAN THE PROPERTY THE HOSPITAL OWNS (ZONE P-B) AT 1002 WELLINGTON BE USED FOR PARKING FOR HILLTOP?

O WHAT IS THE CITY'S UNDERSTANDING OF THE PARKING ARRANGEMENT BETWEEN THE HILL TOP PROPERTIES AND THE CHURCH PARKING LOT USE WEST ACROSS 12TH ?

"hove so the provide the sol .

2. IS IT LOGICAL TO ZONE ALL THE HILL TOP PROPERTY P-B AT THE SAME TIME WE FILE THE MSP? WE ASSUME THIS IS THE TIME TO ASK FOR REZONING OF <u>ALL</u> ST. MARY'S PROPERTY INTO THE P-B ZONE.

- 3. HOW MANY COPIES OF THE MSP ARE REQUIRED WHEN WE FILE ?
- 4 WHAT IS THE FILING FEE?

michael,

Please call me so we can discuss these and any other elements you may chose regarding St. Mary's MSP. Thanks in advance. But;

Page 2012

Memo Of Meeting

JEINI DI - INA

9

To: Ken Tomlon, Executive V.P. St. Mary's Hospital and Medical Center

From: Bertis Rasco

Meeting of August 3,1995

	# of pages > 📕 🏹
* KEN TOMLON	From BETUTIS RASCU
GA ST. MAILY 'S	Co. BCILIAIA
Dept. ADM 'N	Phone #206 - 682-1133
Fax #970-2-44-7510	Fax = 206-621-8782

City of Grand Junction, CO City Hall

Present:

Michael T. Drollinger. AICP City of Grand Junction Keith Estridge, Engineering St. Mary's Hospital Bertis Rasco, Consultant Planner for St. Mary's

Subject: St. Mary's Master Site Plan (MSP)

- The following was in Response to Questions Faxed to City earlier:

 A. St. Mary' has acquired the Hilltop Rehab Hospital (HRH) and the adjacent Centennial Building. It is still St. Mary's goal to file a MSP by August 31,1995.
 - The City feel strong about the date of August 31,1995. They do not feel it absolutely necessary to file a MSP for the newly acquired property at this time.

It is the hospital's decision when to file zoning modifications. A plat of each property to be re-zoned is required. Plat is defined as a drawing used to legally identify boundaries and easements, performed in accordance with Culorado Revised Statutes Title 38, Article 51. (see attached Plat of Parcel #6 NRH employee parking lot)

B. HRH is in Zone RMF-64. A hospital is not permitted in this Zone with out a Conditional Use permit. HRH does not have a Conditional Use permit that includes on site parking by others.

C. The amount of landscaping required is established during the review process consider the applicant file and the review agencies comment. Each P-B Zone request is reviewed individually.

RECEIVED GRAND JUNCTION PLANNING DEPARTMENT	
AUG 10 RECD	

4

D. Parking requirements: Current 1. Offices 1 space per 300sf of gross floor area plus 1 for each office vehicle 2. General Retail 1 space for 200gsf sales (Centennial Plaza) area **Proposed use** 3. Medical /Dental Offices (Family Practice Residency Bldg) 4 spaces for each doctor on duty during busiest shift 4. Hospital (Rehab Hospital) 1 space per 2 beds + 1 per employee on largest shift + 1 per hospital vehicle 5. Care Facilities (S N F) 1 space per 4 beds + 1 per employee on the largest

E. The St. Mary's property (1002 Wellington zoned P-B) may be used for Hilltop employee parking

shift

F. The Bookcliff Baptist Church property is in a Conditional Use zone. The Church does not have any formalized arrangement with the City that allows parking from Centennial Plaza. This is technically in violation of current codes since the Church needs the City's permission. The City already has their Code enforcement arm looking into this. To be legal the lot will need to get a permit, pave, landscape, provide surface drainage, strip the stalls and light the lot.

2. Zoning all Huspital property into one Zone is reasonable and would simplify the understanding and enforcement of the zone requirements.

3. Michael Drollinger will verify the number of copies of the MSP to be filed, identify who is to receive each and establish the filing fee cost.

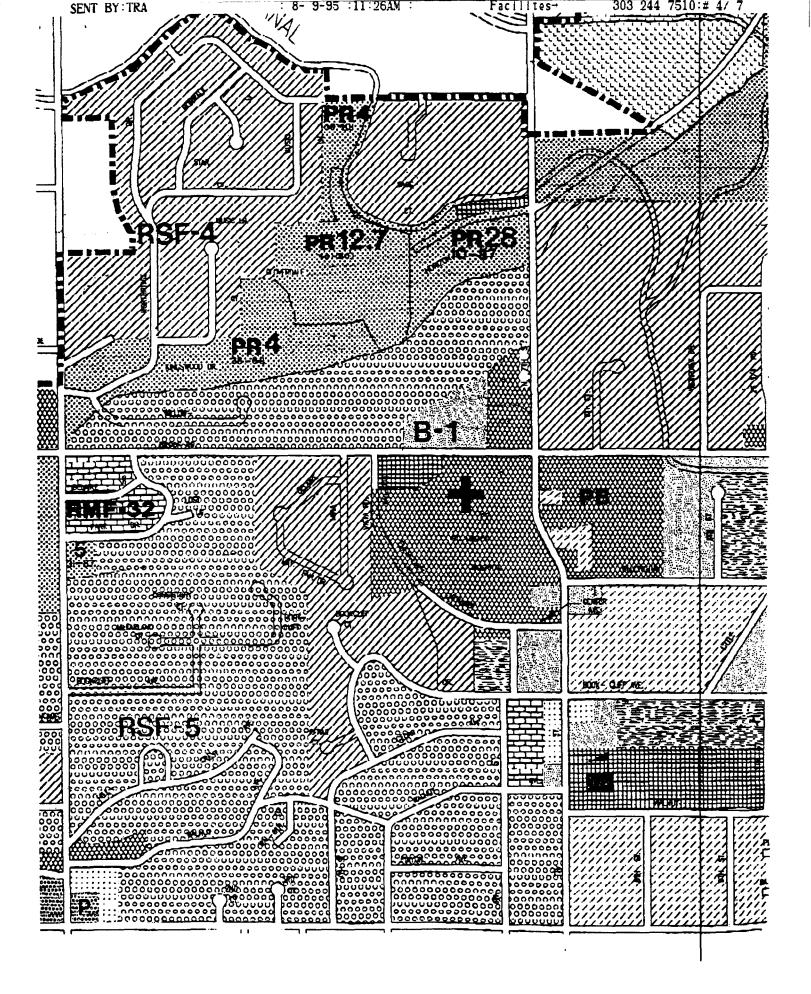
4. The hospital access to identify the existing Surface Drainage plans and their design capacities (water retention provided for and the amount of impervious area) for Parcel #1 (includes St. Mary's Park) and Parcel #2. It is thought that this work has been done by Western Engineers-Bruce Marvin 242-5202.

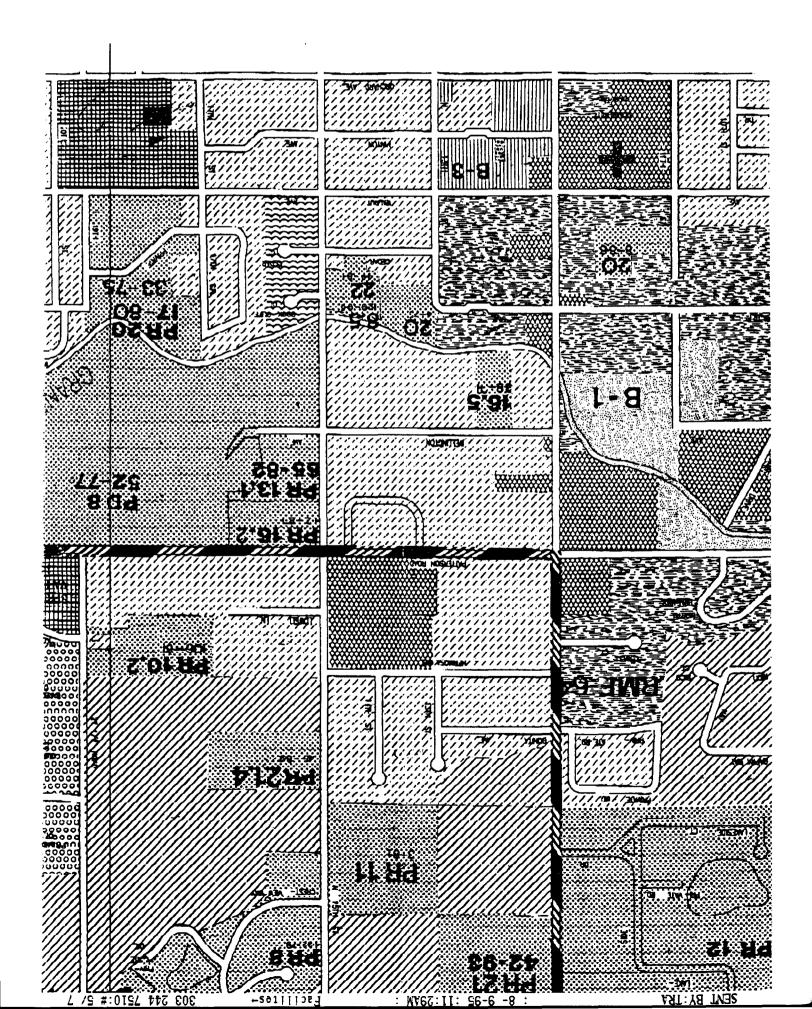
5. Traffic Generation should be a topic included in the MSP. Driveways, intersections and curb cuts should be included. Also, note the existing curb cuts and specify any that are to be closed and any that are new.

6. Pedestrian & bike bridges wore discussed and felt to be desirable across N. 7th Street hetween Parcels #1 & #2 and the one across the GVI Canal at the North end of Little Bookcliff Avenue can be improved.

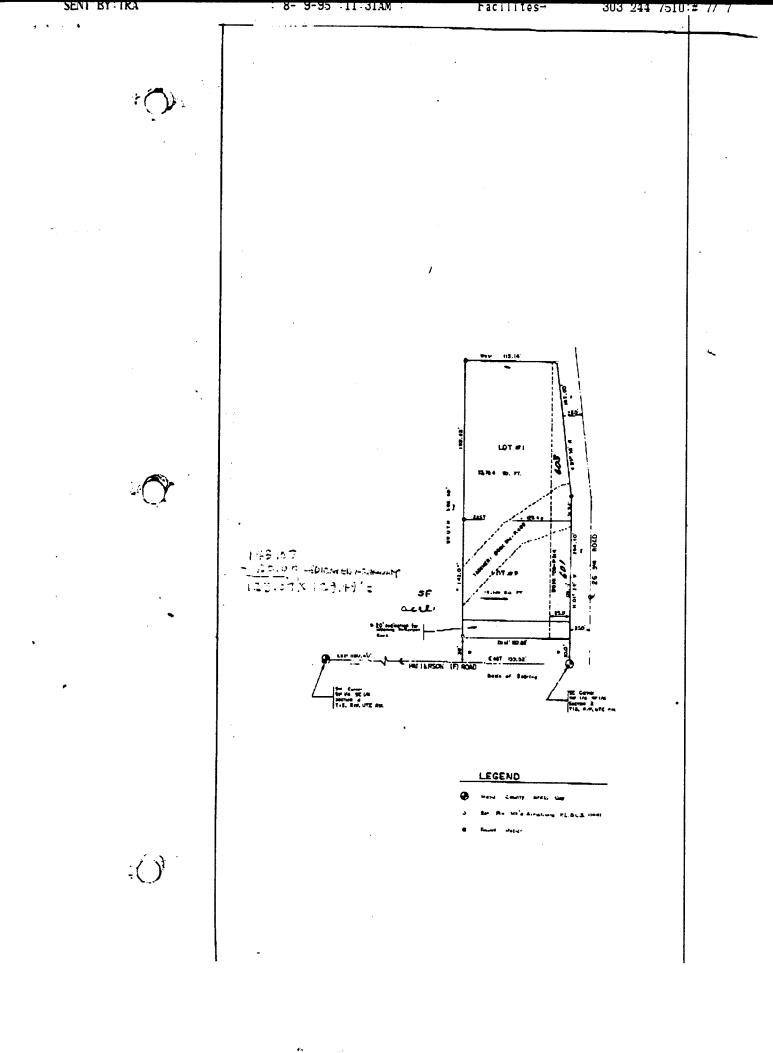
7. It was agreed that the hospital could develop parking in large economical lots that exceed the code requirements and later the hospital can apply parking developed in excess of the code to future parking requirements.

8. City manual dated May 1995 titled "Submittal Standards for Improvements and Development" (SSTD) Section 5-6 of the Zoning and Development Code was purchased from the City \$10.00.


9. Michael supplied and upgraded copy of the City Zoning map for the area around St. Mary's property. It was noted that the Motel property on Parcel #1 and one (or two?) properties on Parcel #2 are not indicated in the P-B Zone on the newly published zoning


map. Michael will verify the zoning of all the St Mary's property.

10. Michael also drew from the files and copied for us the Plat map of the HRH Employee Parking Lot Parcel #6.


Distribution:

Sister Lynn Casey Ken Tomlou Keith Estridge Michael Drollinger

and a second		
	REFEAL	
	HERE'S AND	
-	BENNETT SUBDIVISION	
	KNON ALL MEN BY THEAT PRESENTA	
	The an enclosed, another and Charle Stategy; are as another of that radi property allowed in the Causey of Heavy, state of Cabredos, and hing is a part of the	
	st vie or succen 2, 775,1779, UTE Principal Mandian, as share on the association alor revert. Sold alot being specificativ described as follows: Boyleving of a point	•
	1180.40 lear bush of the Enerh 1/4 Conner of Section 2 , 713,814,475 P.B. Tonada East 133.52 for to the East line of the 314 for an an and Section X, Theadar 40.01	
	20° W 204.50 fair, Thease in 0.0° 30° W (63.50) tests Thence West (13.10 feets Themes Couch 3.80.53 faot is the jockt of baginning 5 EXCEPT is a Summ 30 feet for round	
	right of vegs, and EXCEPT Extendent an donaribed in december, recorded in Been 704 Roge Sid and in Beet 241 Page 423 of the arrian fruinty CLERX and RECORDERS	
	racends, Eele subdivision contains 0.07 mover, many or 1000. Their two and wommen were stability in the said property to be inid out and serveyed da "Electric subdivisions, a visibilities of a part of the comproperty to be inid out and serveyed data	
	Then the busier deals haveby dealing and left apart all strates as those as the accompany of the strategy of t	
	and the second s	
	lings, and industry internations in the right on the instruction over the state of the second	
	That -nil argument for lawellance of utilities - reters in about for attains, lands capity, and for street suppressions: shall be fissacor by the salies or perchases not the City of utilities Junction.	
	Be Billing States and Second and Second Second Second Second Second 1964	
	Counter up and the Counter of Cou	
-	Schutte of wEEA 2 of A.D. 1976 by Cleyts and Converse Demontations	
	thy cas micion expires	•
	CLERK AND RECORDERS DERTIFICATE	
	CLERK AND RECORDERE OERTIFICATE	
•	Stota pl Catorada) Cosniy of Maxa) va	
 	Stota of Catorado) County of Masa) ³⁹ 1 hereby Certily that INS costrumon out time to any adores as 1.0-45 minure 1 a <u>Can 17,1926</u> co, 1876, and to aying records in plat	
	Stota of Calorada) County of Maxa) ¹⁹ i herdoy certily that this costrumon out they at where at <u>10:45</u> minorad a <u>Carri 7.1926</u> a, 1074, and is only received in plat Dwn. My <u>11</u> regr 212, recording No. <u>116,677</u> .	
· · · · · · · · · · · · · · · · · · ·	Stota of Catorado) County of Masa) ³⁹ 1 hereby Certily that INS costrumon out time to any adores as 1.0-45 minure 1 a <u>Can 17,1926</u> co, 1876, and to aying records in plat	-
	Stote of Culorado) County of Maxe) ¹⁴ i have) ¹⁴ <u>1 Apreby Curtily inst 1115 instrument out theo in any advice at</u> <u>10 45 Prives d'a Cap 17/1926-0</u> , 1076, and <u>outy received in plat</u> on the <u>11 prove d'a Cap 17/1926-0</u> , 1076, and <u>outy received in plat</u> <u>10 AF Prives d'a Cap 17/1926-0</u> , 1076, and <u>outy received in plat</u> <u>10 AF Prives d'a Cap 17/1926-0</u> , 1076, and <u>10 plat</u> <u>10 AF Prives d'a Cap 17/1926-0</u> , 1076, and <u>10 plat</u>	- -
CITY APPROVAL	Stote of Calorado) County of Nexe) ¹¹ i hardon Cartilly indi 1983 wathuman par fines in any stores at <u>10:45</u> minus <u>1 is Cap 17.1226.2</u> , 1874, and outy receives in part out the <u>if</u> respective machanism No <u>1168.272</u> . <u>Earl changer</u>	-
	Stote of Culorado) County of Mare) ¹⁴ i hereby certity inst (NS instrument not fines in my advice at <u>10:45</u> Prives <u>A</u> is <u>Cap. 12.1226.00</u> , 1076, and is only received in 9187 Dow the <u>16</u> regeries <u>NS instrument</u> of <u>1668222</u> . <u>Earl issues</u> <u>Basely</u> <u>Para</u>	•
<pre>control plan et Manitert publicitiert guarent et control plan est puscher (************************************</pre>	Stote of Culorado) County of Mare) ¹⁴ i hereby certity inst (NS instrument not fines in my advice at <u>10:45</u> Prives <u>A</u> is <u>Cap. 12.1226.00</u> , 1076, and is only received in 9187 Dow the <u>16</u> regeries <u>NS instrument</u> of <u>1668222</u> . <u>Earl issues</u> <u>Basely</u> <u>Para</u>	- - -
under under Standert under Standert in General er son	Stote of Calorado) County of Mare) 11 i hardon Cartily man INS wathuman out finds in my deness at <u>I Aff</u> minute <u>A</u> a <u>Sep 17.1226.20</u> , 4074, and <u>a</u> outy records its part on my <u>if</u> rego <u>212</u> , macharine No <u>1166.222</u> . <u>Earl Assurger</u> <u>5.10.07</u> Clark and Briterian Basely rest <u>Basely</u> rest <u>SURVEYUN'S CERTIFICATE</u> (Bayro in Lizer, o inviduant have being young	-
Land Land Land Land Land Land Land Land	Stote of Calorado) County of Nove) 11 i hereby Cartily that INS wattument out time in any where at <u>Other Freezewards</u> a <u>Sep 17.1226-2</u> , 4076, and a only recorden its part on the <u>Freezewards</u> <u>respective</u> <u>respective</u> <u>is 10.00</u> Clare and arbuides <u>Basil</u> <u>Basil</u> <u>Clare and Arbuides</u> <u>Basil</u> <u>SURVEYON'S CERTIFICATE</u> i Norve to Lister, o training the the server <u>respective</u> <u>respective</u> <u>respective</u> the server <u>respective</u> <u>respective</u> <u>respec</u>	-
Land Land Land Land Land Land Land Land	Stote of Calorado) County of Nove) 11 i hereby Certily iner INS waterman wat fine in any where et <u>O.45</u> Friend & <u>Sep 7.7.1226.2</u> , 4074, and <u>any</u> recercing its part Down the <u>Free 211</u> recenties No <u>III & III & III Earl charger</u>	
Land Land Land Land Land Land Land Land	Stote of Cultures) 10 County of Maxe) 10 i Apress Certify inst 10% instrument out the ary where et <u>10:45</u> Proved d <u>Caper 2/2224-0</u> , 4076, and <u>outy</u> recent at 940 Dow the <u>11</u> Proved d <u>Caper 2/2224-0</u> , 4076, and <u>outy</u> recent at 940 Dow the <u>11</u> Proved d <u>Caper 2/2224-0</u> , 4076, and <u>outy</u> recent at 940 Dow the <u>11</u> Proved d <u>Caper 2/2224-0</u> , 4076, and <u>outy</u> recent at 940 Dow the <u>11</u> Proved d <u>Caper 2/224-0</u> Elect and Schurder <u>Basedr</u> SURVEYON'S <u>CERTIFICATE</u> 1. Mayor the Lisser, o instrument the the server 1. Mayor the Lisser, o instrument the server 1. Mayor the Lisser of the server 1. Mayor the server of the server 1. Mayor the se	
K. C. Berner and States	Stote of Calarado) County of Maxe) 11 i Aprenty Cartily inst 1015 withoursent out them in any advect at <u>iD'AS</u> Proved <u>A</u> a <u>Cap. 7.1226.00</u> , 4076, and outy receives in put Dom m. <u>if</u> reger <u>212</u> macaarinan Ho. <u>UIALZZ</u> . <u>Barl chauron</u> <u>3.10.09</u> Elem and Behavior <u>Barrier</u> Pasa SURVEYON'S <u>CERTIFICATE</u> I Mayne m Lizer , a instance have been been brong the state of Calarado , down on June 100 miles par state of Calarado , a materia have been been brong the state of the server <u>state</u> state of the server state of the server <u>state</u> state of the server <u>state</u> state of the server state of the server <u>state</u> state	•
Kielen underer in angenere	Store of Calorado) County of Maxe) 1 i Acress certify inst this waterunteen out the ary device at <u>i Acress de Capit 21224 and water</u> outy receirem in put Due the <u>internet de Capit 21224 and water</u> outy receirem in put Due the <u>internet de Capit 21224 and water</u> outy receirem in put Due the <u>internet de Capit 21224 and water</u> outy receirem in put Due the <u>internet de Capit 21224 and water</u> outy receirem in put Due the <u>internet de Capit 21224 and water</u> outy receirem internet de Capit 2000 Elern and Behavior Beauty Form to <u>internet and Beauty</u> and the Survey of Calorado and State and S	•
K. C. Berner and States	Stote of Calorado) County of Nexe) 11 i hereby Certily that this settiment out time to by derive at <u>10:45</u> means <u>4 a Capar 7.1226 a</u> , and <u>a capy receive</u> it part Down the <u>110 material a Capar 7.1226 a</u> , and <u>a capy receive</u> it part Down the <u>110 material a Capar 7.1226 a</u> , and <u>a capy receive</u> it part Down the <u>110 material a Capar 7.1226 a</u> , and <u>110 flat 7.2</u> . Earl charage <u>5.10 fr</u> Clear and Behavie <u>0 material a Capar 7 material and Behavies</u> to the State <u>10 material and Behavies</u> SURVEYON'S <u>CERTIFICATE</u> 1 Mayor to Lister <u>10 material and Berning</u> 2445 weber of State <u>10 material and State 10 material</u> 25 Mayor <u>10 material and State 10 material</u> 25 Mayor <u>10 material a State 10 material and State 10 material</u> 25 Mayor <u>10 material a State 10 material and State 10 material</u> 25 Mayor <u>10 material a State 10 material and State 10 material</u> 25 Mayor <u>10 material a State 10 material and State 10 material</u> 25 Mayor <u>10 material a State 10 material and 10 material and 10 material</u> 25 Mayor <u>10 material a State 10 material and 10 </u>	•

бч. _с.

STAFF REVIEW (City Council)

FILE:	#PDR-95-159
DATE:	October 12, 1995
STAFF:	Michael T. Drollinger
REQUEST:	Rezone RMF-64, RSF-8 & RSF-4 to PB
LOCATION:	E & W side of 7th Street S of Patterson Road and NW Corner of Patterson Road and 12th Street
APPLICANT	: Sisters of Charity of Leavenworth, Health Services Corp. 4200 S. 4th Street Leavenworth, Kansas

EXECUTIVE SUMMARY:

The preliminary plan (also referred to as Master Site Plan) for St. Mary's Hospital has been prepared by the hospital at the direction of the Planning Commission. The purpose of the plan is to set forth the plans for upgrade, improvement and expansion of St. Mary's facilities over a ten (10) year planning horizon. The preliminary plan includes proposed phasing, density of development, setbacks, height and involves rezoning parts of St. Mary's property to PB (Planned Business) to be consistent with the remaining lands. Planning Commission approved the preliminary plan at their October 3, 1995 meeting. Staff recommends approval of the rezone request.

EXISTING ZONING:	PB (Planned Business); RMF-64, RSF-8 & RSF-4 (see attached map)
PROPOSED ZONING:	PB (Planned Business)

STAFF ANALYSIS:

The property descriptions, details of existing conditions and proposed development phasing are all covered in the "Master Site Plan" document and will not be repeated in this report. Particular attention should be paid to Chapter 4 which details the scope and phasing of improvements. Parking and circulation are proposed to be improved and meet Code requirements. Landscaping improvements to parking lot areas are also part of the proposed improvements. The proposed rezonings are beneficial because the entire St. Mary's complex will fall under a consist zone with

Legal Description for Parcel 3 shall be substituted with the following:

Beginning 363.1 feet S and S26°19'E60.8 feet from N4 corner SEC1 1S W N77°10' 307 feet S2°55'W 118.2 feet S84°07' W257feet N26°19'W85 feet to beginning excluding road ROW as per Mesa County Records.

- F. A favorable vote of five members of the City Council shall be required to overturn a recommendation of the Planning Commission that an application for rezoning be denied.
- G. In all rezoning actions by either the Planning Commission or the City Council, the reasons for the action shall be stated in the minutes or resolution of that body.

4-4-3 SUBMITTAL REQUIREMENTS - The applicant shall submit to the Administrator those materials as listed in the SSID Manual (only complete submittals shall be accepted).

4-4-4 CRITERIA - The following questions shall be answered in reviewing rezone applications and shall be considered in the decisions made by the Planning Commission and City Council.

Was the existing zone an error at the time of adoption? A. 20

- B. Has there been a change of character in the area due to installation of public facilities, other zone changes, new growth trends, deterioration, development transitions, etc.?
 - · charge in character with expansion of St. Mary's over time
- Is there an area of community need for the proposed rezone? С.
- · the zone changes the address a community need by providing for the D. Is the proposed rezone compatible with the surrounding area or will there be adverse of the rappila
 - the recove is compatible with surrounding uses and a I uniform. Will there be herefits derived but the
- The recove is compatible with surrounding planning zoning will assist
 Will there be benefits derived by the community, or area, by granting the proposed rezone?
 Recove will assist in the coordinated planning of the hospital in the long top Is the proposal in conformance with the policies intents and requirements of the context. Is the proposal in conformance with the policies, intents and requirements of this Code, with F. the City Master Plan (Comprehensive Plan), and other adopted plans and policies
 - rezone to PB will allow plang of the complex as a whole work to be allow? Are adequate facilities available to serve development for the type and scope suggested by the proposed zone? If utilities are not available, could they be reasonably extended? Staffsevaluation of petitioner's proposal. SPECIAL USES (see Definitions)

or

E.

SPECIAL USE PERMIT - A special use shall require a special use permit prior to the issuance of a building permit and/or commencement of the use. This permit shall be issued by the Administrator upon approving the application. A special use is not a use by right.

4-5-2 SPECIAL USE PERMIT PROCEDURE

A. The applicant shall submit the required materials to the Administrator (see Section 4-7). Only complete applications shall be accepted.

4.36

development occurring consistent with the preliminary plan.

Outstanding Issues

The major outstanding issues related to the preliminary plan concern comments from the City Public Works comments. Public Works staff will discuss these issues in more detail at the hearing, however, they are summarized below:

- 1. Additional right-of-way may be required along Patterson Road to straighten the offset in Patterson Road at the 7th Street intersection.
- 2. Based on accepted engineering standards, Public Works will require that the clearance for a pedestrian bridge over a City right of vay such as 7th Street offer a minimum of 16 feet of underside clearance.

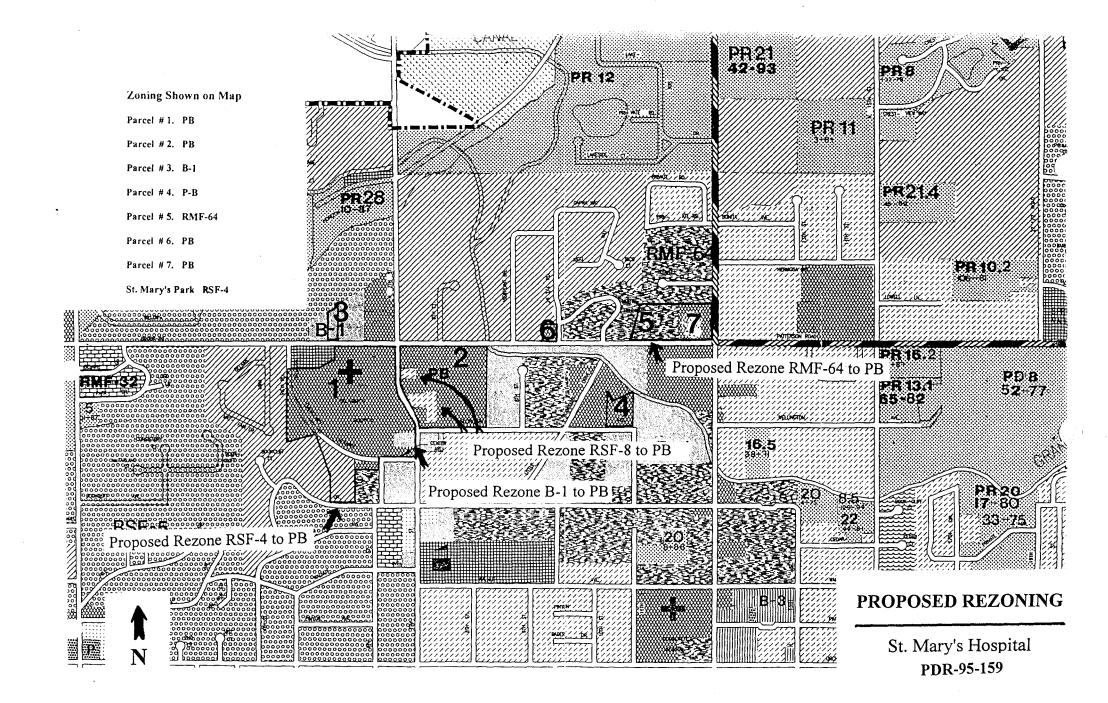
of underside clearance. 3. My Street a solution of the convert of the road, Staff recommends that the development standards in Chapter 4 of the "Master Site Plan" document be the adopted standards for the complex. Variation from height and FAR (Floor Area Ratio) standards of up to 10% should be permitted without requiring an amendment to the preliminary plan by Planning Commission.

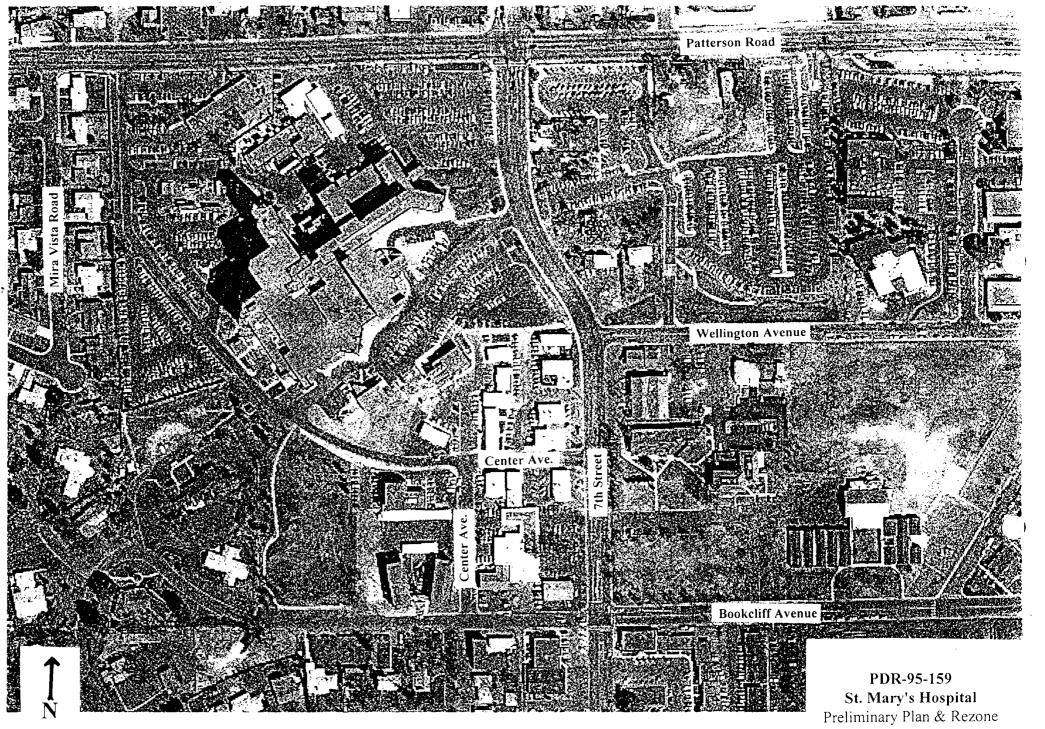
Conditions of Preliminary Plan Approval

Planning Commission adopted the Master Site Plan document as the Preliminary Plan for the development with the following conditions:

- 1. Resolution of the above-issues with the Public Works Department. (*STAFF NOTE*: the issues will be addressed as more detailed plans for phases are developed. The issues were identified during this phase of the process to inform St. Mary's of staff's concerns and allow them to incorporate these concerns into their long-term planning).
- 2. Adoption of Chapter 4 of the document entitled *Master Site Plan* as the required development standards and permitting up to a 10% variation in the standards without requiring an amendment to the preliminary plan.
- 3. The adopted preliminary plan shall be valid for five (5) years from date of adoption after which the plan must be reconsidered at a Planning Commission hearing for readoption, with or without modifications.
- 4. The Planning Commission shall review and approve the final plans.
- 5. The Wellington lot is not approved for parking (*STAFF NOTE*: the Wellington lot is referenced as Parcel #4 in the *Master Site Plan*).

STAFF RECOMMENDATION:


Staff recommends approval of the rezoning request to make the zoning of the St. Mary's properties consistent and recommends adoption of the *Master Site Plan* document with the development standards contained therein.


PLANNING COMMISSION RECOMMENDATION:

At their October 3, 1995 meeting the Planning Commission approved the Preliminary Plan with the conditions in the staff report (as amended) and recommended approval of the rezone request.

h:\cityfil\1995\95-1595.wpd

(1. S. 1. S. 1.

AERIAL MAP

beginning 180' S of N1/4 cor Sec 11 1S 1W S 75' E 190.3' N 75' W 190.3' to beginning 50' for road as described in B-1501, P-438 through 440 Mesa County Records. [located on the east side of 7th Street south of Patterson Road]

Parcel 3

That the land described below is hereby rezoned from RSF-8 (Residential Single Family - not to exceed 8 units per acre) to PB (Planned Business):

beginning 180' S of N1/4 cor Sec 11 1S 1W S 75' E 190.3' N 75' W 190.3' to beg 50' for road as described in B-1501, P-438 through 440 Mesa County Records. [located on the east side of 7th Street south of Patterson Road]

Parcel 4

That the land described below is hereby rezoned from RSF-8 (Residential Single Family - 8 units per acre) to PB (Planned Business):

BEG 499.3FT S AND 240FT E OF N4 COR SEC 11 1S 1W S115FT E76FT N02°55' E149.3FT TO SE COR OLIVER REED TR S84°07' W TO PT 20FT N OF BEG S TO BEG [located on the east side of 7th Street south of Patterson Road]

Parcel 5

That the land described below is hereby rezoned from RMF-64 (Residential Multifamily - not to exceed 64 units per acre) to PB (Planned Business):

BEGINNING 324.67 FEET FROM W OF SE CORNER SECTION 2 1S 1W N330.56FT W324.95FT S21°58'W215.43FEET S28°46'W149.18FEET E477.23FEET TO BEGINNING EXCLUDING ROW AS PER BOOK-1424 PAGE-729 MESA COUNTY RECORDS [commonly known as Hilltop (now St. Mary's) Rehabilitation Center]

Parcel 6

That the land described below is hereby rezoned from B-1 (Limited Business) to PB (Planned Business):

FROM SW COR S2NE4NW4 SEC11 1S 1W E1050.5FT N388.5FT S89°55' E386.3FT N114FT to BEG W90.1FT N154.85FT E120.1FT TO W LI 7TH ST S TO A PT 30 FT E OF BEG W TO BEG

[commonly known as the Guest House Motel]

SECTION 2

That the development standards as detailed in the *Master Site Plan*, and in particular the development standards in Section 4 of said document, be incorporated as the development standards

for the Planned Business zone for the St. Mary's complex by reference. The *Master Site Plan* document is on file at the City Clerk's Office, City Hall, 250 N. 5th Street, City of Grand Junction for public review during normal business hours. The development standards shall be applicable to the properties zoned as Planned Business (PB) and described as follows:

A parcel of land beginning at a point 346.0' S of the N1/4 cor os Section 11, T1S, R1W Ute Meridian; thence N75°15'E 247.0'; thence N08°30'W 28.7'; thence W 29.6'; thence N15°12'E 46.3'; thence N79°59'E 119.8'; thence S02°55'W 160.0'; thence S77°10'W 307.0'; thence N26°19'W 60.8'; thence N 17.1' to the POB, except road right-of-way on the W thereof, City of Grand Junction; subject to right-of-way for covered pipeline and water tap on westerly boundary of subject property as described in deed recorded October 13, 1951, in B-555, P-250. ALSO beg at a point which is 363.1' S and N63°50'E 215' from the N1/4 cor of Section 11, T1S, R1W, Ute Meridian; thence N63°50'E 10'; thence N15°12'E 55.8'; thence N79°50'E 119.9'; thence N 34' more or less; thence S79°19'W 143'; thence S5°35'W 84.3' more or less to the POB. ALSO beg 215' E of the N1/4 cor of Section 11, T1S, R1W, Ute Meridian; thence S5°33'W 212.1'; thence northeasterly 143' to a point 185' S of N line of said Section 11; thence N 185'; thence W 121' to POB; except the S 30.1' thereof. ALSO a tract of land in the NW1/4 NW1/4 NE1/4 of Section 11, T1S, R1W, Ute Meridian described as follows: beg at a point 215' E of the N1/4 cor of said Section 11; thence S5°33'W 256.3' to a point; thence northerly to a point 205' E of said N1/4 cor of said Section 11; thence E 10' to beg; subject to rights-of-way of record, and also subject to Trust Deed to Mesa Federal Savings and Loan Association of Grand Junction in the original principal amount of \$16,800, recorded in B-955, P-844 of the Mesa County Records. ALSO a part of the N1/2 of Section 11, T1S, R1W, Ute Meridian, described as follows: beg at a point on the N right-of-way line of Center Ave 390' N and 1163.4' E of the SW cor of the S 1/2 NE1/4 NW1/4 of Section 11, T1S, R1W, Ute Meridian; thence S00°05'W 50' to the N line of Mesa Park Center Sub; thence N89°55'W along said N line to a point that is 972.27' E and 340' N of the SW cor of the NE1/4 NW1/4 of said Section; thence northwesterly along the arc of a curve to the left having a radius of 50' a distance of 78.83', the chord of which bears N45°05'W 70.92'; thence N00°15'W 273' to a point on the S line of a tract conveyed to the State of Colorado by deed recorded in B-306, P-498; thence N73°35'E 303.8', more or less, along said line to the W line of a parcel of property described in B-710, P-119; thence S 56'; thence E 259.35' to the W right-of-way line of N 7th Street; thence S along said right-of-way 268.85' to the N line of Center Avenue; thence W 308.35' to the POB. ALSO beg at a point 546' S of the NE cor of the NW1/4 of Section 11 T1S, R1W, Ute Meridian; thence S73°35'W 31.3'; thence S 7.3'; thence along the arc if a curve to the right with a 32' radius, the chord of which bears S36°48'W 36.3' to a point on the S line of the Princeton University tract as recorded in B-306, P-498, Mesa County, Colorado, which point os S73°35'W 54' from the SE cor of said tract; thence S73°35'W 55' along the southerly line of said tract; thence S 56'; thence E 230' to the W line of 7th Street in City of Grand Junction; thence N30°38'W 152' along the W line of 7th Street; thence S73°35'W 50' to the POB. ALSO a tract of land in the NW1/4 NW1/4 NE1/4 of Section 11, T1S, R1W, Ute Meridian, described as follows: beg at the N1/4 cor of said Section 11, thence E 190'; thence S 105'; thence W 190'; thence N 105' to the POB, in the City of Grand Junction; subject to rights-of-way for County roads as described in documents recorded in B-428, P-342 and in B-433, P-57, Mesa County. ALSO a tract of land in the NW1/4 NW1/4 NE1/4 of Section 11, T1S, R1W, Ute Meridian, described as follows: beg at a point 105' S of the N1/4 cor of said Section 11; thence S 75'; thence E 190'; thence N 75'; thence W 190' to the POB; subject to a right-of-way for a County Road as described in document recorded in

B-428, P-404, records of Mesa County Clerk and Recorder. ALSO beg at a point 346' S of the N1/4 cor of Section 11, T1S, R1W, Ute Meridian; thence N75°15'E 247'; thence N8°30'W 28.7'; thence W 29.6'; thence S15°12'W 9.5'; thence S63°50'W 10'; thence N5°33'E 13.7'; thence W 194.3'; thence S 91' to the POB; subject to rights-of-way of record, including but not limited to a right-of-way recorded in B-900, P-9 of the records of the Mesa County Clerk and Recorder. ALSO a tract of land in the N1/2 NW1/4 NE1/4 of Section 11, T1S, R1W, Ute Meridian, described as follows: beg 215' E of the N1/4 cor of Section 11; thence S5°33'W 182'; thence northeasterly 490', more or less, to a point 90' S and 470' E of the POB; thence N 90'; thence W 470' to the POB, except the following described tract, to wit: beg at a point 215' E of the N1/4 cor of said Section 11, thence S5°33'W 182'; thence northeasterly 143'; thence N 155'; thence W 121' to the POB; subject to road as described in B-05, P-99; subject to easement for ditch as described in Quitclaim Deed recorded in B-370, P-339; and subject to easement to the Grand Valley Irrigation Company as described in B-453, P-209, Mesa County records. ALSO beg 420' S of the NE cor of the N1/2 NW1/4 NE1/4 of Section 11, T1S, R1W, Ute Meridian; thence W 150'; thence S 75'; thence W 75'; thence S 185' more or less to the S line of S.A. Reece tract of land; thence E 225' to the SE cor of S.A. Reece tract; thence N 260' more or less to the POB. ALSO beg at a point 685' E of the NW cor of the NE1/4 of Section 11, T1S, R1W, Ute Meridian; thence S 105'; thence S79°00'W 345.0'; thence S01°45'W 415.1'; thence S73°02'W 98.0' to a point 614.3' S and 240' E of the NW cor of the NE1/4 of said Section 11, thence W 56.11; to the E line of N 7th Street; thence along the arc of 353.3' radius curve to the right (the chord of which bears S17°10'E 65.05') 65.14'; thence S89°29'E 886.57' along the N line of Yocum Sub as recorded in Plat B-5, P-14; thence N 75.0'; thence N21°31'W 452.21' to the N line of the NW1/4 NE1/4 of said Section 11; thence W along said N line of said NW1/4 NE1/4 of said Section 11, 313.69' to the POB. ALSO beg at a point on the E line of Lot 16, Bookcliff Heights Sub in the City of Grand Junction, N00°15'W 310.88' from the SE cor of said Lot 16, running thence N00°15'W 303.12'; thence S75°02'W 294.6'; thence southeasterly to the POB. ALSO beg 180' S of N1/4 cor Sec 11 1S 1W S 75' E 190.3' N 75' W 190.3' to beg 50' for road as described in B-1501, P-438 through 440 Mesa County Records. ALSO beg 363.1' S + S26°19'E 60.8' from N1/4 cor Sec 11 1S 1W N77°10'E 307', S2°55'W 118.2', S84°07'W 257', N26°. ALSO a parcel of land located in the NE4NW4 sec 11 1S 1W bound by Vanderen Ford Sub on the W & Bookcliff Heights Sub on the S and by a line also on the S that is N73°35'E and extending nearly to 7th St and by Patterson on the N with 7th St on the E excepting Mesa Co, State of Colorado Health Dept. parcel on the N and W thereof and beg S 30' and W 888.88' from N1/4 cor said sec 11 W 39.90' S 200' E 39.90' N 200' to beg and inc vac ROW desc in B-1324, P-84 exc ROW on N and E as desc in B-1247 P-101, B-1332 P-62, B-1501 P438/440, B-1626 P-306/307, B-1736 P-716/718 Mesa County Records. ALSO par in NE1/4 NW1/4 sec 11 1S 1W bound Vanderen Ford Sub on W and Bookcliff Heights Sub on S and by line also on S N73°35'E and ext nely to 7th St and by Patterson on N 7th St on E exc Mesa Co State of CO Health Dept parcel on N & W thereof and also exc beg N89°25'W 40' and S 30' fr N1/4 cor sd sec 11 S 11.5' N45°W 16.26' S89°25'E 11.5' to POB and beg S 30' and W 888.88' fr N1/4 cor sd sec 11 W 39.9' W 200' to POB and vac r/w desc in B-1324 P-84 and exc r/w des in B-1332 P-62 Mesa County Records. ALSO commencing at the N1/4 cor of section 11, T1S, R1W, Ute Meridian; and considering the N line of the NW1/4 of said Section 11 to bear N89°58'W and all other bearings contained herein to be relative thereto; thence N89°58'W 40.00'; thence S0°02'W 41.50' to the true POB; thence S0°02'W 302.70'; thence along the arc of a 206.94' radius curve to the left 128.94', the chord of which bears S17°49'E 126.86'; thence S35°40'E 82.30'; thence S30°38'E 152.00'; thence N89°58'W 90.10'; thence S0°02'W 154.85'; thence S89°58'E 90.10';

thence S0°02'W 113.70'; thence N89°55'W 278.20'; thence S0°05'W 135.00'; thence N89°55'W 241.13'; thence S0°05'W 230.20'; thence N89°55'W 130.32'; thence along the arc of a 390.0' radius curve to the right 93.93', the chord of which bears N83°01'W 93.70'; thence N2°16'E 335.35'; thence N20°34'W 204.25'; thence S74°53'W 250.64'; thence N0°36'W 793.67'; thence S89°58'E 39.90'; thence S0°36'E 200.48'; thence S89°58'E 209.73'; thence N57°37'E 154.02'; thence N 117.9'; thence S89°58'E 494.70'; thence S45°00'E 16.26' to the POB. ALSO, (including right-of-way), a tract of land situate in the NW1/4 NE1/4 of said Section 11, T1S, R1W, Ute Meridian, the perimeter of which is described as follows: beg at the N1/4 cor of said Section 11, thence along the following twenty courses: N90°00'00"E along the N line of said Section 11 738.05'; S02°33'00"E 50.05'; S02°33'00"E 602.14' to the N line of Wellington Avenue; N89°29'00"W along Wellington Avenue 533.43' to the beg of a 25' radius curve to the right with a central angle of 72°19' (the chord of which bears N53°19'30"W 29.50'); 31.55' along the arc of said curve; N17°10'00"W along the E line of 7th Street 15.49'; N90°00'00"W 89.42'; N23°04'54"W 131.01'; N84°07'00"E 176.29'; S00°00'00"E 138.59'; N90°00'00"E 0.61'; N73°02'00"E 98.00'; N01°45'00"E 239.92'; S77°10'00"W 322.78'; N26°19'00"W 60.80' to the W line of said NW1/4 NE1/4 Section 11; N00°00'00"E 108.10'; N90°00'00"E 190.30'; N05°33'00"E 75.35'; S90°00'00"W 197.59' to said W line NE1/4 Section 11; N00°00'00"E 180.00'; except road right-of-way described elsewhere. ALSO beg at the SE cor of Section 2, T1S, R1W, Ute Meridian; thence W along the S line of said Section 2 324.67' to the E boundary line of the tract of ground deeded to Patterson Gardens, Inc., a Colorado Corp. in deed recorded in B-901 P-830, Mesa County Records; thence N00°01'E 330.56' along the E boundary of said tract recorded in B-901, P-830; thence E along the S boundary line of Patterson Gardens Sub as recorded in Plat B-11, P-24, Mesa County Records to the E boundary of said Section 2; thence S along the said E boundary of said Section 2 to the POB; EXCEPT the E 50' and S 50' thereof for roads. ALSO beg on the S line of Section 2, T1S, R1W, Ute Meridian, at a point 324.67' W of the SE cor thereof; thence N0°01'E 330.56'; thence W 324.95'; thence S21°58'W 215.43'; thence S28°46'W 149.18'; thence E 477.23' to the POB; EXCEPT the S 50' for road and utility purposes, as conveyed to the City of Grand Junction by instrument recorded in B-1424, P-729, Mesa County Records. ALSO Lot 2 of Bennett Sub, together with ROW vacated by Ord #2314, City of Grand Junction recorded December 12, 1986 in B-1617, P-787, and utility easement vacated by Ord. #2145, City of Grand Junction recorded in B-1459, P-850, all in Mesa County Records.

INTRODUCED for FIRST READING and PUBLICATION this _____ day of October, 1995.

PASSED on SECOND READING this _____ day of _____, 1995.

ATTEST:

City Clerk

President of City Council

h:\cityfil\1995\95-1596.wpd

Memorandum of Meeting

September 19, 1994

St. Mary's Hospital

The Regional Medical Center Grand Junction, CO

Meeting with : Tom Dixon, AICP Senior Planner City of Grand Junction Community Development Department 250 North 5th Street Grand Junction, CO 81501

Present for St. Mary's: Keith Estridge, Director Facilities Management St. Mary's Hospital

Bertis Rasco, Planner

1. St. Mary's Hospital is in zone PB, Planned Business. Attached are plates #6 & #7 dated 01/28/91 of the City zoning map.

2. PB zone and the adjacent zones in Grand Junction can be rezoned upon request and hearings reasonability easy when compared to other cities where zones are fixed and only are modified by conditional use permits. At this time, the neighborhoods in Grand Junction are not highly active about zoning when compared to many other locations.

3. Affected neighbors who are required to be notified in Grand Junction are those within 200' of the property under consideration. The distance measure excludes any public right of way.

4. Patterson is a commercial street and main bypass for I-70. It would be difficult if not impossible to move. It connects cross city traffic from East I-70 to Highway 50 and the Mesa Mall and West I-70.

12th Street is the major North-South airport route. 7th Street has much less traffic. The curve in the street South of Patterson is a draw back.

1

There is no City criteria governing pedestrian bridges over streets in Grand Junction.

There are no special seismic codes. Grand Junction has adopted the Uniform Building Code.

5. The new Zoning Code is now at the printers and should be back for distribution by the first part of October. It defines set-backs, density, parking, etc. requirements for most zones. PB is a zone that must be planned by the land owner then proposed to the city for their acceptance. PB Zone has limited mandatory criteria published as the use of each PB zoned parcel can be so diverse. All PB zones must be individually reviewed. Each must also have a public hearing after the owner submits his proposed plan to the city.

512?

nee

The property adjacent to St. Mary's include zones PZ, public zone; B-2, Business 2000 sf; B-1; RMF-64, Residential Multi-Family Sixty Four residences per Acre; RSF-8, Residential Single Family eight residences per acre; RSF-4; which must be respected. Any of these zones can be changed to PB should St. Mary's acquire the land. (see attached Zoning plates #6 & #7)

 For information on Utilities Contacts: Sanitary Sewer Bill Chaney City Hall Streets and other Right of Ways Jody Kliska City Hall Gas Public Service Power Public Service

7. In General the Process for PB Zone in Grand Junction, CO is as follows:

Step #1 Draw up Master Site Plan as desired, label it "Preliminary" and file it with the City on the first working day of the month. Include: proposed set backs, parking stalls, green area ratios, percentage of site covered by building, routing of irrigation canal, retention ponds (or other appropriate methods of handling the 100 year flood), utilities, boundaries, etc.

<u>Step #2</u> A Public Hearing will be scheduled for the 1st Tuesday of the first month following the plan's filing (Step #1 above)

<u>Step #3</u> Is the Planning Commission's Approval. This comes after all items have been satisfactorily addressed that have been brought up by the Planning Commission staff and in the Public Hearings. Following the Public Hearing there is a 3 day Appeal period. If appealed the plan must go to the City Council for an Appeal Hearing

<u>Step #4</u> If not Appealed, the Plan will go to a City Council for their Hearing with the Planning Commission's recommendation to Approve. It usually passes the City Council when it is recommended by the Planning Commission Staff. The first of the month after the City Council's Approval the Plan is Officially Adopted and then may be implemented.

8. While developing the Master Site Plan should a smaller projects surface that needs to be implemented immediately, it is possible to implement the smaller project provided the

and the

1.1.1

smaller project conform to the concepts set for the Master Site Plan and the Master Site Planning work is proceeding without delay.

9. A copy of the Portland, Or Planning and Zoning Code was circulated (see attached) as a listing of items which may be considered in the planning process. The current Grand Junction Planning and Zoning Code is now being printed and should be available for public purchase around the first part of October.

10. A copy of City of Grand Junction Code requirements for Sight Triangle for corners, Fence and vegetation growth was also received.

Attachments (1) City Zoning Map plate #6 & #7

(2) Portland Conditional Use Zone Criteria

(3) Sight Triangle for the city of Grand Junction

3

STM03.wps

Memorandum of Meeting

October 18,1994

St. Mary's Hospital The Regional Medical Center Grand Junction, CO

Meeting with : Tom Dixon, AICP. Senior Planner City of Grand Junction **Community Development Department** 250 North 5th Street Grand Junction, CO 81501

Present for St. Mary's: Keith Estridge, Director Facilities Management St. Mary's Hospital

Bertis Rasco, Planner

1. Lots #5 through #7 of the KEY for PROPERTY MAP updated 9/1/93 (shown the assessor's map as lots #5 through #10) North across Patterson from St. Mary's(including the Medical Office Building "Oncology" now owned by the Hospital) is zoned B-1 Limited Business (see attached Page 25 of the Zoning Code for general description).

2. St. Mary's Park is zoned RMF 64 (see attached Page 24 of the Zoning Code for general description).

3. Storm Detention Areas are acceptable in lieu of Retention Ponds, provided they are engineered. Storm Detention Area design criteria should be reviewed with Jody Kliska prior to submittal of Site Plan to the City.

4. The hospital lot #71 on the KEY for PROPERTY MAP (shown as Replat of lot I, all of lot 2 Little Brookcliff sub lot 008)is Zoned PB.

5. Any structure built on or above Right of Way property must obtain a "Revocable Permit" from the City. A "revocable permit" is common in Grand Junction and would be required for any bridge across a City street. The applicant will need to make a proposal based on their specific needs (height, width, clearance, etc.).

RUDG DEPT = MESA COUNTY FOR PLAN CHECKS + BUG PERMITS

FILE; CITY

6. For the classification rating of intersections and the traffic volumes around St. Mary's property see Jody Kliska. ITE (Institute of Traffic Engineer) terms and standards are use in Grand Junction.

7. In preparing for rezoning any property to a PB zone for the Hospital's Master Site Plan the current code requirements will be a base line, with the area of buildings, the frequency of their use, their multiple use, etc. establishing the criteria for the Planning Commission Staff recommendation that will go to the City Council for a final decision.

The Planning Commission's staff has the authority to review and approve submittals of property already zoned PB. A Preliminary Plan review, revisions as necessary and then a final plan must be filed before the staff can give approval.

8. For definition of the Health Department Building ownership call the Tax Assessor's Office. The property is described as 2945-112-01-931 515 Patterson Road.

9. A copy of the City of Grand Junction Zoning and Development Code, printed October 1,1994 was purchased.

10. Lot #57 on the KEY for PROPERTY MAP, the hospital owned property on the N.E. corner of Wellington and 7th is in a B-1 zone.

2

STM04.WPS

anyone Call Tax assessor's OFFICE # regarding Health Rept.

Withde reverse call or partitions Michael reverse call or portion Please and with Berlin two Mimod and with Berlin St. Mary's Hospital and Medical Center Grand Junction, CO **Meeting Memorandum** Wednesday, November 1, 1995, 7:30pm Grand Junction City Council City/County Auditorium, 520 Rood Avenue Grand Junction, CO Michael 5 Michael 5 Michael 5 Michael 5 Public Hearing - Ordinance No. 2871 Regarding St. Mary's Land Rezoning and Master Site Plan **City Council Members:** Linda __?_ Atmar Jim Halverson Basahr R.T. Manlow Mantley Mark Achen Ron Maupin Dan Wilson Janet Terry Refort Theabolt Theobold Daven Dave Graham Stephanie Stefany-Nye Community Development Dept : Michael Drollinger, Senior Planner

Representatives for St. Mary's:

Ken Tomlon, Executive Vice President Keith Estridge, Director, Facilities Management Bertis Rasco, Consultant

Rezoning for 6 lots owned by St. Mary's and the Proposed Master Site Plan with Conditions as recommended by the Planning Commission and the C.D.D. staff was presented by Michael Drollinger, then discussed and passed by a unanimous vote.

In addition to the Planning Commisssion and the C.D.D. Staff's comments, discussion included the City Council concern regarding the curve existing in 7th Street just South of Patterson. It was requested that the City Department of Public Works investigate the cost to straighten the curve.

I

Memorandum of Meeting

	2+1=3	
Post-it" Fax Note 7671"	Date Nov 3,95 pages 3	
TO MICHAEL DROLLINGER	From BERTUS RASCO	
Co./Dept. C. P. P.	Co. BCR/AIA	
Phone # 970 - 244 - 1439	Phone # 206 - 682 - 1133	
Fax # 970-244-1599	Fax # 206 -621-8282	

Date: November 1, 1995 4:00pm

Present: Michael Drollinger, Senior Planner City of Grand Junction, CO Bertis Rasco, Representing St. Mary's

Subject: St. Mary's Master Site Plan and Rezoning Request

1. Lots Proposed for Rezoning to P-B Zone were identified as:

- 1) St. Mary's Park
- 2) Former T. Carr Property
- 3) Former G. V. P. T. Property
- 4) Property used by E.M.S.
- 5) St. Mary's Rehabilitation Center

6) Guest House Motel Property

RSF-8 to P-B RSF-8 to P-B RMF-64 to P-B B-1 to P-B

RSF-4 to P-B

RSF-8 to P-B

2.Outstanding Issue #1-Right of Way along Patterson

St. Mary's needs to know more about what the City is thinking when they refer to Additional Right Of Way along Patterson. Explaining what would be done and what results are expected along with the resulting dimension into St Mary's property would help the hospital to understand what is implied here.

If it is a matter of 2 to 4 feet in width, the hospital might be able to accommocate a landscaped reserve when designing the MSP Landscape/Parking Lot B (site setbacks, drainage, paving, lighting, stripping, landscaping etc.). This could be a one time cost rather than have happen were the hospital loses all their perimeter landscaping along Patterson again and must revise the contigous parking again due to another loss of property for street ROW.

Michael will define "maybe" and inform the Hospital so due consideration can be given to this item before the new design for Landscaping/ Parking Lot B goes further. A variance from the current City Parking Standards for aisle widths etc. may be necessary to accommocate the parking required in lot B.

3. Clearance Height above 7th Street North to Underside of Bridge

Floor elevation studies (by the hospital's selected building(s) designer) will be necessary to determine if 16' clearance is possible while meeting the ADA Law that requires the building(s) to be accessable to the handicapped. If undue hardships (cost and slopes) are encountered the hospital will file a request for a code variance at the time elevations of the connecting bridges and buildings are formalized.

4. Future Development of Parcel # 4 (the vacant Wellington lot)

The Wellington Lot was not recommended by the Planning Commission ed for remote Rehabilitation Center or Family Practice Residency Program Parking due to the potential conflict between the Patterson Road vehiclar traffic and the expected pedestrain cross traffic.

5. Significant Changes to the Master Site Plan (MSP)

In the future any significant change in the MSP will require filing a request with the Planning Commission via the Community Development Department and if appropriate review by the City Council.

Significant Change was defined by the Planning Commission as a change of 10% from the MSP's Proposed Development Standards:

	section-page
1 Setbacks	4-17
2. Heights	4-17
3. Site Coverage	4-18/19
4. Density (FAR)	4-20/21/22
5. Open Space	4-23

6. Bike Paths

Grand Junction does not have any bike path criteria. The Public Works Department has been ask to prepare some. Michael will ask for copies to be sent to the hospital when they are adopted.

BCR/SMD11195

Grand Jonction has not yet developed a preferred bike path section for Th Street near the section of St. Mary's. The Public Works Department has been asked to prepare ANAN . Nor the desired standard; copies will be provided to the hospilal when complete.

Memorandum of Meeting

November 14, 1994

Saint Mary's Hospital and Medical Center Grand Junction, CO

Meeting at City Hall

Jody Kliska Tom Dixon Keith Estridge Bertis Rasco

Subject : City of Grand Junction Criteria for Master Site Planning

1. The City is responsible for establishing and the administration of Zoning. The County is responsible for Building Permits and Plan Checking as per the Uniform Building Code. Prior to any construction the County will need to be contacted to determine the current Edition and any local amendment to the Uniform Building Codes.

2. The City files on Zoning at Saint Mary's are available and may be reviewed to determine past commitments and requirements. Contact Tom for appointment inorder for him to have the opportunity to collect the material.

3. The City's Flood Insurance Rating Map (FIRM) was reviewed. Panels 3 and 4 indicate Saint Mary's property outside of AE zone (the 500 year flood level) Elevation 4620 was indicated as the maximum water height.

4. Western Engineering has the files on the Retention Pond (or detention) capacities of the existing Site.

5. When referring to the Zoning Code use Paragraph identification (not page number) as the various edition of the code do not carry uniform page numbers.

Paragraph 5-5-1. D. 1. Distance to Off-site Parking is defined as closest part of property to closest part of property.

Paragraph 5-5-1. F. 2. Section 5-4-15G(1)&(2) referred to in this paragraph do not exist.

Paragraph 5-5-1. F. 2. a. Third sentence, "Feet" in regard to landscape barrier refers to height.

Paragraph 5-5-1.F. i. (4) A lighting plan will be required complete with isofootcandle diagram.

Paragraph 5-5-1.G. Section 5-2-5 does not exist.

Paragraph 5-5-1.H. The number of bicycle rack will be determined at a later date.

6. The City has very little invested in Saint Mary's Park. It has a low use. It is an area of high park density. There are no Play areas. The City would consider the hospital's request to change the park to hospital use.

7. All hospital property in Grand Junction, except Federal, is classified as P B (Planned Business) refer to Section 7-2-3 A 1.

Miscellaneous:

1. During next trip a copy of the following would be appreciated:

(1) list of approved plants provided by the Department as referred to in 5-4-15 C.

(2) copy of Section 15-4-15B refereed to in 5-5-1 F. 2. h. Submittal Requirements

2. We would like to use 60' between rows of 9' wide 90 degree angle parking Stalls be 60'.

parcel # 1

. . *

÷

DRAINAGE STUDY ST MARY'S HOSPITAL ADDITION Grand Junction, Colorado January, 1993

> Prepared by: WESTERN ENGINEERS, INC 2150 HIGHWAY 6 & 50 GRAND JUNCTION, COLO

TABLE OF CONTENTS

TOPIC

.

·····

-

-

PAGE

SCOPE	1
SURFACE DRAINAGE CHARACTERISTICS	2 [.]
DRAINAGE EVALUATION METHODOLOGY	3
PROPOSED DRAINAGE FACILITIES	10

DRAINAGE STUDY ST MARY'S HOSPITAL Grand Junction, Colorado January, 1992

SCOPE

St Mary's hospital currently proposes to construct an addition to the existing hospital building at 7th street and Patterson Road in Grand The total developed area used by the hospital encompasses Junction. approximately 20 acres. Current stormwater discharges from the site occur overland or by means of dedicated conveyance facilities. Presently, there are no provisions for detention or retention of stormwater runoff. The runoff water from the entire site eventually flows to the Buthorn Drain which is at maximum capacity during frequent storm events and does not have adequate capacity for the less frequent events. The runoff from the St Mary's site has a significant impact on the flows draining to the Buthorn drain. As a result, an agreement was reached between the City of Grand Junction and St Mary's Hospital to provide some detention for the hospital runoff. The site for the detention pond is the existing St Mary's Hospital Park located in the southwestern portion of the property. As will be discussed in subsequent paragraphs, the developed site can be divided into generally three drainage basins. The runoff from two of the basins (basins 1 and 3) can relatively easily be diverted into the detention pond site, while the third (basin 2) would require installation of storm drains to collect runoff and convey it to the pond. Based on these considerations and discussions with the City Engineering Department, the design requirements for the collection and detention facilities were determined as follows:

1. Facilities will be constructed to provide for collection of all basin 1 and 3 runoff and conveyance to the detention pond.

- 2. Provisions will be made in the current designs to allow for the future construction of facilities necessary for the collection of basin 2 runoff and drainage into the detention pond. Any future construction of these facilities will be performed by the City.
- 3. The detention pond will be sized to store the 100 year runoff from basins 1 and 3 while restricting the basin outflow. The pond will also be sized to store at least the 40 to 50 year runoff from all three basins while restricting the basin outflow. The outflow from the detention pond due to runoff from basins 1 and 3 will be limited to less than the prehistoric runoff from the entire site during the 2 and 100 year events. The outflow from the detention pond due to runoff from all three basins will be limited as much as practical.

SURFACE DRAINAGE CHARACTERISTICS

As was mentioned above, the drainage area can generally be divided into three basins. The basin divisions are shown on Figure 1 in the Appendix.

Drainage basin 1 encompasses nearly 70 percent of the site and drains southeastward to the low point on Center Street at the intersection with 6th Street. Runoff from basin 1 occurs by а combination of overland flow, gutter flow and flow through storm drains. Basin 1 can be further subdivided into 4 subbasins determined by the route which the runoff water takes to reach the concentration point at Center and 6th. The flow from two of these subbasins originates in the west and southwest parking areas and follows the north and south gutters along Center Street respectively running southeasterly. Runoff from a third subbasin which encompasses the northwest parking area is captured by catch basins and is conveyed through an 18 inch diameter storm drain to a concrete ditch located just west of the intersection of Center and 6th Street. Flows in this concrete ditch cross Center Street in a culvert and discharge into the street gutter on the northwest corner of

Center and 6th Street. The fourth subbasin includes the hospital building, the Saccomano Building, and the parking area to the south of the hospital. Runoff from this subbasin is captured by a combination of building gutters and catch basins and flows through a series of storm drains to the concrete ditch mentioned above.

Drainage basin 2 consists of the northeast and east parking areas. Runoff from this basin travels overland until it either reaches the west gutter along 7th Street or is intercepted by the catch basin in the southeast corner of the upper parking lot. The flow in both the 7th Street west gutter and the southeast catch basin are captured by the underground storm drainage system which runs southward along 7th Street.

Drainage basin 3 includes the buildings, landscape and parking areas located on the lower level of the southeastern portion of the site. Surface water from basin 3 travels overland and through gutters to the north side of Center Street where it flows west to the low point on Center Street.

As can be seen from the above description of the site drainage, the concentration point for basins 1 and 3 is the low point at the intersection of Center Street and 6th Street.

Tables 1 and 2 show the percentages of various ground covers for each of the three basins under both original and final conditions.

DRAINAGE EVALUATION METHODOLOGY

he-

The drainage basin was evaluated for 2 storm recurrence intervals consisting of the 2 and 100 year storms. In order to provide a comparison, the runoff characteristics were evaluated using 2 methods. These consisted of the rational method and the SCS tabular method with a type II unit hydrograph. The SCS tabular method was chosen because it provides a method for obtaining runoff hydrograph data. Hydrograph values were obtained from the appropriate Tables published in "Urban

Hydrology for Small Watersheds, Technical Release No. 55, Soil Conservation Service" (SCS-TR-55) depending on the storm distribution type, initial abstraction value, storm precipitation depth and time of The Modified Rational Method was used to provide concentration. comparison hydrograph data. Design storm values were obtained from two -sources -- "Interim Outline of Grading and Drainage Criteria, City of Grand Junction, July, 1992" and "Mesa County Storm Drainage Criteria Manual". The determination of the runoff coefficients in the rational method as well as the curve number values used in the SCS tabular method are presented in Tables 1 and 2 in the Appendix. The soil group number required for the SCS tabular method was evaluated based on information compiled by the Soil Conservation Service and presented in a report entitled "Soil Survey, Grand Junction Area, Colorado." Times of Concentration were determined using the rational runoff coefficients and the following methods:

1. For sheet flow the following SCS-TR-55 formulas were used:

$$TO_{2} = \frac{0.42(NL)^{0.8}}{S^{0.4}}$$
$$TO_{100} = \frac{0.26(NL)^{0.8}}{S^{0.4}}$$

۶.

- 2. For overland flow beyond 300 feet and shallow concentrated flow, the table entitled "Average Velocities for Overland Flow" from the SCS TR-55 was used to determine flow velocities.
- 3. For gutter flow, the Manning equation modified by Izzard was used as follows:

$$Q = \frac{0.56(Z)(D^{8/3})(S^{1/2})}{n}$$

For cases where lag times were determined to be less than 5 minutes a minimum value of 5 minutes was used for the time of concentration. The calculations of the times of concentration are summarized on Table 3 in the Appendix.

Tables 4 and 5 in the Appendix present a summary of the resulting peak flow values and volumes. The surface flow hydrographs are presented on Figure 2 in the Appendix for the original undeveloped conditions and Figures 3 through 10 for the final conditions.

The detention pond volume and discharge capacity were sized to accommodate the design storms derived by both the SCS Method and the Modified Rational Method while satisfying the previously mentioned criteria as much as possible. The storm hydrographs were routed through the proposed detention pond and discharge pipe system using a Western Engineers routing spreadsheet which uses the storage routing methods. Tabulations of the routing calculations including inflow and outflow hydrographs are presented in the Appendix on Tables 16-23.

The capacity and flow rating curves for the proposed detention pond are shown on Figures 11 and 12. The discharge from the proposed detention pond will be by means of a two level outlet system including two standard catch basins. The purpose of the two level outlet is to restrict outflows during the frequent storms while allowing the discharge from the less frequent storms to be controlled through the outlet system without overtopping the detention pond. The lower level catch basin will discharge through a 4 inch diameter orifice in the side of the basin into a horizontal 6 inch diameter pipe. The upper level catch basin will discharge by means of a vertical 12 inch diameter drop outlet connecting to the discharge pipe from the lower level catch basin. The outlet pipe downstream from the 12 inch diameter drop outlet will be 12 inch diameter to accommodate the total flow. This downstream discharge pipe will connect directly to the Buthorn drain system which runs along the south side of Bookcliff Avenue. The pipe entrance for

HIRLIGN EST BY BYT SHRUGNEST BY SAPPULORBUE OVER NOST Effice the lower level catch basin was treated as an orifice using the following formula with an orifice coefficient of 0.62:

$$Q = CA(2gH)^{0.5}$$

The pipe entrance to the upper level catch basin could be controlled either by orifice or weir conditions depending on the head. The orifice capacity was evaluated by the formula shown above. However, because the outlet includes a tube extension the same size as the orifice, the an orifice coefficient of 0.8 was used. The capacity of the catch basin grates for both the lower and upper level inlets in the detention pond were also calculated for ponding conditions using the above formula with an orifice coefficient of .62 and an area of 2.2 sq ft per grate for the standard City of Grand Junction catch basin. A 50 percent clogging factor was applied to the grates as required by the City of Grand Junction Criteria.

The weir capacity for the upper level catch basin was calculated by use of the following formula with a weir coefficient of 3.3 for a sharp crested weir with the vertical pipe protruding up into the bottom of the catch basin:

THIS MAY COMPARE WITH MATERIA-WILLIAMS "L" VALUES, BUT TYPICALLY MANNING VALUES FOR PIC ARE HISTED THEORETICATULY TO BE . 004 to 0.011. HOWEVER, VALUES COMMONLY USED ARE: 1) 0.009 - 0.001 for potable water, which does not cost the p.pc, nor have sediment nor solids which tend to "affect" "n" volves. 3) 0.011 - 0.013 for storingetor, which has sediment which iteresses drow foreton; and

OK FOR KLL BUT THE

 $Q = CLH^{1.5}$

Pipe flow characteristics were evaluated using the Manning Formula with a coefficient of .008 for PVC pipe. The total outlet system runges capacity was determined including both inlet flow and pipe flow in the characteristics for each of the catch basins. Since it is impractical forme. to determine the hydraulic grade line elevation at the connection to the Buthorn drain during the full range of detention pond discharges, it was assumed that, any time during which discharges from the detention pond are occurring, the hydraulic grade line elevation at the connection to the drain will be at the top of the Buthorn drain pipe. The detention pond discharge capacity was evaluated using a trial and error method in which the hydraulic grade elevation at the tee connection for the upper

level catch basin drop outlet was varied until a maximum possible flow rate from the combined catch basins was identified. Tabulations of the calculations for the detention pond discharge capacity which were made by use of a spreadsheet program are included on Table 6 in the Appendix. A plot of the hydraulic grade levels during the peak discharge for all three drainage basins combined is shown on Figure 13 in the Appendix for both the 2 and 100 year storm events.

The capacity of the catch basins to be installed at the concentration points in the street gutters was determined in two different ways depending on the catchment condition. For catch basins and curb boxes placed in a depression for ponding conditions, the orifice formula previously presented was used with an <u>orifice</u> work coefficient of 0.62. For catch basins and curb boxes placed along the gutter flow line without ponding conditions, the Manning equation modified by Izzard and simplified to include a grate capacity coefficient was used as follows:

IN THE FUTURE.

WERSTATE INTERCEPTION, PLEASE USE HEC-12

The grate capacity coefficients used in the above formula were obtained from the Neenah manual for inlet grate capacities. In accordance with the City of Grand Junction Criteria the grate capacity in these situations did not include a clogging factor, but the capacity of the curb box was ignored.

 $Q = KD^{1.67}$

In conjunction with the Modified Rational method, it was necessary to vary the storm duration to determine the storm event that will most severely impact the detention facilities. Tabulations of the resulting Modified Rational hydrographs for the two storm events and for a range of storm durations are shown on Tables 12 and 13 in the Appendix for combined flows from basins 1 and 3 and Tables 14 and 15 for combined flows from basins 1, 2 and 3.

As was previously mentioned, the stormwater collection and conveyance facilities planned as part of this project will divert runoff from basins 1 and 3 into the detention pond. Therefore, the inflow/outflow hydrographs shown on Figures 3 through 6 in the Appendix are for combined flows from these two basins. However, since consideration needs to be made for the possible future diversion of basin 2 runoff into the detention pond, the impact of the runoff from all three basins on the detention pond performance was evaluated and is shown on Figures 7 through 10 in the Appendix.

The following table summarizes the results of the hydrologic evaluations:

BASIN	SITE	CRITICAL	STORM	SITE	PEAK	PEAK	PEAK
I.D.	CONDITION	STORM	RECURRENCE	RUNOFF	POND	POND	POND
		DURATION	INTERVAL	(CFS)	DUTFLOW	DEPTH	STORAGE
		(MIN)	(YEAR)		(CFS)	(FT)	(CU FT)
ALL	PREDEV	1440 (SCS)	2	0.70	N/A	N/A	N/A
ALL	PREDEV	1440 (SCS)	100	12.57	N/A	N/A	N/A
ALL	PREDEV	70 (RATION)	2	1.00	N/A	N/A	N/A
ALL	PREDEV	50 (RATION)	100	8.65	N/A	N/A	N/A
1	FINAL	1440 (SCS)	2	5.49	N/A	N/A	N/A
1	FINAL	1440 (SCS)	100	39.86	N/A	N/A	N/A
1	FINAL	90 (RATION)	2	4.02	N/A	N/A	N/A
1	FINAL	70 (RATION)	100	13.85	N/A	N/A	N/A
2	FINAL	1440 (SCS)	2	1.00	N/A	N/A	N/A
2	FINAL	1440 (SCS)	100	6.19	N/A	N/A	N/A
2	FINAL	90 (RATION)	2	1.20	N/A	N/A	N/A
2	FINAL	70 (RATION)	100	4.11	N/A	N/A	N/A
3	FINAL	1440 (SCS)	2	0.97	N/A	N/A	N/A
3	FINAL	1440 (SCS)	100	6.23	N/A	N/A	N/A
3	FINAL	90 (RATION)	2	0.65	N/A	N/A	N/A
3	FINAL	70 (RATION)	100	2.23	N/A	N/A	N/A
1&3	FINAL	1440 (SCS)	2	6.47	0.70	1.80	5,595
1&3	FINAL	1440 (SCS)	100	46.09	7.39	4.72	48,857
1&3	FINAL	90 (RATION)	2	4.67	0.87	3.19	21,132
1&3	FINAL	70 (RATION)	100	16.08	7.76	4.91	52,552
L,2&3	FINAL	1440 (SCS)	2	6.70	0.74	2.05	7,755
L,2&3	FINAL	1440 (SCS)	100	47.19	8.12	5.09	56,045
1,2&3	FINAL	90 (RATION)	2	5.87	0.91	3.57	26,685
1,2&3	FINAL	70 (RATION)	100	20.19	8.92	5.50	63,995

.....

•

9

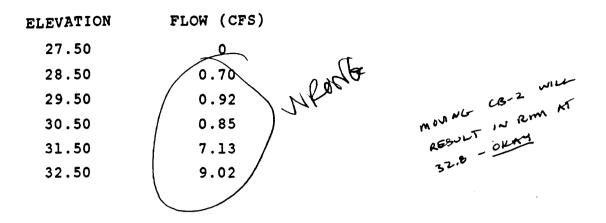
**

•

PROPOSED DRAINAGE FACILITIES

Site conveyance facilities will be installed as part of this project which will include a combination of catch basins and pipes to capture all of the runoff from drainage basins 1 and 3 and transport to Additionally, provisions will be made to a proposed detention pond. allow for future installation of facilities to intercept the flow from basin 2 and divert it into the proposed detention pond. It must be recognized that, if the basin 2 flows are captured by means of intercepting all of the water currently flowing in the piped storm drain system running along Seventh Street, more water will flow into the detention pond than anticipated in this analysis. This is because the Seventh Street line carries runoff water from a significantly larger drainage area than just basin 2, although the exact extent of the tributary area is not known. The result is that, if the Seventh Street line is intercepted, the detention pond may spill over the overflow section and out the Sixth Street catch basin during events with recurrence intervals less than 100 years.

The majority of the site runoff from basins 1 and 3 is currently directed into a piped storm drain system which runs along the North side of Center Avenue and discharges on the surface at the intersection of Center Avenue and Sixth Street. The proposed plan includes intercepting the flow in this existing piped system before it reaches its discharge point and diverting the water into the detention pond. In addition, the water which currently flows along the Center Avenue gutters and ends up at the intersection of Center Avenue and Sixth Street will be captured by a double catch basin on the north side of this intersection combined with a single catch basin to be constructed on the southwest side of the intersection. The flows into these catch basins will be piped westward to the proposed detention pond. Calculation of the required capacity for the catch basins was based on a storm duration of 5 minutes since only water from drainage basins 1 and 3 will be captured by the proposed catch basins and since calculated concentration times for these two


basins were less than 5 minutes. Catch basin capacity was based on the 100 year storm event. Table 7 in the Appendix presents a summary of the calculations for the catch basin capacities. The calculations indicated a need for a double catch basin on the north side of the intersection of Center Avenue and Sixth Street and a single basin on the south side of the intersection. The single catch basin on the south side has an indicated capacity of about 6.9 cfs while the estimated 100 year flow was 7.4 cfs. Even though the apparent catch basin capacity is slightly less than the calculations indicated will occur, it was concluded that this undercapacity was not significant considering the facts that the curb box was not taken into account in the calculations, the excess flows will only occur during the most infrequent storm events and any excess water not captured by the catch basin can continue south along Sixth Street.

Following are area and capacity tables for the proposed detention pond. Since the influent lines into the pond are relatively flat and of significant size, it was important to include their volume as part of the total for the pond. The volumes were calculated using the conical method:

FINAL DETENTION VOLUME

ELEVATION	POND AREA(SQ FT)	POND Volume(CU FT)	PIPE Volume(cu ft)	TOTAL Volume(cu ft)
27.50	0	0	0	0
28.00	375	63	47	100
29.00	4,558	2,143	889	3,032
30.00	10,443	9,443	2,192	11,635
31.00	16,106	22,616	2,757	25,373
32.00	19,392	40,340	2,757	43,097
33.00	22,297	61,167	2,757	63,924

FINAL DETENTION DISCHARGE

The elevation of the overflow crest for the detention pond was set at the elevation of the catch basin grate on the southwest corner of the intersection of Center Avenue and Sixth Street at about elevation (33.0). This was because a higher water surface elevation in the detention pond would result in uncontrolled backflow out of the pond through this catch basin into the gutter on the west side of Sixth Street.

The discharge system capacity calculations made indicated that a double grate catch basin will be needed for the upper level detention pond outlet in order to accommodate the 100 year storm flows without the catch basin grate controlling the flow, considering the design requirement of a 50 percent clogging factor for the grate. The calculations summarized on Table 6 in the Appendix include this double installation. In addition to the considerations previously discussed, the above discharge capacities are based on the assumption that the hydraulic grade line elevation at the connection to the Buthorn drain pipe will not be higher than the top of the Buthorn drain pipe. As was previously mentioned, there was not sufficient information available to determine the hydraulic grade elevation in the Buthorn drain pipe during the two storm events. If significantly higher back pressure develops at this connection than was assumed in the calculations, the discharge capacity of the detention pond outlet might be lower than the values shown above or it might even be possible for backflow to occur from the drain into the detention pond since the ground elevation at the Buthorn

drain manhole on the south side of Bookcliff Avenue is nearly 2 feet higher than the bottom of the detention pond. No provisions were made in the design to prevent such backflow from occurring.

The analyses indicated that the proposed pond and outlet system will be capable of accommodating storms up to the 100 year recurrence level without overtopping the pond. However, a pond overflow section will be provided to allow for flows in excess of those analyzed. This overflow section will consist of a length of dike crest along Bookcliff Avenue approximately 150 feet long. The overflow section will be depressed about 0.5 foot below the remaining top of pond elevation to allow for controlled crest spills as much as .05 foot deep along the overflow section. To protect the overflow section from erosion during spills, a concrete sidewalk with an upstream cutoff will be provided along the spillway.

It can be seen from the above summary data that, within reasonable limits, for all storm events and with all calculation methods used, the off-site discharge under the final proposed conditions will be about the same or less than that which would have occurred during the same storms under the predevelopment conditions. The events during which the detention pond outflow was found to exceed the predevelopment conditions are listed below:

STORM EVENT	DRAINAGE BASINS	ANALYSIS METHOD	PREDEVELOPMENT RUNOFF (CFS)	FINAL DETENTION POND DISCHARGE (CFS)	PERCENT INCREASE
2 Year	1, 2 & 3	SCS	0.70	0.74	6
100 Year	1, 2 & 3	Rational	8.65	8.92	3

In view of the facts that the amounts of increase shown above are small and that detention pond/discharge system is capable of handling

the 100 year event from all three drainage basins rather than just the 40 to 50 year event as initially targeted, the proposed system was considered adequate.

The maximum water depth in the pond for any of the routed storm hydrographs considered was 5.50 feet. The detention pond and outlet control will be maintained by personnel from St Mary's Hospital.

		APPENDIX	
FIGURE D	ESCRIPTION		FIGURE NUM
Drainage	Basin Map	•	
Hydrogra	nhs:		
	eloped condition	tions	
		SCS Method, 2 Yr, Basins 1 & 3	
		SCS Method, 100 Yr, Basins 1 & 3	
Final	Conditions,	Modified Rational Method, 2 Yr, Bas	sins 1 & 3
Final	Conditions,	Modified Rational Method, 100 Yr, H	Basins 1 & 3
Final	Conditions,	SCS Method, 2 Yr, Basins 1, 2 & 3	
		SCS Method, 100 Yr, Basins 1, 2 & 3	3
		Modified Rational Method, 2 Yr,	
	ins 1, 2 & 3		
	ins 1, 2 & 3	Modified Rational Method, 100 Yr,	
	-	Capacity Rating Curve	
		Discharge Rating Curves	12a-1
		Discharge Hydraulic Grade Line	
TABLE DE	SCRIPTION		TABLE NUM
		ns, Basin Characteristics	
Final Co	-	sin Characteristics	
			•
	Concentration		
Undevelo	ped Condition	ns, Summary	
Undevelo Final Co	ped Condition nditions, Sur	ns, Summary nmary	
Undevelo Final Co Detentio Catch Ba	ped Condition nditions, Sur n Pond Dis sin Capacity	ns, Summary	6a-
Undevelo Final Co Detentio Catch Ba Hydrogra Undev Undev	ped Condition nditions, Sur n Pond Dis sin Capacity phs: eloped Condit eloped Condit	hs, Summary nmary scharge Rating Capacity tions, SCS Method, 2 Year Storm tions, SCS Method, 100 Year Storm	
Undevelo Final Co Detentio Catch Ba Hydrogra Undev Undev Undev Undev Undev	ped Condition nditions, Sur n Pond Dis sin Capacity phs: eloped Condit eloped Condit eloped Condit eloped Condit	hs, Summary mmary scharge Rating Capacity tions, SCS Method, 2 Year Storm tions, SCS Method, 100 Year Storm tions, Modified Rational Method, 2 Y tions, Modified Rational Method, 100	'ear Storm
Undevelo Final Co Detentio Catch Ba Hydrogra Undev Undev Undev Undev Final	<pre>ped Condition nditions, Sur n Pond Dis sin Capacity phs: eloped Condit eloped Condit eloped Condit eloped Condit conditions,</pre>	hs, Summary mmary scharge Rating Capacity tions, SCS Method, 2 Year Storm tions, SCS Method, 100 Year Storm tions, Modified Rational Method, 2 Y tions, Modified Rational Method, 100 Rational Method, 2 Year Storm	'ear Storm
Undevelo Final Co Detentio Catch Ba Hydrogra Undev Undev Undev Undev Final Com	<pre>ped Condition nditions, Sur n Pond Dis sin Capacity phs: eloped Condit eloped Condit eloped Condit cloped Condit bined Basins</pre>	hs, Summary mmary scharge Rating Capacity tions, SCS Method, 2 Year Storm tions, SCS Method, 100 Year Storm tions, Modified Rational Method, 2 Y tions, Modified Rational Method, 100	'ear Storm
Undevelo Final Co Detentio Catch Ba Hydrogra Undev Undev Undev Undev Final Com	<pre>ped Condition nditions, Sur n Pond Dis sin Capacity phs: eloped Condit eloped Condit eloped Condit conditions, bined Basins Conditions,</pre>	hs, Summary mmary scharge Rating Capacity tions, SCS Method, 2 Year Storm tions, SCS Method, 100 Year Storm tions, Modified Rational Method, 2 Y tions, Modified Rational Method, 100 Rational Method, 2 Year Storm 1 & 3, Varying Durations	'ear Storm
Undevelo Final Co Detentio Catch Ba Hydrogra Undev Undev Undev Undev Final Com Final Com	<pre>ped Condition nditions, Sur n Pond Dis sin Capacity phs: eloped Condit eloped Condit eloped Condit conditions, bined Basins Conditions, bined Basins Conditions,</pre>	hs, Summary mmary scharge Rating Capacity tions, SCS Method, 2 Year Storm tions, SCS Method, 100 Year Storm tions, Modified Rational Method, 2 Y tions, Modified Rational Method, 100 Rational Method, 2 Year Storm 1 & 3, Varying Durations Rational Method, 100 Year Storm 1 & 3, Varying Durations Rational Method, 2 Year Storm	'ear Storm
Undevelo Final Co Detentio Catch Ba Hydrogra Undev Undev Undev Undev Final Com Final Com	<pre>ped Condition nditions, Sur n Pond Dis sin Capacity phs: eloped Condit eloped Condit eloped Condit conditions, bined Basins Conditions, bined Basins Conditions, bined Basins</pre>	hs, Summary mmary scharge Rating Capacity tions, SCS Method, 2 Year Storm tions, SCS Method, 100 Year Storm tions, Modified Rational Method, 2 Y tions, Modified Rational Method, 100 Rational Method, 2 Year Storm 1 & 3, Varying Durations Rational Method, 100 Year Storm 1 & 3, Varying Durations Rational Method, 2 Year Storm 1, 2 & 3, Varying Durations	'ear Storm
Undevelo Final Co Detentio Catch Ba Hydrogra Undev Undev Undev Undev Final Com Final Com Final Com	<pre>ped Condition nditions, Sur n Pond Dis sin Capacity phs: eloped Condit eloped Condit eloped Condit conditions, bined Basins Conditions, bined Basins Conditions, bined Basins Conditions,</pre>	hs, Summary mmary scharge Rating Capacity tions, SCS Method, 2 Year Storm tions, SCS Method, 100 Year Storm tions, Modified Rational Method, 2 Y tions, Modified Rational Method, 100 Rational Method, 2 Year Storm 1 & 3, Varying Durations Rational Method, 100 Year Storm 1 & 3, Varying Durations Rational Method, 2 Year Storm 1, 2 & 3, Varying Durations Rational Method, 100 Year Storm	'ear Storm
Undevelo Final Co Detentio Catch Ba Hydrogra Undev Undev Undev Undev Final Com Final Com Final Com	<pre>ped Condition nditions, Sur n Pond Dis sin Capacity phs: eloped Condit eloped Condit eloped Condit conditions, bined Basins Conditions, bined Basins Conditions, bined Basins Conditions, bined Basins Conditions, bined Basins</pre>	hs, Summary mmary scharge Rating Capacity tions, SCS Method, 2 Year Storm tions, SCS Method, 100 Year Storm tions, Modified Rational Method, 2 Y tions, Modified Rational Method, 100 Rational Method, 2 Year Storm 1 & 3, Varying Durations Rational Method, 100 Year Storm 1 & 3, Varying Durations Rational Method, 2 Year Storm 1, 2 & 3, Varying Durations Rational Method, 100 Year Storm 1, 2 & 3, Varying Durations Rational Method, 100 Year Storm 1, 2 & 3, Varying Durations	'ear Storm
Undevelo Final Co Detentio Catch Ba Hydrogra Undev Undev Undev Undev Final Com Final Com Final Com Final	<pre>ped Condition nditions, Sur n Pond Dis sin Capacity phs: eloped Condit eloped Condit eloped Condit conditions, bined Basins Conditions,</pre>	hs, Summary mmary scharge Rating Capacity tions, SCS Method, 2 Year Storm tions, SCS Method, 100 Year Storm tions, Modified Rational Method, 2 Y tions, Modified Rational Method, 100 Rational Method, 2 Year Storm 1 & 3, Varying Durations Rational Method, 100 Year Storm 1 & 3, Varying Durations Rational Method, 2 Year Storm 1, 2 & 3, Varying Durations Rational Method, 100 Year Storm 1, 2 & 3, Varying Durations Rational Method, 100 Year Storm 1, 2 & 3, Varying Durations SCS Method, 2 Yr, Basins 1 & 3	'ear Storm
Undevelo Final Co Detentio Catch Ba Hydrogra Undev Undev Undev Undev Final Com Final Com Final Com Final Final Final	<pre>ped Condition nditions, Sur n Pond Dis sin Capacity phs: eloped Condit eloped Condit eloped Condit conditions, bined Basins Conditions, bined Basins</pre>	hs, Summary mmary scharge Rating Capacity tions, SCS Method, 2 Year Storm tions, SCS Method, 100 Year Storm tions, Modified Rational Method, 2 Y tions, Modified Rational Method, 100 Rational Method, 2 Year Storm 1 & 3, Varying Durations Rational Method, 100 Year Storm 1 & 3, Varying Durations Rational Method, 2 Year Storm 1, 2 & 3, Varying Durations Rational Method, 100 Year Storm 1, 2 & 3, Varying Durations SCS Method, 2 Yr, Basins 1 & 3 SCS Method, 100 Yr, Basins 1 & 3	ear Storm Year Storm
Undevelo Final Co Detentio Catch Ba Hydrogra Undev Undev Undev Undev Final Com Final Com Final Com Final Final Final Final Final	<pre>ped Condition nditions, Sur n Pond Dis sin Capacity phs: eloped Condit eloped Condit eloped Condit conditions, bined Basins Conditions, bined Basins Conditions, bined Basins Conditions, bined Basins Conditions, conditions, Conditions, Conditions, Conditions,</pre>	hs, Summary mmary scharge Rating Capacity tions, SCS Method, 2 Year Storm tions, SCS Method, 100 Year Storm tions, Modified Rational Method, 2 Y tions, Modified Rational Method, 100 Rational Method, 2 Year Storm 1 & 3, Varying Durations Rational Method, 100 Year Storm 1 & 3, Varying Durations Rational Method, 2 Year Storm 1, 2 & 3, Varying Durations Rational Method, 100 Year Storm 1, 2 & 3, Varying Durations SCS Method, 2 Yr, Basins 1 & 3 SCS Method, 100 Yr, Basins 1 & 3 Modified Rational Method, 2 Year S	ear Storm Year Storm torm,
Undevelo Final Co Detentio Catch Ba Hydrogra Undev Undev Undev Final Com Final Com Final Com Final Final Final Final Final Final Com	<pre>ped Condition nditions, Sur n Pond Dis sin Capacity phs: eloped Condit eloped Condit eloped Condit conditions, bined Basins Conditions, bined Basins</pre>	hs, Summary mmary scharge Rating Capacity tions, SCS Method, 2 Year Storm tions, SCS Method, 100 Year Storm tions, Modified Rational Method, 2 Y tions, Modified Rational Method, 100 Rational Method, 2 Year Storm 1 & 3, Varying Durations Rational Method, 100 Year Storm 1 & 3, Varying Durations Rational Method, 2 Year Storm 1, 2 & 3, Varying Durations Rational Method, 100 Year Storm 1, 2 & 3, Varying Durations Rational Method, 100 Year Storm 1, 2 & 3, Varying Durations SCS Method, 2 Yr, Basins 1 & 3 SCS Method, 100 Yr, Basins 1 & 3 Modified Rational Method, 2 Year S 1 & 3	torm, 18a-1
Undevelo Final Co Detentio Catch Ba Hydrogra Undev Undev Undev Undev Final Com Final Com Final Final Final Final Final Final Final	<pre>ped Condition nditions, Sur n Pond Dis sin Capacity phs: eloped Condit eloped Condit eloped Condit conditions, bined Basins Conditions, bined Basins</pre>	hs, Summary mmary scharge Rating Capacity tions, SCS Method, 2 Year Storm tions, SCS Method, 100 Year Storm tions, Modified Rational Method, 2 Y tions, Modified Rational Method, 100 Rational Method, 2 Year Storm 1 & 3, Varying Durations Rational Method, 100 Year Storm 1 & 3, Varying Durations Rational Method, 2 Year Storm 1, 2 & 3, Varying Durations Rational Method, 100 Year Storm 1, 2 & 3, Varying Durations SCS Method, 2 Yr, Basins 1 & 3 SCS Method, 100 Yr, Basins 1 & 3 Modified Rational Method, 2 Year S 1 & 3 Modified Rational Method, 100 Year	torm, 18a-1
Undevelo Final Co Detentio Catch Ba Hydrogra Undev Undev Undev Undev Final Com Final Com Final Final Final Final Final Final Final Final Final	<pre>ped Condition nditions, Sur n Pond Dis sin Capacity phs: eloped Condit eloped Condit eloped Condit conditions, bined Basins Conditions, bined Basins</pre>	hs, Summary mmary scharge Rating Capacity tions, SCS Method, 2 Year Storm tions, SCS Method, 100 Year Storm tions, Modified Rational Method, 2 Y tions, Modified Rational Method, 100 Rational Method, 2 Year Storm 1 & 3, Varying Durations Rational Method, 100 Year Storm 1 & 3, Varying Durations Rational Method, 2 Year Storm 1, 2 & 3, Varying Durations Rational Method, 100 Year Storm 1, 2 & 3, Varying Durations SCS Method, 2 Yr, Basins 1 & 3 SCS Method, 100 Yr, Basins 1 & 3 Modified Rational Method, 2 Year S 1 & 3 Modified Rational Method, 100 Year 1 & 3 SCS Method, 2 Yr, Basins 1, 2 & 3	torm, Storm, 18a-1 Storm, 19a-1
Undevelo Final Co Detentio Catch Ba Hydrogra Undev Undev Undev Undev Final Com Final Final Final Final Final Final Final Final Final Final Final Final	<pre>ped Condition nditions, Sur n Pond Dis sin Capacity phs: eloped Condit eloped Condit eloped Condit eloped Condit conditions, bined Basins Conditions, bined Basins</pre>	hs, Summary mmary scharge Rating Capacity tions, SCS Method, 2 Year Storm tions, SCS Method, 100 Year Storm tions, Modified Rational Method, 2 Y tions, Modified Rational Method, 100 Rational Method, 2 Year Storm 1 & 3, Varying Durations Rational Method, 100 Year Storm 1 & 3, Varying Durations Rational Method, 2 Year Storm 1, 2 & 3, Varying Durations Rational Method, 100 Year Storm 1, 2 & 3, Varying Durations SCS Method, 2 Yr, Basins 1 & 3 SCS Method, 100 Yr, Basins 1 & 3 Modified Rational Method, 100 Year 1 & 3 SCS Method, 2 Yr, Basins 1, 2 & 3 SCS Method, 100 Yr, Basins 1, 2 & 3 SCS Method, 100 Yr, Basins 1, 2 & 3 SCS Method, 100 Yr, Basins 1, 2 & 3	torm, Storm, 18a-1 Storm, 19a-1
Undevelo Final Co Detentio Catch Ba Hydrogra Undev Undev Undev Final Com Final Final Final Final Final Final Final Final Final Final Final Final Final	<pre>ped Condition nditions, Sur n Pond Dis sin Capacity phs: eloped Condit eloped Condit eloped Condit conditions, bined Basins Conditions, bined Basins</pre>	hs, Summary mmary scharge Rating Capacity tions, SCS Method, 2 Year Storm tions, SCS Method, 100 Year Storm tions, Modified Rational Method, 2 Y tions, Modified Rational Method, 100 Rational Method, 2 Year Storm 1 & 3, Varying Durations Rational Method, 100 Year Storm 1 & 3, Varying Durations Rational Method, 2 Year Storm 1, 2 & 3, Varying Durations Rational Method, 100 Year Storm 1, 2 & 3, Varying Durations SCS Method, 2 Yr, Basins 1 & 3 SCS Method, 100 Yr, Basins 1 & 3 Modified Rational Method, 100 Year 1 & 3 SCS Method, 2 Yr, Basins 1, 2 & 3 SCS Method, 100 Yr, Basins 1, 2 & 3 Modified Rational Method, 2 Yr,	torm, Storm, 18a-1 Storm, 19a-1
Undevelo Final Co Detentio Catch Ba Hydrogra Undev Undev Undev Final Com Final Final Final Final Final Final Final Final Final Final Final Final Final Final Final Final Final	<pre>ped Condition nditions, Sur n Pond Dis sin Capacity phs: eloped Condit eloped Condit eloped Condit conditions, bined Basins Conditions, bined Basins</pre>	hs, Summary mmary scharge Rating Capacity tions, SCS Method, 2 Year Storm tions, SCS Method, 100 Year Storm tions, Modified Rational Method, 2 Y tions, Modified Rational Method, 100 Rational Method, 2 Year Storm 1 & 3, Varying Durations Rational Method, 100 Year Storm 1 & 3, Varying Durations Rational Method, 2 Year Storm 1, 2 & 3, Varying Durations Rational Method, 100 Year Storm 1, 2 & 3, Varying Durations SCS Method, 2 Yr, Basins 1 & 3 SCS Method, 100 Yr, Basins 1 & 3 Modified Rational Method, 100 Year 1 & 3 SCS Method, 2 Yr, Basins 1, 2 & 3 SCS Method, 100 Yr, Basins 1, 2 & 3 Modified Rational Method, 2 Yr,	torm, Storm, 18a-1 Storm, 19a-1

- · · ·

.

Parcel #2

DRAINAGE STUDY ST MARY'S HOSPITAL ADDITION Grand Junction, Colorado

> Prepared by: WESTERN ENGINEERS, INC 2150 HIGHWAY 6 & 50 GRAND JUNCTION, COLO

DRAINAGE STUDY FOR ST. MARY'S HOSPITAL PARKING AREA Grand Junction, Colorado June, 1992 Revised June 23, 1992

SCOPE

The site proposed for additional parking for St. Mary's Hospital is located southeast of the intersection of 7th Street and Paterson Road in Grand Junction. The site is bounded on the north by Paterson Road, on the west by 7th Street, on the south by Wellington Avenue, and on the east by an existing medical office complex. This site is not entirely under the ownership of St. Mary's Hospital, however, nearly all of the drainage within this area drains to a common point; therefore, this drainage study encompasses the entire area. During the summer of 1991, a paved parking area was constructed in the northwest portion of the site. The storm drainage features for that project were designed to retain all runoff without discharge from the site. Storm water considerations for the 1991 improvements were presented in a report dated April 1, 1991.

SURFACE DRAINAGE CHARACTERISTICS

The surface generally slopes toward the middle of the site in an east/west direction and then down toward the southwest corner of the property. Prior to the 1991 improvements, surface water from 84 percent of the area drained to a low spot in the south of the property which acted as a retention basin draining into a 10 inch PVC pipe. The PVC pipe drained from there into an open channel running to the southeast corner of the property. At that time, the surface water ponded in the ditch and the retention basin and had no active way of getting off the property because a 12 inch concrete pipe culvert located at the southwest corner of the property had been buried and intentionally plugged. It appeared that it was originally the intent that this culvert carry storm water away from the site but was later plugged because of overall storm water capacity considerations in the area. The culvert drains into a manhole in Wellington Avenue which is part of the City's storm water system. From there the storm water system drains to approximately the intersection of 7th Street and Bookcliff Avenue where it discharges into the Buthorn Drainage System. The Buthorn System is currently at maximum capacity. Therefore, the storm water control facilities for the final conditions must be designed to assure that the impact on the existing off-site system is not significant. The original on-site capacity for storm water retention without discharge for the features described above was about 31,500 cu ft. As can be seen from the attached calculation summaries, this provided for full storage of all storm runoff events including the 100 year event. In order to assure that the final conditions satisfy the requirements discussed above for minimizing impact, specific storm drainage design criteria for this project were determined based on discussions with representatives of both the City of Grand Junction and the Grand Junction Drainage District. The resulting criteria were as follows:

- The discharges into the dedicated storm water conveyance facilities will not exceed that allowed by the original conditions existing before the 1991 parking lot construction for all storm events with recurrence intervals up to 10 years.
 The discharges into the dedicated storm water conveyance facilities will be restricted as much as practical for storm
- events with recurrence intervals between 10 and 100 years.
 3. Overland storm water discharges into the streets will not be allowed for storms with recurrence intervals of 2 years or less and will be limited to 5 cfs or less for storms with recurrence intervals between 2 and 100 years.

Approximately 14 percent of the original area drained onto Wellington, all of which belongs to St. Mary's. The runoff from the area which originally drained onto Wellington will be intercepted and diverted into the proposed detention basin. Therefore, for the purposes of comparing the final conditions with the original conditions, the original conditions will be considered to have resulted in off-site discharges due to the runoff from the area which originally drained directly onto Wellington. All surface area which will be affected by the paved parking will be drained into the proposed detention pond.

For the purposes of the drainage analysis, the site was divided into two basins for the original conditions but was treated as a single basin for the final conditions. This was done to distinguish the area draining onto Wellington from the remainder of the property. Figure 1 shows the general plan for site improvement as well as the division between the two drainage basins.

Tables 1 and 2 show the percentages of various ground covers for each of the two basins under both original and final conditions.

DRAINAGE EVALUATION METHODOLOGY

The drainage basin was evaluated for 3 storm recurrence intervals consisting of the 2, 10 and 100 year storms. In order to provide a comparison, the runoff characteristics were evaluated using 2 methods. These consisted of the rational method and the SCS tabular method. The SCS tabular method was chosen because it provides a method for obtaining runoff hydrograph data. The Modified Rational Method was used to provide comparison hydrograph data. Design storm values were obtained from two sources -- the storm values were obtained from "Mesa County Storm Drainage Criteria Manual". The determination of the runoff coefficients in the rational method as well as the curve number values used in the SCS tabular method are presented in Tables 1 and 2. The soil group

number required for the SCS tabular method was evaluated based on information compiled by the Soil Conservation Service and presented in a report entitled "Soil Survey, Grand Junction Area, Colorado." Lag times were determined to be less than 10 minutes; therefore, a minimum value of 10 minutes was used for the rational method time of concentration. Actual concentration times calculated were used for the SCS tabular method. Tables 3 and 4 present a summary of the resulting peak flow values and volumes. The surface flow hydrographs are presented on Figures 9 through 15 for the original conditions and figures 16 through 24 for the final conditions. The original retention pond capacity is shown on Figure 5, and the flow rating curve for the overflow discharge from the existing retention pond is shown on Figure 6. The contours for the original retention pond are shown on Figure 1a. The discharge from the original retention pond was treated as a broad crested weir using the following formula with a crest coefficient varying from 2.63 to 2.70:

 $Q = CLH^{1}.5$

Following are the area and capacity tables for the original retention pond:

ORIGINAL RETENTION VOLUME

ELEVATION	AREA (SQ FT)	VOLUME (CU FT)
38.47	0	0
39.00	4,897	1,469
40.00	9,612	8,723
41.00	34,360	30,709
42.00	67,532	81,655

ORIGINAL RETENTION DISCHARGE

ELEVATION	FLOW AREA (SQ FT)	FLOW (CFS)
38.47	0	0
41.14	0	0
41.19	1.05	0.50
41.24	3.80	2.29
41.29	7.78	5.65
41.34	12.96	11.12

It is seen from the above data that there was originally a considerable amount of retention storage available before any offsite discharges would be made. As will be shown in subsequent sections of this report, the storage capacity was sufficient to hold any of the storms considered without allowing discharge.

The capacity and flow rating curves for the final detention pond are shown on Figures 7 and 8. The discharge from the final detention basin will be through a v-notch overflow with an included angle of about 15 degrees. The discharge capacity of the weir was calculated using the following formula:

 $Q = 2.5 \text{ TAN}(\text{THETA}/2) \text{ H}^{2.5}$

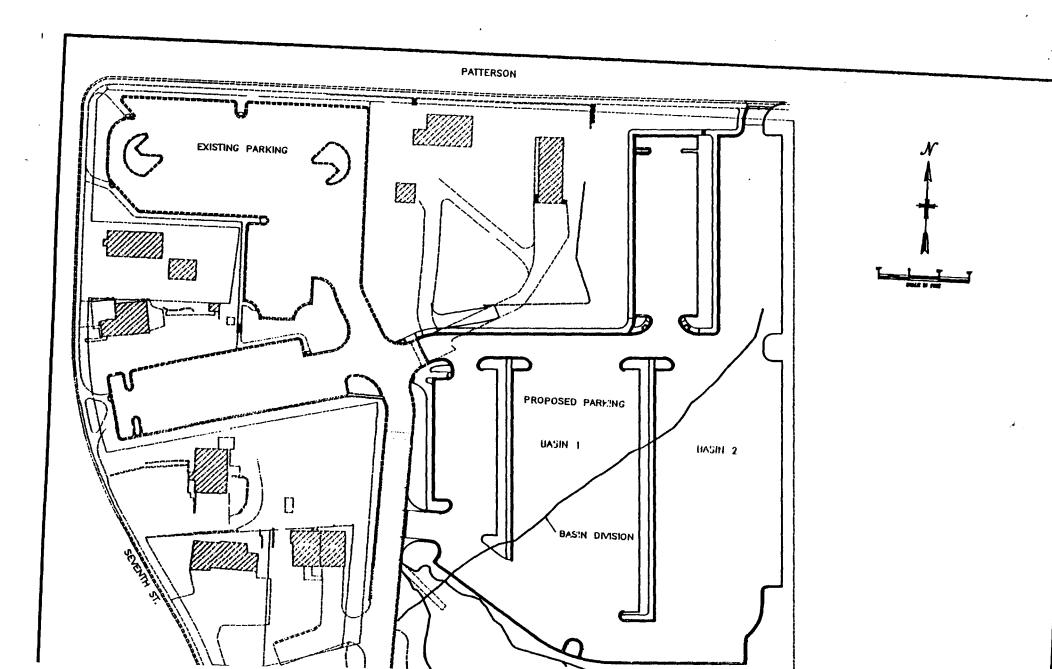
Following are the area and capacity tables for the final detention pond:

FINAL DETENTION VOLUME

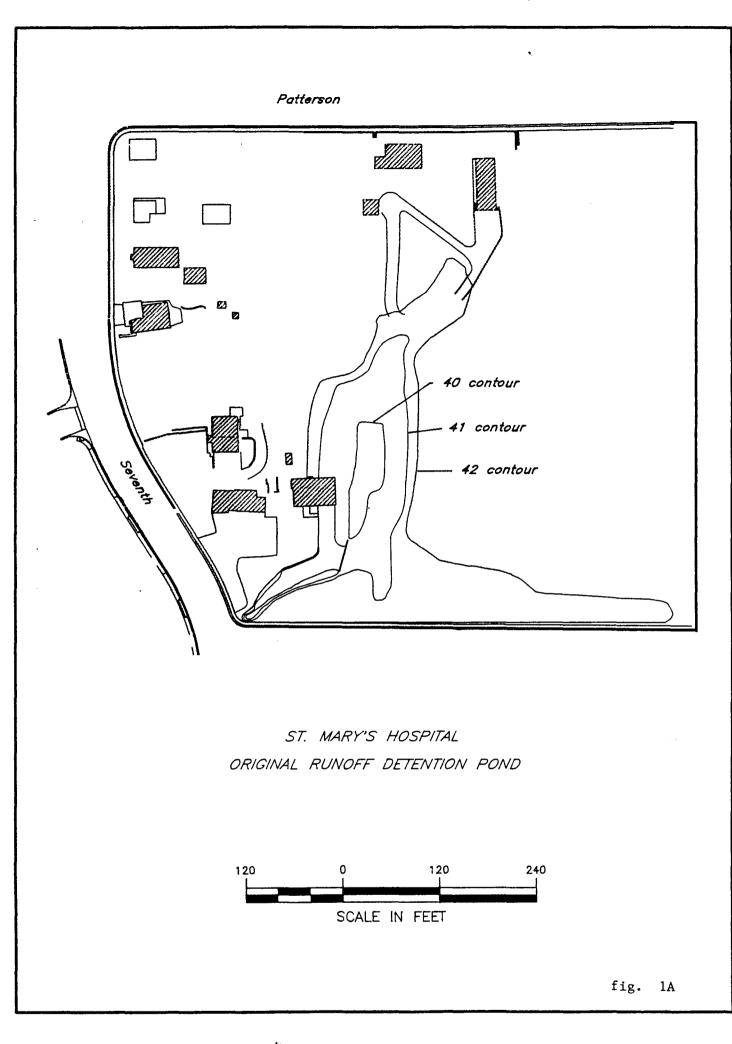
ELEVATION	AREA (SQ FT)	VOLUME (CU FT)
38.50	0	0
39.00	5,400	1,350
40.00	14,400	11,250
40.50	19,285	19,671
41.00	22,031	30,000

FINAL DETENTION DISCHARGE

ELEVATION	FLOW AREA (SQ FT)	FLOW (CFS)
38.50	0	0
39.00	0.132	0.058
40.00	0.395	0.907
40.50	0.527	1.86
41.00	0.658	3.25


Detailed summaries of the calculations for development of the various storm hydrographs as well as the calculations for routing through the basins are included in the appendix. The values shown for the final conditions include all areas except the 2 percent which will continue to drain to 7th Street. In general, with a few exceptions, both the flow rates and the runoff volumes were greatest for the Rational and Modified Rational method.

PROPOSED DRAINAGE FACILITIES


The plan to control drainage from this site includes intercepting runoff and draining it into a detention basin located in the southern portion of the site. The proposed detention pond is shown on the Drainage Plan and the capacity data is shown on Figure 7, attached. The maximum capacity of the proposed detention pond without overflow into the street is about 25,000 cubic feet. Metered discharge control will be provided by means of a low included angle v-notch overflow located in the manhole at the southwest corner of the property. The v-notch configuration provides for release patterns which approximate those under the original conditions during specific rainfall events.

It can be seen from the attached summary data on Tables 3 and 4 that, with one exception, for all storm events and with all calculation methods used, the off-site discharge under the final proposed conditions will be less than that which would have

occurred during the same storms under the original conditions. The one exception was for the 100 year, 6 hour storm. During this event, the final off-site discharge exceeded that of the original conditions by about .5 cfs. The maximum water depth in the pond for any of the routed storm hydrographs considered was 2.3 feet. Pond discharge into the street will not occur until the depth reaches 2.9 feet. Therefore, discharge into the street is not anticipated for any of the storm events considered. The detention pond and outlet control will be maintained by personnel from St. Mary's Hospital.

.

-

-

-

-

-

...

ST MARYS CRUGINAL CONDITIONS

••	GRIGINAL C RUNOFF SUN			
•	BASIN PARANUTER	BASIN 1	BASIN 2	
	AREA (ACRES)	7.11	1.80	
	AREA (SDUARE MILES)	0.0111	0.0028	
	MAXIMUN ELEVATION	4660.63	4658.68	
	MINIMUN ELEVATION	4638.38	4640.26	
	LONGEST WATER COURSE LENGTH (FEET) SLOPE	869.00 0.0256	540.00 0.0341	
	TIME OF CONCENTRATION (MINUTES)	9.05	4.50	
	2 YEAR RAINFALL Railghal Hedger (Include) SCS Hethod (Include) SCS Hethod (Include) SCS Hethod (Include)	0.90 0.70 0.55	0,90 0,70 0,55	
	IO-YEAF RAINFALL Rational Heided (Inch/Hr) SCS Meihou (IRCH/24 Hour) SCS Meihou (IRCH/24 Hour)	1.68 1.12 0.87	1.68 1.12 0.87	
	100-YEAR RAINFALL RATIONAL MEDIDO (INCH/HR) SCS METHOD (INCH/24 NOUR) SCS METHOD (INCH/24 NOUR)	3.60 2.01 1.56	3.60 2.01 1.56	
	RUNOFFSCS METHOD (INCH) 24 Hour 2-tear 10-year 100-year	0.052 0.222 0.782	0.057 0.232 0.602	
	RUNOFFSCS METHID (INCH) 6 Huur 2-tear 10 Ylar 100-ylar	0.017 0.110 0.475	0.098 0.282 0.807	
	2-YEAP FEAK FLOW (CFS) Ratiens: Heimer SCS Methyd (24 hour) SCS Heimod (6 hour)	1.99 0.22 0.34	0.49 0.09 0.09	
	10-YEAF PEAK FLOW (CFS) Rational Nethed SCS Nethod (24 Hour) SCS Nethod (6 Hour)	3.72 1.83 1.88	0.91 0.61 0.48	
	100-YEAR PLAK FLOW (CFS) Rational Method SCS Method (24 Hour) SCS Method (6 Hour)	12.05 7.59 5.25	2.92 2.27 1.22	
	2 YEAR RUNDEF VOLUME (CU. FT.) Modifild Railonal Method (24 HR) SCS Method (24 Hour) SCS Method (6 Hour)	5732.00 1366.00 2556.00	1468.00 377.00 599.00	
	10-YEAF PUNGET VOLUME (CU, FT.) Modified Raijonal Method (24 HR) SCS Method (21 Hour) SCS Method (8 Hour)	9554.00 5844.00 7451.00	2419.00 1567.00 2013.00	
	100-YEAR RUNDEF VOLUME (CU. FT.) Hodifico rajiuwal method (24 HR) SC3 method (24 Hour) SC5 method (6 Hour)	23150.00 20744.00 20823.00	5861.00 5419.00 5842.00	
	2·YEAR OFF-SITE DISCHARGE (CFS) MODIFIED RATIONAL METHOD SC3 METHOD (24 HOUR) SC5 METHOD (6 HOUR)	0.00 0.00 0.00	0.49 0.09 0.09	
	10-YEAR OFF-STIE DISCHARGE (CES) MCDIFILD RATIONAL METHOD SC3 METHOD (24 HOUR) SC3 METHOD (6 HOUR)	0.00 0.00 0.00	0.91 0.61 0.48	
	100-TEAR OFF-STIE DISCHARGE (CFS) . NUDIFILD RATIONAL METHOD SC3 METHOD (24 HOUR) SC5 METHOD (6 HOUR)	0.00 0.00 0.00	2.92 2.27 1.22	

10

table 3

BASIN PARAMETER	BASIN 1
AREA (ACRES)	8.91
AREA (SQUARE MILES)	0.0139
NAXIMUM ELEVATION	4660.63
MINIMUM ELEVATION	4638.38
LONGEST WATER COURSE LENGTH (FEET) SLOPE	869.00 0.0256
TIME OF CONCENTRATION (HINGLES)	4.40
2-YEAF RATHIALL Rational Wilhod (Inchahr) Ses Method (Inch/24 Hour) Ses Method (Inch/6 Hour)	0.90 0.70 0.55
IO YEAR RAINEALL Raional IV: Thod (Inclyhr) SCS Methou (Incly 21 hour) SCS Methou (Incly 6 hour)	1.68 1.12 0.87
100-YEAR RAINFALL Rational (Ethod (Inch/HR) SCS Hethod (Inch/24 Hour) SCS Hethod (Inch/24 Hour)	3.60 2.01 1.56
RUNDEFSCS METHOD (INCH) 24 Hour	
2 ILAR 10 ILAR 100-YEAR	0.151 0.415 1.124
RUNOFFSC3 METHOD (INCH)	
6 Mour 2-TLAP 10 YEAR 100 YEAR	0.080 0.249 0.749
2-YEAR PLAN FLOW (CFS) Rational "Ethod SCS Nethod (24 hour) SCS Method (6 hour)	4.87 1.97 1.48
IO-YEAR FEAN FLOW (CFS) Rational Teihod Scs Neihog (24 hour) Scs Neihod (6 hour)	9.08 5.82 3.21
100-YEAR FE _{NK} FLOW (CFS) Rational "Ithod SCS Method (24 houg) SCS Method (8 houg)	22.43 15.78 8.19
2-YEAR RUNRY F VOLUME (CH. FT.) Hodified Pational Method (90 min) Ses Method (24 hour) Ses Method (6 hour)	8159.00 5072.00 6346.00
IO-TEAR RUMATE VOLUME (CU. FT.) Modified Sational Acthod (70 Min) SCS Method (24 Aver) SCS Method (6 Adum)	13693.00 13362.00 14348.00
100-YEAR RUNDEF VOLUME (CU. FT.) Modified Gailonal Method (70 Min) SCS Method (24 Hour) SCS Method (6 Hour)	31440.00 36241.00 34432.00
2 (EAR OFF STIE DISCHARGE (CFS) Modified Rational Method (90 Min) SCS Method (24 Hour) SCS Method (6 Hour)	0.54 0.12 0.22
IO-YEAR OFF SITE DISCHARGE (CFS) NODIFIED RATIONAL METHOD (70 MIN) SCS METHOD (24 HOUR) SCS METHOD (6 HOUR)	0.96 0.50 0.57
100-YEAN OLL-SITE DISCHARGE (CFS) Modified Rational Method (70 Min) SCS Method (24 Hour) SCS Method (6 Hour)	2.78 1.78 1.70

CONDITIONS

table 4

••• ·						BASIN 1					BASIN 2		
GROUND SURFACE COMER TYPE	RATIONAL RUNOFF COEFFICIENT	SCS RUNOFF Curve Number (24 hr)	SCS RUNOFF CURVE NUMBER (6 HR)	AREA (ACRES)	PERCENT	RATIONAL WEIGHTING FACTOR	SUS RUNDFF Heighting Factur (24 hr)	SCS RUNOF WEIGHTING FACTOR (6 HR)	AREA (ACRES)	PERCENT		SCS RUNOFF HEIGHTING FACTOR (24 HR)	
GRAVEL	0.25	85.00	92.00	1.37	19.32	0.048	16.424	17.776	0.00	0.00	0.000	0,000	0.000
concrete slab	0,90	98.00	99.00	0.11	1.49	0.013	1.461	1.476	0.00	0.00	0.000	• 0.000	0.000
CURB & GUTTER	0.90	98.00	99.00	0.00	0.00	0.000	0.000	0.000	0.00	0.00	0.000	0.000	0.000
SIDEWALK	0.90	98.00	99 .00	0.00	0.00	0.000	0.000	0.000	0.00	0.00	0.000	0.000	0.000
ASPHALT	0.90	98.00	99.00	0.21	2.88	0.026	2.825	2.854	0.00	0.00	0.000	0.000	0.000
rdof	0.90	98.00	99.00	0.35	4.91	0.044	4.810	4.859	0.00	0.90	0.000	0.000	0.000
MULCH	0.20	61.00	78.00	0.00	0.00	0.000	0.000	0.000	0.00	0.00	0.000	0.000	0.000
DIRT	0.30	85.00	91.00	3.30	46.41	0.139	39.446	42.230	1.80	100.00	0,300	85.000	91.000
LAIN 7%	0,20	81.00	90.00	0.01	0.20	0.000	0.159	0.177	0.00	0.00	0.000	0.000	0.000
Lahn 23	0.15	78.00	88.00	1.41	19.91	0.030	15,455	17.437	0.00	0.00	0.000	0.000	0.000
unkenpt lahn	0.20	81.00	90.00	0.35	4.98	0.010	4.032	4.480	0.00	0.00	0.000	0.000	0.000
TOTAL				7.11	100.00	0.311	84.613	91.290	1.80	100.00	0.300	85.000	91.000

st mary's Original conditions (2 and 10 year storms) Hydrology study

,

-

-

-

original conditions (100 year storm) hydrology study

						BASIN 1			BASIN 2				
GROUND SURFACE COVER TYPE	RATIONAL RUNOFF COEFFICIENT	CURVE	SCS RUNOFF CURVE NUMBER (6 HR)	AREA (ACRES)	PERCENT	FACTOR	SCS RUNDFF Heighting Factor (24 hr)	SCS RUNDF HEIGHTING FACTOR (6 HR)	AREA (ACRES)	PERCENT	Rational Weighting Factor	SCS RUNOFF G WEIGHTING FACTOR (24 HR)	SCS RUNOF WEIGHTING FACTOR (6 HR)
GRAVEL	0.55	85.00	92.00	1.37	19.32	0.000 0.106	16.424	17.776	0.00	0.00	0.000	0.000	0.000
concrete slab	0.95	%8.00	99.00	0.11	1.49	0.014	1.461	1.476	0.00	0.00	0.000	0.000	0.000
cure & gutter	0.95	98.00	99.00	0.00	0.00	0.000	0.000	0.000	0.00	0.00	0.000	0.000	0.000
SIDEWALK	0.95	% .00	99.00	0.00	0.00	0.000	0.000	0.000	0.00	0.00	0.000	0.000	0.000
ASPHALT	0.95	98.00	99.00	0.21	2.88	0.027	2.825	2.854	0.00	0.00	0.000	0.000	0.000
roof	0.95	98.00	99.00	0.35	4.91	0.047	4.810	4.859	0.00	0.00	0.000	0.000	0.000
nlch	0.35	61.00	78.00	0.00	0.00	0.000	0.000	0.000	0.00	0.00	0.000	0.000	0.000
DIRT	0.45	85.00	91.00	3.30	46.41	0.209	39.446	42.230	1.80	100.00	0.450	85.000	91.000
Lain 73	0.35	81 .00	90.00	0.01	0.20	0.001	0.159	0.177	0.00	0.00	0.000	0.000	0.000
Lain 25	0.25	78.00	88.00	1.41	19.81	0.050	15.455	17.437	0.00	0.00	0.000	0.000	0.000
unkenpt lawn	0.35	81 .00	90.00	0.35	4.98	0.017	4.032	4,480	0.00	0.00	0.000	0.000	0.000
TOTAL				7.11	100.00	0.471	84.613	91.290	1.80	100.00	0,450	85.000	91.000

TABLE 1

ST MARY'S FINAL CONDITIONS (2 AND 10 YEAR STORMS) HYDROLOGY STUDY

.

						BASIN I					BASIN 2		
GROUND SURFACE COVER TYPE	RATIONAL RUNOFF COEFFICIENT	SCS RUNOFF CURVE NUMBER (24 HR)	curve Number	AREA (ACRES)	PERCENT	RATIONAL HEIGHTING FACTOR	SCS RUNDFF HEIGHTING FACTOR (24 HR)	SCS RUNOFF NEIGHTING FACTOR (6 HR)	AREA (ACRES)	PERCENT	RATIONAL MEIGHTING FACTOR	SCS RUNDFF Heighting Factor (24 HR)	SCS RUNOFF HEIGHTING FACTOR (6 HR)
GRAUEL	0.25	85.00	92.00	0.51	5.63	0.014	4.782	5.176	0.00	ERR	ERR	ERR	ERR
concrete slab	0.90	98.00	99.00	0.10	1.09	0.010	1.066	1.077	0.00	ERR	ERR	ERR	ERR
CURB & SUTTER	0.90	?8.00	99.00	0.29	3.15	0.029	3.090	3.122	0.00	ERR	ERR	ERR	EPR
SIDEHALK	0.90	78.00	99.00	0.28	3.12	0.029	3.058	3.089	0.00	ERR	ERR	ERR	ERR
ASPHALT	0.90	?8.00	99.00	4.31	47.34	0.426	46.389	46.862	0.00	ERR	ERR	0.000	ERR
roof	0.90	98.00	99.00	0.29	3.24	0.029	3.177	3.209	0.00	ERR	ERR	ERR	ERR
MLCH	0.20	00.16	78.00	0.25	2.69	0.005	1.642	2.100	0.00	ERR	ERR	ERR	ERR
DIRT	0.30	85.00	91.00	0.61	6.68	0.020	5.578	6.079	0.00	ERR	ERR	ERR	ERR
LAIN 7%	0.20	81.00	90.00	0.63	6.87	0.014	5.563	6.181	0.00	ERR	ERR	ERR	ERR
LAIN 25	0.15	78.00	88.00	1.48	15.31	0.024	12.719	14.349	0.00	ERR	ERR	ERR	ERR
unkeipt lann	0.20	81.00	90.00	0.35	3.89	0.008	3.151	3.501	0.00	ERR	ERR	ERR	ERR
TOTAL				9.10	100.00	0.607	90.314	94.745	0.00	ERR	ERR	ERR	ERR

ST MARY'S FINAL CONDITIONS (100 YEAR STORM) HYDROLOGY STUDY

						BASIN 1					BASIN 2		
GROUND SURFACE COVER TYPE	RATIONAL RUNDEF COEFFICIENT	SCS RUNDFF Curve Number (24 Hr)	curve Number	AREA (ACRES)	PERCENT	RATIONAL WEIGHTING FACTOR	Factor (24 Hr)	SCS RUNDFF WEIGHTING FACTOR (6 HR)	AREA (ACRES)	PERCENT	RATIONAL MEIGHTIN FACTOR	SCS RUNDFF G HEIGHTING FACTOR (24 HR)	SCS RUNOFF WEIGHTING FACTOR (6 HR)
GRAEL	0.55	85.00	92.00	0.51	5.63	0.000		5.176	0.00	ERR	ERR	ERR	ERR
concrete slab	0.95	98.00	99.00	0.10	1.09	0.010	1.066	1 .07 7	0.00	ERR	ERR	ERR	ERR
cure 5 gutter	0.95	98.00	99.00	0.29	3.15	0.030	3.090	3.122	0.00	ERR	ERR	ERR	ERR
SIDEWLK	0.95	98.00	99.00	0.28	3.12	0.030	3.058	3.089	0.00	ERR	ERR	ERR	ERR
ASPHALT	0.95	98.00	99.00	4.31	47.34	0.450	46 .389	46.862	0.00	ERR	ERR	ERR	ERR
ROOF	0.95	98.00	99.00	0.29	3.24	0.031	3.177	3.209	0.00	ERR	ERR	ERR	ERR
HULCH	0.35	61.00	78.00	0.25	2.69	0.009	1.642	2.100	0.00	ERR	ERR	ERR	ERR
DIRT	0.45	85.00	91.00	0.61	6.68	0.030	5.678	6.079	0.00	ERR	ERR	ERR	ERR
LANN 75	0.35	81.00	90.00	0.63	6.87	0.024	5.563	6.181	0.00	ERR	ERR	ERR	ERR
LAIN 25	0.25	78.00	88.00	1.48	16.31	0.041	12.719	14.349	0.00	ERR	ERR	ERR	ERR
uncerpt lawn	0.35	81.00	90.00	0.35	, 3. 89	0.014	3.151	3.501	0.00	ERR	ERR	ERR	ERR
TOTAL				9.10	100.00	0.699	90.314	94.745	0.00	ERR	ERR	ERR	ERR

TABLE 2

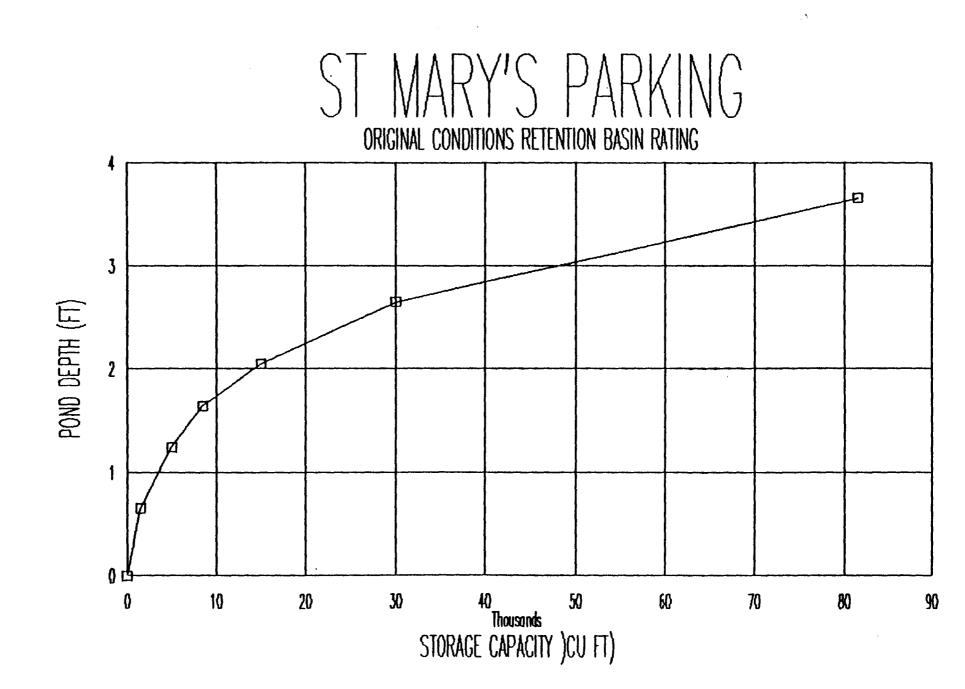
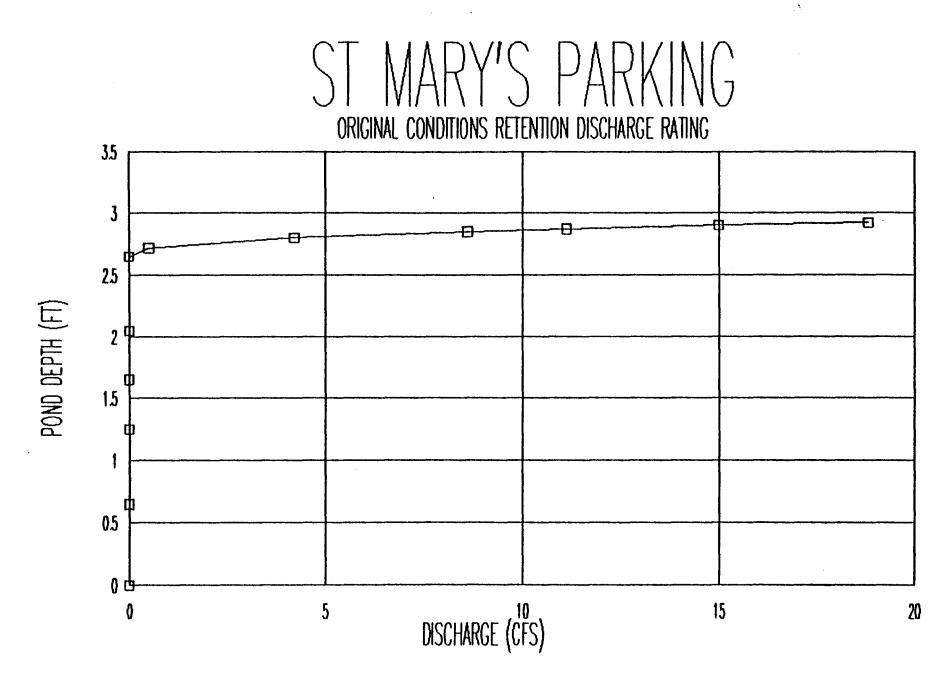



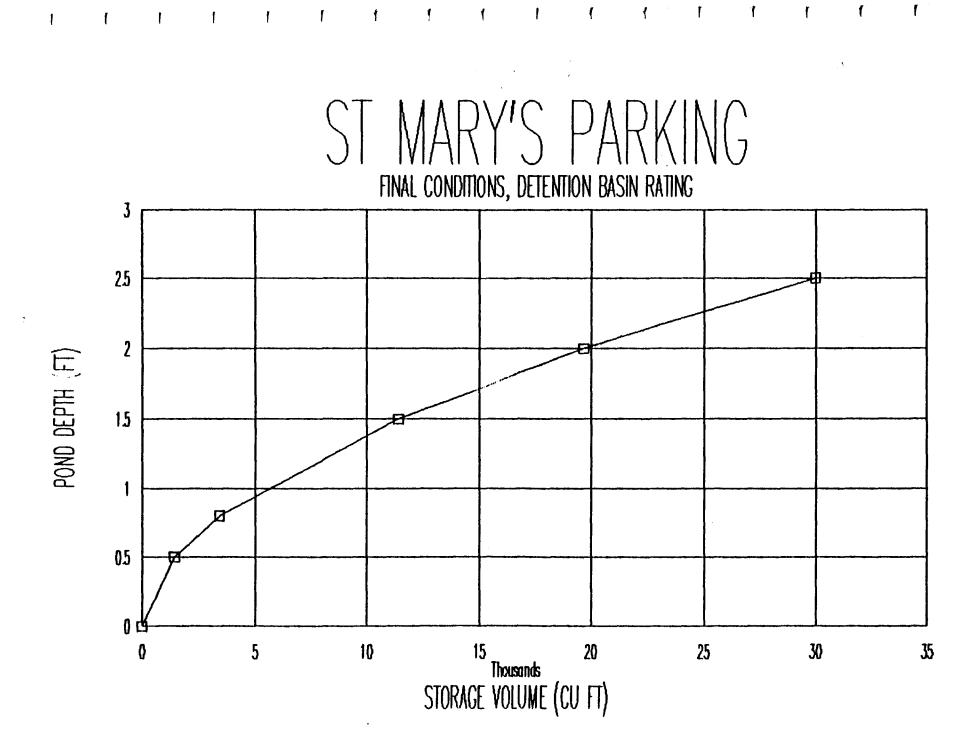
FIGURE 5

1 1

T

1

T


ſ

Ť

f

FIGURE 6

1

•

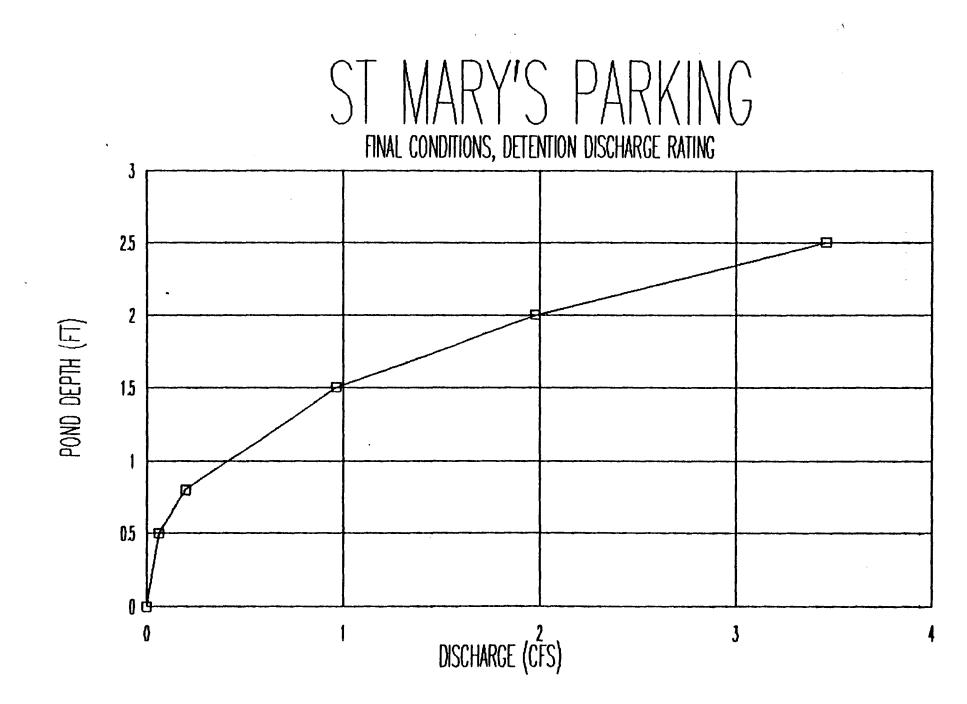

1

FIGURE 7

ſ

ſ

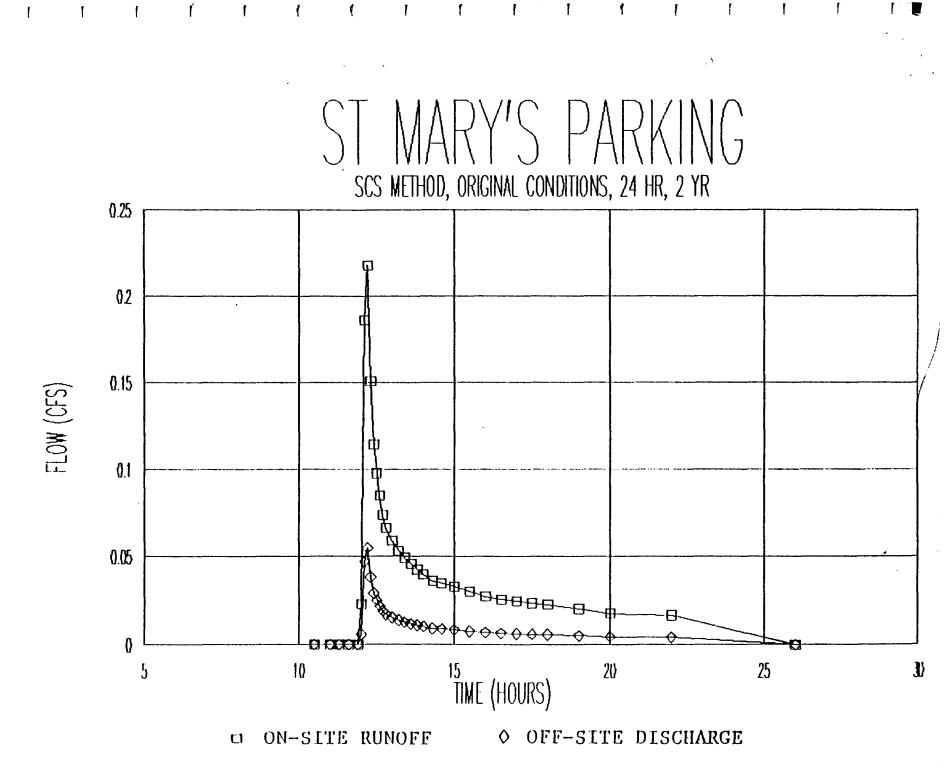
1

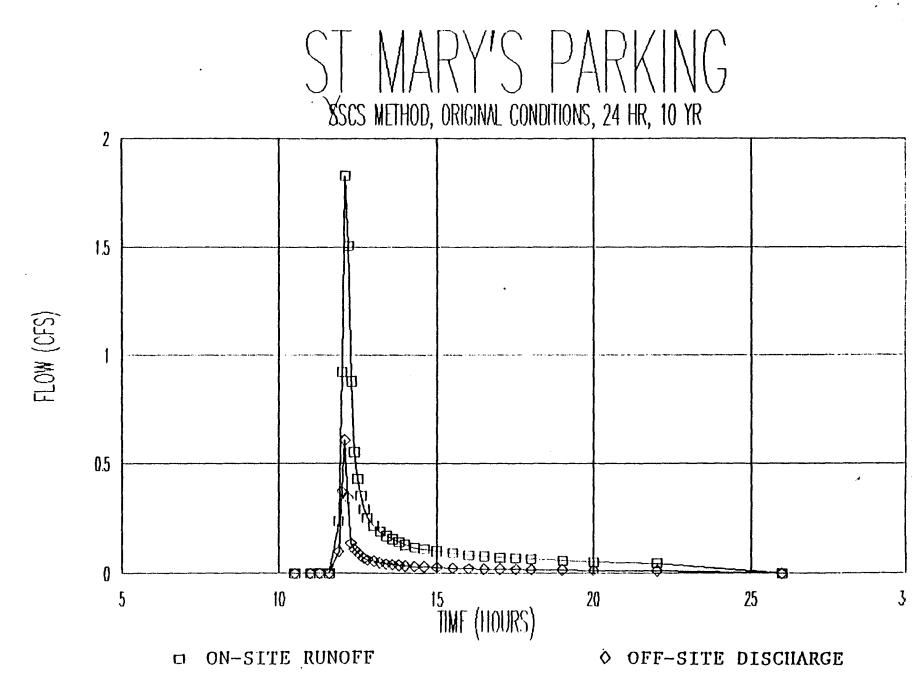
r r r r t

1 1 1

I

1

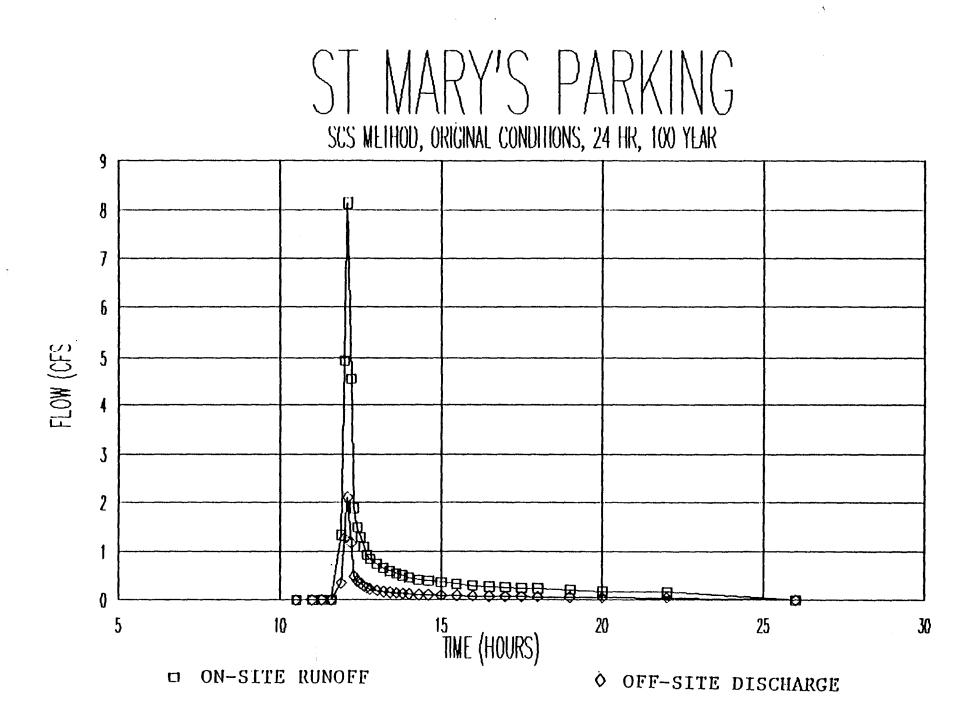

I I I I I


FIGURE 8

1

I

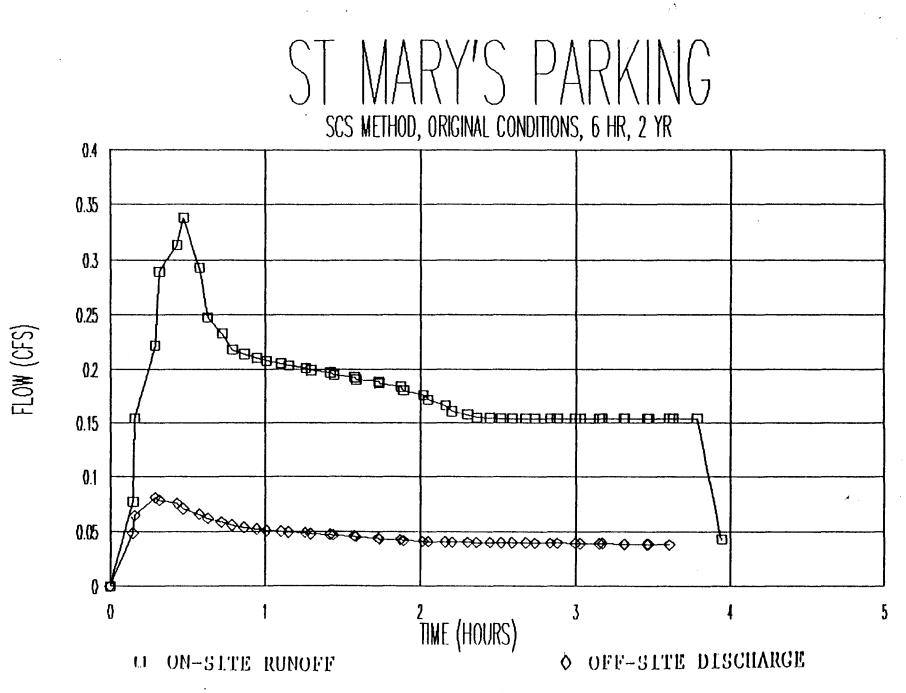
1



ł

ſ

T


Ŧ

T T

I

FIGURE 11

I

ł

ť

1

{

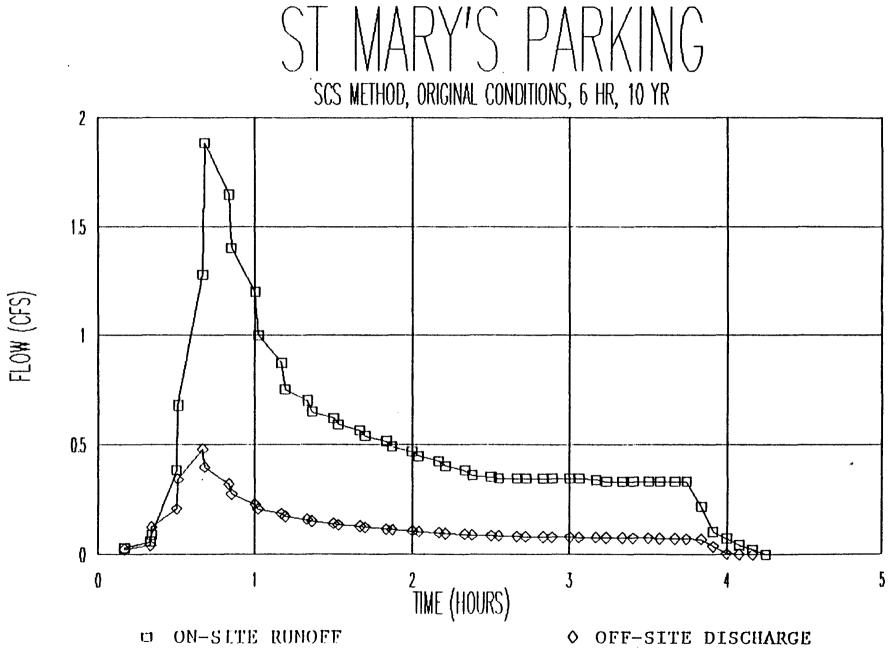
1

I

1

1

T


1

(

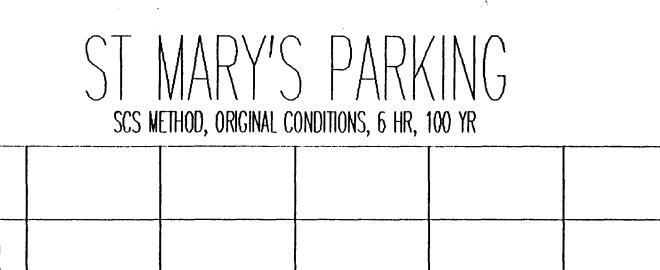
FIGURE 12

1

ſ

ſ

Ţ


1'

1

*

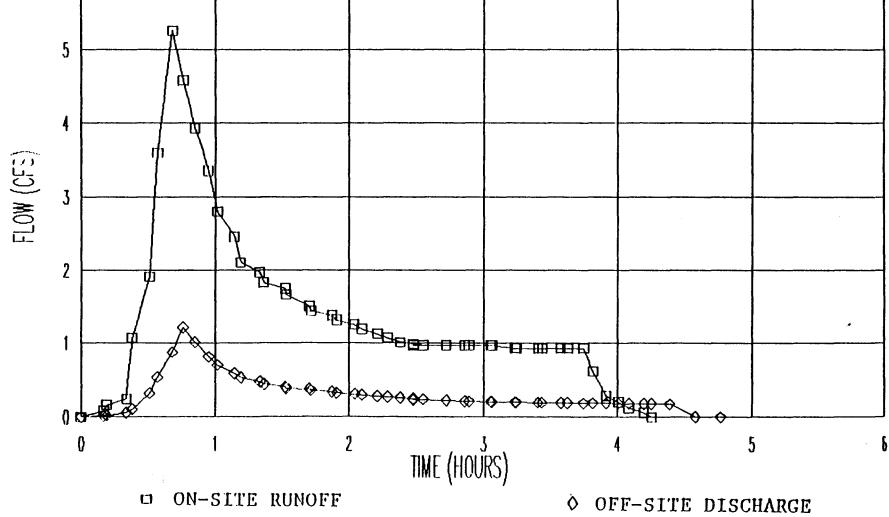
1

I

ſ

1

1


ſ

1

1

1

1

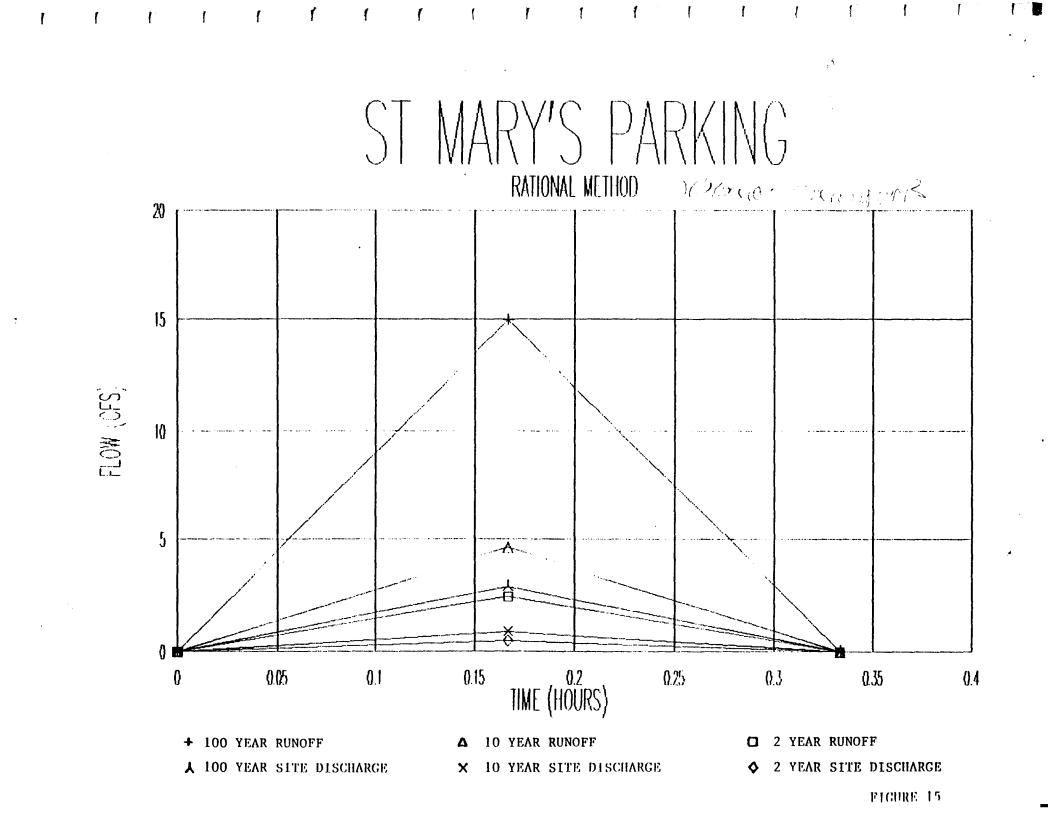
1

T

1 T T

b

{


٢

1

ſ

1

1

f f f f

ſ

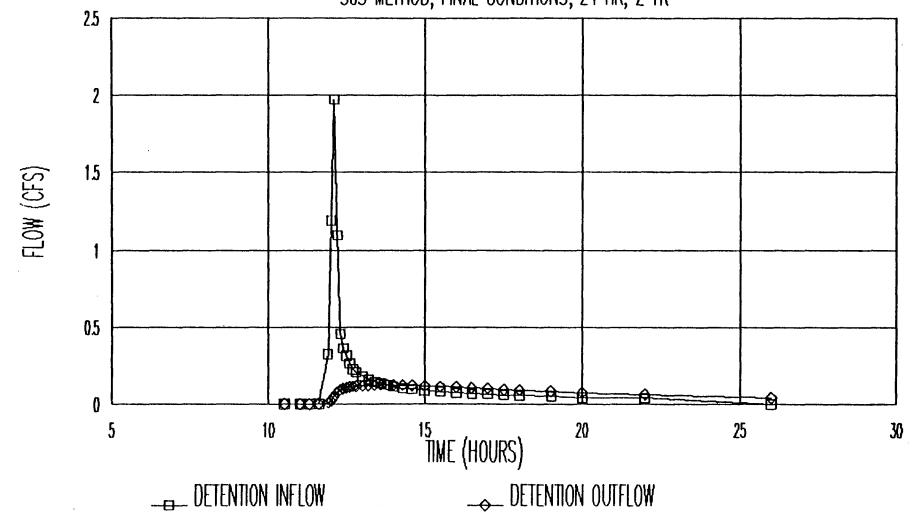
ſ

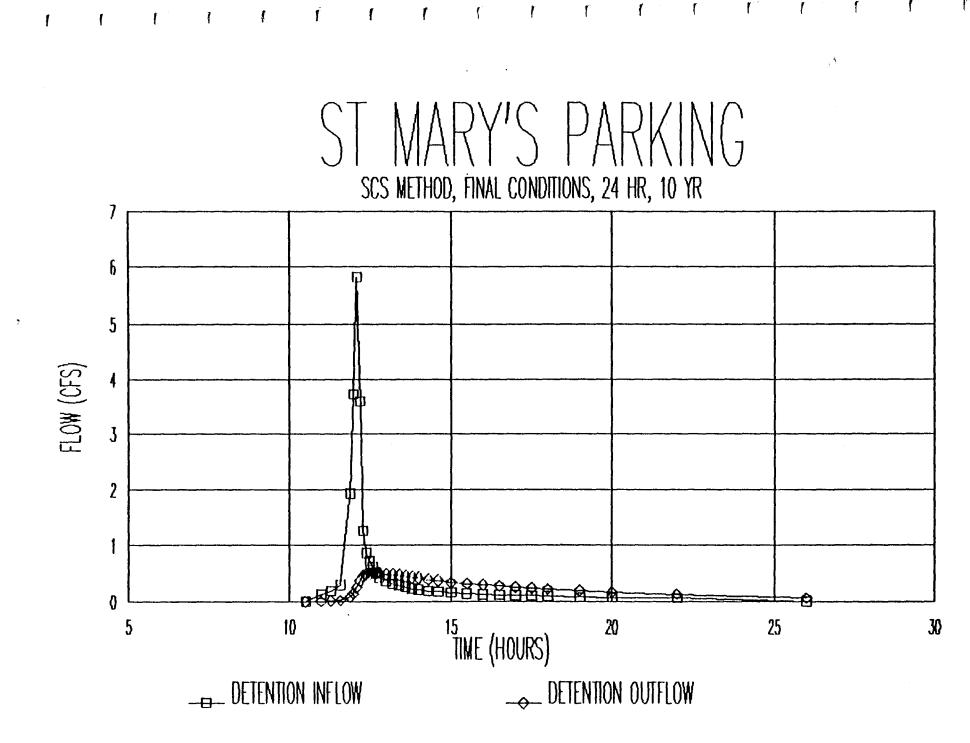
17.7

II

T

1

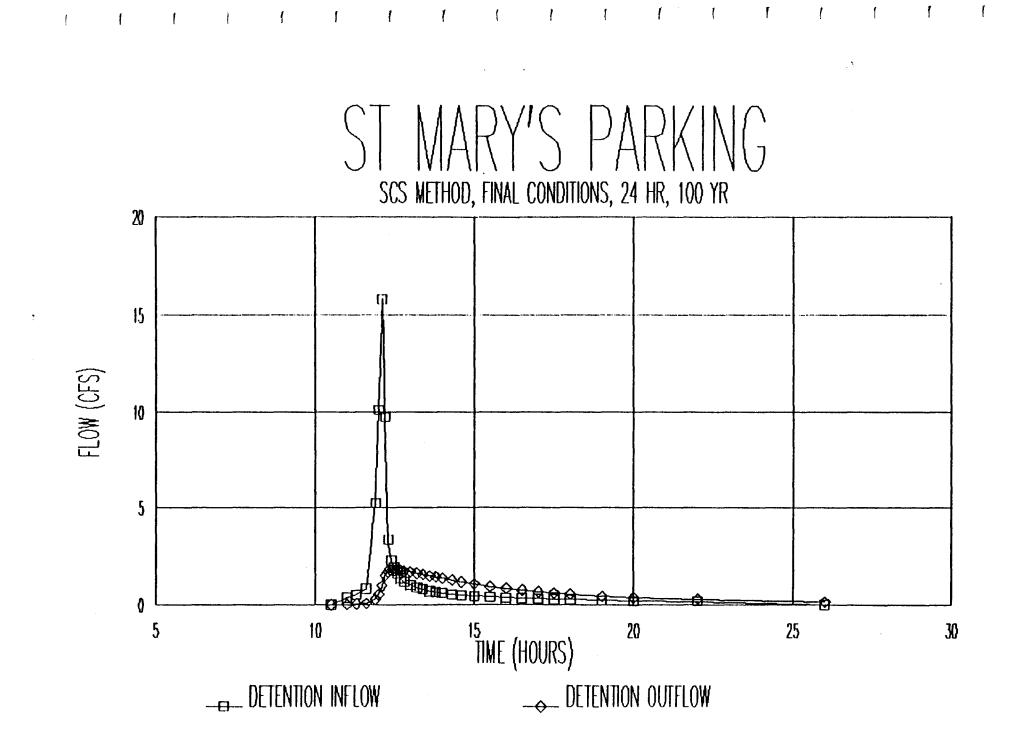

ſ

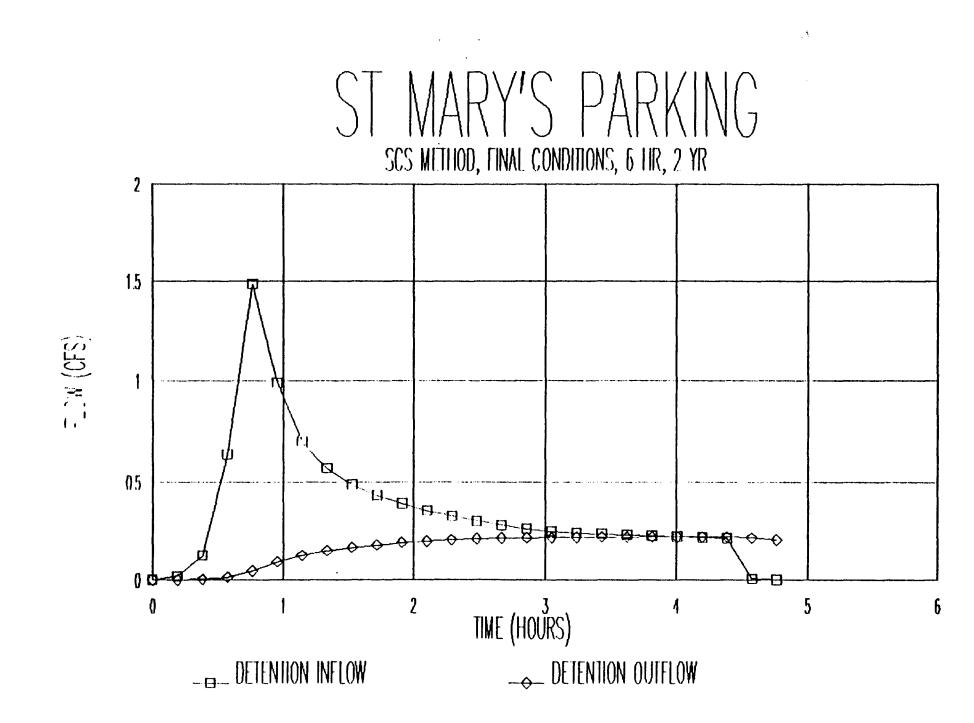

1

1

1 1 1

1




T T T T T

1

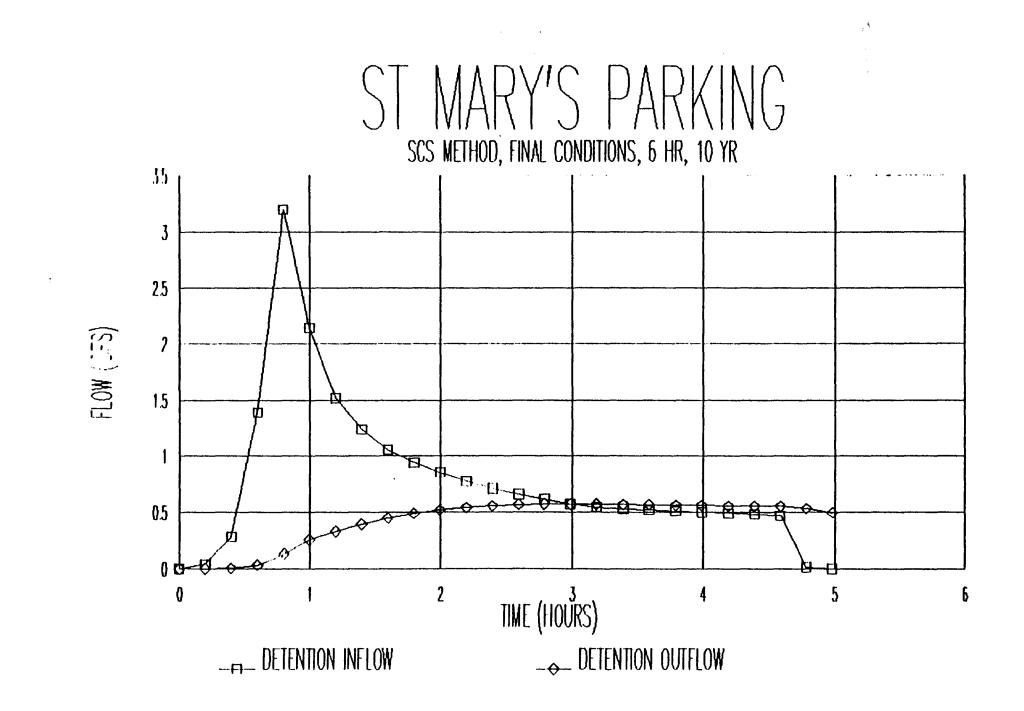
f

1

•

{

ſ


1

- f^

1 1 1 1 1 1

ſ

1

ť

ſ

1

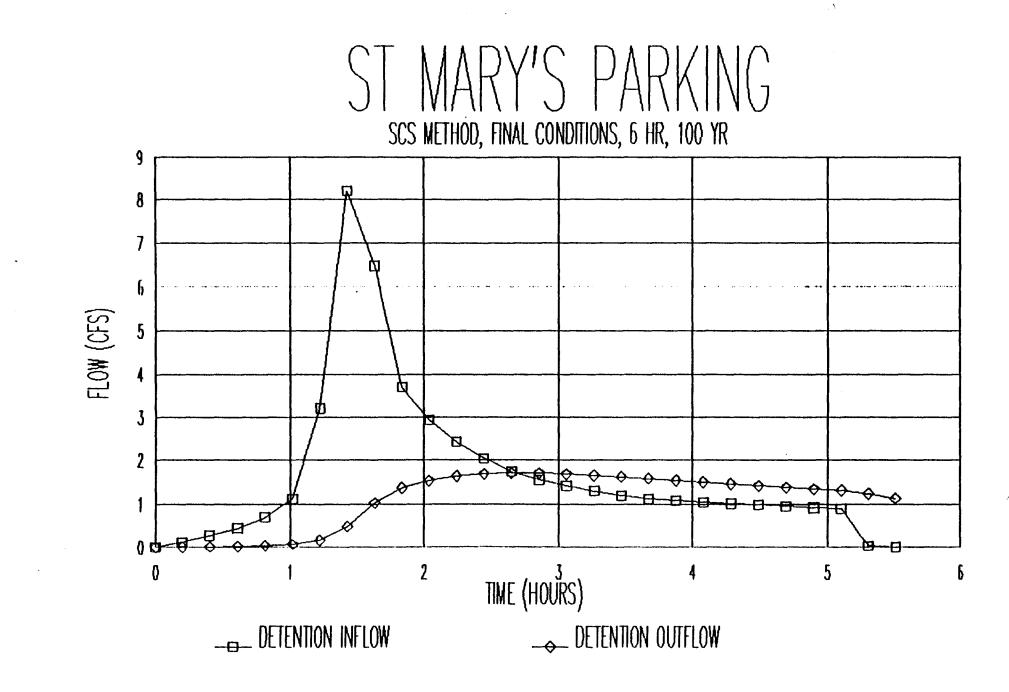
1 1 1

1

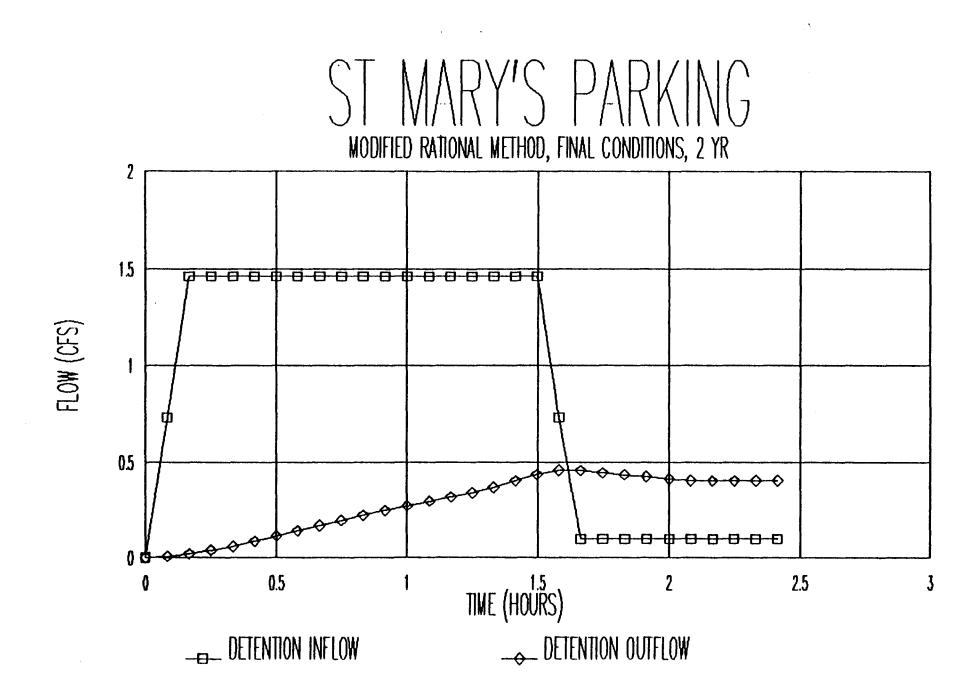
1

{

1


ſ

f f f

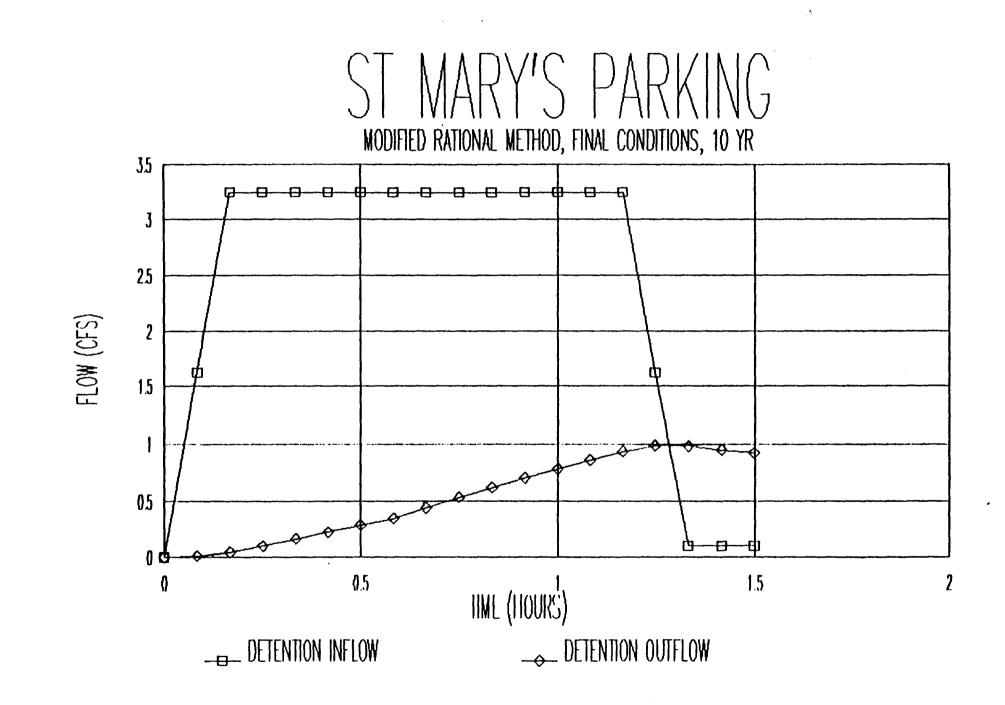

ſ

1

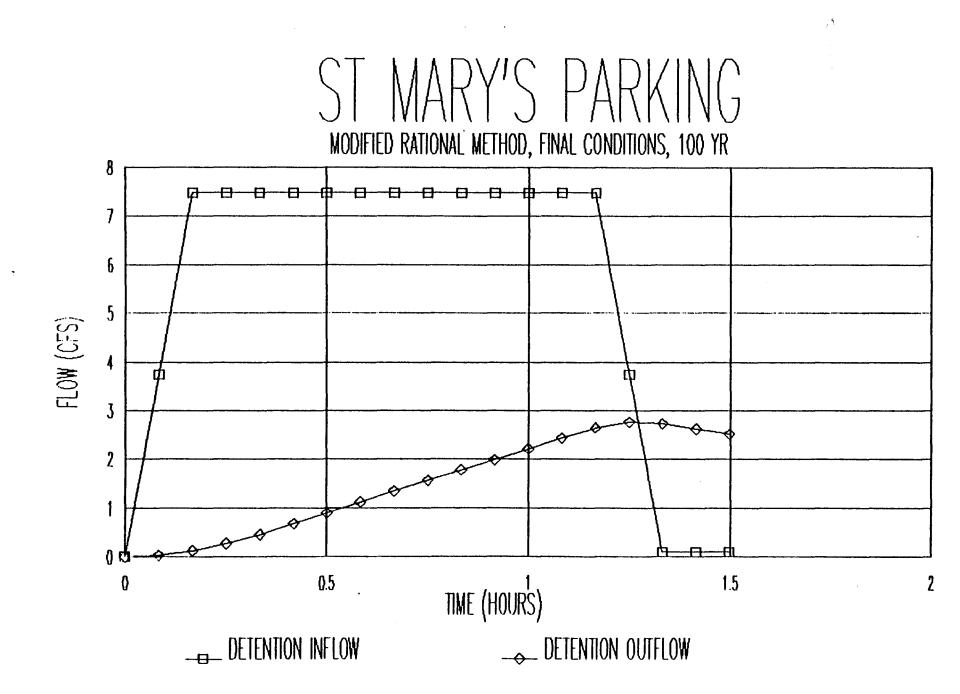
ſ

1

I I I I I


ſ

ſ


ſ

Ľ

ſ

TTTTTTTTTTTTTTTTTTT

1

FIGURE 24

ſ

f 1°

ſ

APPENDIX

Ц

EASIN 1 ORIGINAL CONDITIONS 2 YR STORM SCS TR 20: FOR Tc=0.15, Ia/P=.5 AND Tt=0, 24 HR STORM

.

	AREA (sq mi)	CN	S	P	Ð	UNIT Op	ĝp	Iā/P				
	0.0111	84.613	1.818514	0.7	0.052485	374	0.217886	0.519575	0			
	TIME (HOURS)	q(p)	% max	INFLOW (CFS)			INITIAL STORAGE VOLUME (CU FT)	(CFS)		FINAL WATER ELEVATION	FINAL Cutflow (CFS)	OUTFLOW Volume (CU FT)
	10.5			0			0	_		0	C	0
	11	0	0	0.001		0.4	0	C		0.400367	0	0
	11.3	0	Û		1.08	0.4	0.9	0		0.406808	0	Û
L	11.6	0	0	0.001	1.08	0.4	1.98	0		6.401249	0	0
	11.9	0	0	0.001	1.08	0.4	3.06	Û		0.401690	C	0
	12				4.217317		4.14		4.037317		0	0
	12.1				37.43694				41.47426		0	0
	12.2	374			72.61928				114.0935		0	0
	12.3				66.37978				180.4733		0	0
	12.4				47.71375				228.1870		0	0
	12.5				38.17100				266.3580		0	0
C .3	12.6				32.92773				299.2858		· 0 0	0
•	12.7				28.62825				327.9140		•	0
	12.8				25.27255				353.1866		0	Û
	13				45.19698				398.3836 438.8616		0	0
	13.4				36.91261				430.0010		. O D	· 0
	13.4				34.18611				509.9603		0	Û
	13.8				31.77421				541.7345		· 0	Û O
	13.6				29.57203				571.3066		0	
	14.3				40.74020				612.0468		0	0 0
F 5	14.5				38.06613				650.1129		0 0	
k	14.0				48.65753				698.7705		0	0 0
	15.5				56.62730				755.3978		0	0
	15.5				51.38403				806.7818		. 0	0
	16.5				47.18942				853.9712		0	0
	10.13				44.82995				895.8012		0	0
	17.5				42.99480				937.7587		0	0
	17.3				41.15966				941.4814		0	0
	19				76.55173				945.4138		0	0
	20				67.63817				946.6722		0	0
 	22				121.6438				1020.602		ů 0	0
	26	20	0.074000		117.4492		1020.602		1020.002		0	0
	20	0	U	0	*11.14416	, U		Ŭ	10111000		v	v

Ľ

~___

-

~

~

<u>ن</u>

(<u> </u>)	BASIN 2, 2 SCS TR 20:					HR STORM		
	AREA (SQ MI)	CN	S	Ą	Ģ	UNIT Op	ар	la/P
	C.0028	851.	764705	0.7	0.057037	539	0.086081	0.504201
- 								
	ine (Hours)	q(p) .	%£ô∑	INFLOW (CFS)) NOREMENT INFLOG VOLUME (CU-FT)			
(<u> </u>	10.5 11 11.3	0 · · 0 0	0 0	0 0 2 0	- C C C			
	11.6 11:7 12.1 12.2 12.3 12.4 12.5 12.6 12.7	0 70 0. 537 0. 176 0. 171 0. 154 0. 134 0. 117 0.	0 129870 1 699443 363636 317254 265714 248606 217068	0.011179 0.086081 0.060208 0.031302 0.027309 0.024594 0.021400 0.018685	0 2.017285 17.50686 26.03217 16.47178 10.55011 9.342745 6.279110 7.215474			
	13 15.2 13.4 13.6 13.5 14 14.3 14.3	89 0; 83 0, 77 0, 72 0, 67 0, 61 0, 59 0,	183673 165120 153788 142857 153590 124304 113172 109461	0.015810 0.014213 0.013255 0.012297 0.011498 0.010700 0.009742 0.009422	11.90122 10.80865 9.888937 9.199011 8.566579 7.991641 11.03081 10.34888			
	15 15.5 16 16.5 17 17.5 18 19 20 22 26	51 0. 46 0. 43 0. 42 0. 38 0. 38 0. 34 0. 30 0.	094619 065343 079777 077922 074211 070500 063079 055658	0.002943 0.008144 0.007346 0.006867 0.006707 0.0060638 0.005429 0.005429 0.005429 0.004791 0.004471 0	15.37959 13.94225 12.79237 12.21743 11.76623 11.21129 20.35777 18.39802			

-	SCS TR 20	FOR TO	=0.15, li	a/P=.3 AN) Tt=0, 24	4 HR STORM	1					
	AREA (SQ MI)	CN	S	þ	Q	UNIT Op	Qp	la/P				
-	0.0111	84.631	1.816001	1.12	0.222616	740.5	1.829801	0.324286	0			
-	TIME (HOURS)	q(p)	X max	INFLOW (CFS)	INCREMENT INFLOW VOLUME (CU_FT)	E INITIAL WATER ELEVATION		INITIAL OUTFLOW (CFS)	FINAL Storage Volume (CUFT)	F INAL WATER Elevation	FINAL Outflow (CFS)	OUTFLOW VOLUME (CU FT)
-	10.5 11.3 11.3 11.6 11.9 12.1 12.3 12.4 12.3 12.4 12.6 12.4 12.6 12.4 12.5 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.5 12.4 12.5 12.4 12.5 12.4 12.4 12.5 12.4 12.4 12.5 12.4 12.5	374 740.5 357 224 173.52 118.5 59.5 54.5 54.5 54.5 54.5 34.5 31.5 28.5 31.5 28.5 21.5 20.5 20.5 20.5 20.5	1 0.824443 0.482107 0.302498 0.234301 0.191762 0.16027 0.13977 0.120864 0.106007 0.955881 0.0975881 0.087779 0.085496 0.065496 0.065496 0.065212 0.057394 0.051972 0.046537 0.042537 0.042537 0.042537 0.042537 0.042537 0.042537 0.042537 0.042537 0.042537	0.0001 0.238455 0.924167 1.829801 1.508566 0.652159 0.353512 0.428724 0.350867 0.292818 0.255752 0.221158 0.1255752 0.221158 0.175443 0.160617 0.134671 0.119645 0.105019 0.077838 0.077838 0.077838 0.077838 0.077838 0.077838 0.077838 0.077838 0.077838 0.077838 0.077838 0.077838 0.077838 0.077838 0.077838 0.077838 0.077838 0.077838 0.077838 0.079355 0.08554	209.2719 495.7142 600.9061 430.3306 258.4208 176.8025 140.33 115.8668 98.74253 171.6875 149.4481 132.9911 120.9818 101.7518 101.4112 137.4339 126.0969 157.4543 180.1384 162.3469 146.7794 136.7717 130.0999 123.4282 226.8409 197.9298 351.3811	0.423083 0.441549 0.457624 0.471928 0.48494 0.496853 0.50776 0.522543 0.536106 0.553041 0.572416 0.589878 0.605665 0.620376 0.63437 0.647645 0.6706807	56.514/6 101.7266 141.0819 176.1035 207.9626 237.1277 263.8331 300.026 333.2321 374.6958 422.133 464.8851 503.5377 539.5549 573.8151 606.3184 751.1646	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 30.51211 54.51476 101.7266 141.0819 176.1035 207.9626 237.1277 263.8331 300.026 333.2321 374.6958 422.133 464.8851 503.5377 573.8154 503.5377 573.8154 503.5317 573.8154 606.3184 751.1646	0.423683 0.441547 0.457624 0.471928 0.48494 0.496853 0.50776 0.522543 0.536106 0.553041 0.572416 0.585878 0.620376 0.63437 0.647645 0.706607 0.75772 0.847024		000000000000000000000000000000000000000

GRIGINAL CONDITIONS BASIN 1, 10YR SCS TR 20: FOR TC=0.15, 1a/P=.3 AND Tt=0, 24 HR STOP

C

or

(SG MI) 0.0028 TIME (HOURS) 10.5 11 11.3 11.6 11.9 12 12	85 q(p) 0 0 0	1.764705 %max		0.232398 INCREMENT INFLOW VOLUME (CU FT)		0.609070	0.315126
T1ME (HOURS) 10.5 11 11.3 11.6 11.9 12	q(p) 9 0 0	ይመረ ጃ -	INFLOW (CFS)	INCREMENT INFLOW VOLUME		0.609070	0.315126
(HOURS) 10.5 11 11.3 11.6 11.9 12	0 0		(CFS)	INFLOW VOLUME			
11 11.3 11.6 11.9 12	0	0	0				
11.3 11.6 11.9 12	0	0				-	
11.6 11.9 12			0	0			
11.9 12	0	0	0	0			
12		0	0	C			
			0.100210				
10.1			0.369607				
12.1			0.609070				
12.2			0.340775				
12.3			0.141205				
12.4				45.56319			
12.5			0.096956				
•		•					
	-						
	12.6 12.7 12.8 13.2 13.4 13.6 13.6 13.8 14 14.3 14.6 15 15.5 16.5 17 17.5 18 19 20 22 26	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12.7107 0.114316 0.069626 27.29106 12.897 0.103632 0.063119 23.89432 13 66 0.091880 0.055961 42.86922 13.276 0.0911960 0.049454 37.94960 13.4 69 0.073717 0.044897 33.96741 13.6 63 0.067307 0.040995 30.92206 13.8 58 0.061965 0.037741 29.34522 14 53 0.056623 0.034487 26.00264 14.3 46 0.049145 0.027932 33.03036 15 42 0.044871 0.027330 41.22941 15.5 36 0.040598 0.024727 46.85161 16 34 0.036324 0.022124 42.16644 16.5 31 0.032051 0.019521 35.72435 17.5 28 0.029914 0.018220 33.96741 18 27 0.026846 0.017567 32.21049 19 24 0.025641 0.015617 59.73580 20 20 0.021367 0.013014 51.53677 22 19 0.020299 0.012363 91.360644	12.71070.1143160.06962627.2910612.8970.1036320.06311923.8943213860.0918800.05596142.8692213.2760.0611960.04945437.9496013.4690.0737170.04489933.9674113.6630.0673070.04099530.9220613.8580.0619650.03774128.3452214550.0566230.0348726.0026414.3460.0512820.03123435.4900914.6460.0491450.02993233.0303815420.0448710.02733041.2294115.5360.0405980.02472746.8516116340.0363240.02122442.1664416.5310.0320510.01952135.7243517.5280.029140.01822033.9674118270.0286460.01756932.2104819240.0256410.01561759.7358020200.0213670.01301451.5367722190.0202990.01236391.36064	12.7 107 0.114316 0.069626 27.29108 12.8 97 0.103632 0.063119 23.89432 13 86 0.091880 0.055961 42.86922 13.2 76 0.091196 0.049454 37.94980 13.4 69 0.073717 0.044899 33.96741 13.6 63 0.067307 0.040995 30.92206 13.8 58 0.061965 0.037741 28.34522 14 53 0.056623 0.034487 26.00264 14.3 46 0.051282 0.031234 35.49009 14.6 46 0.049145 0.029932 33.03038 15 42 0.044871 0.027330 41.22941 15.5 36 0.046598 0.024727 46.85161 16 34 0.033119 0.020172 36.06693 17 30 0.032051 0.019521 35.72435 17.5 28 0.029914 0.018220 39.96741 18 27 0.026846 0.017569 32.21043 19 24 0.025641 0.015617 59.73580 20 20 0.021237 0.012017 21.36064

BASIN 2. 10 YEAR ORIGINAL CONDITIONS

×. . 1

10	BASIN 1, 1 SCS TR 20				D Tt=0, 24	4 HR STORI	1					
	AREA (sq mi)	CN	S	P	Û	UNIT Qp	ûp	Ia/P				
	0.0111	84.613	1.818514	2.01	0.782234	874.5	7.593106	0.180946	0			
Ι_	TIME (HOURS)	q(p)	%max	INFLOW (CFS)		T INITIÀL WATER ELEVATIO	STORAGE	OUTFLOW (CFS)	STORAGE	FINAL Water Elevation	FINAL OUTFLOW (CFS)	OUTFLOW Volume (CU FT)
	10.5			0			0			0	Û	
	11	23.5	0.026872	0.204045	183.6411	0	0	0	183.6411	0.475006	0	0
	11.3				262.5678				446.2089	0.582250	0	0
۲.1	11.6				386.8186				833.0276		G	Û
	11.9				804.1139				1637.141		0	0
	12				1010.417				2647.558		0	C
	12.1	874.5			2187.283				4834.842		- 0	0
	12.2				2478.765				7313.607		0	0
	12.3				1657.459				8971 .0 66		0	0
	12.4				855.6897				9826.756	2.050202	Û	Û
	. 12.5				536.0759				10362.83	2.074585	0	0
	12.6				407.1364				10769.96	2.093103	Û	Û
	12.7				328.2097				11098.17		0	0
	* 12.8				273,5081				11371.68		C	ð
	13				465.7452				11837.43		0	0
	13.2				396.9775				12234.40		0	0
	13.4				348.5275				12582.93		0	. O
	13.6				312.5807				12895.51		0	Û
	13.8				282.8855				13178.40		0	C
	14				256.3161				13434.71		0	0
	14.3	34.5	0.039451	0.299556	344.6202	2.214305	13434.71	0	13779.34	2.229979	Û	0
	14.6				314.1436				14093.48		C	0
	15				387.6001				14481.08		C	0
	15.5				437.6130				14918.69		0	0
	16				370.7259				15309.42		· 0	Û
	16.5				347.7460				15657.16		C	C
	17				320.3952				15977.56		0	Û
	17.5				304.7662				16282.33		0	0
	18				289.1371				16571.46		0	0
	19				523.5727				17095.04		0	0
	20				445.4275				17540.46		0	0
	22				781.4518				18321.91		0	0
	26	0	Û	0	750,1937	2.436592	18321.91	0	19072.11	2.4/0/13	0	0

ί.,

2

-

-

-

-

-

€°.≠	E SCS TR 20:	•			IGINAL CON Tt=0, 24			
	AREA (SG MI)	CN	Ş	P	Ð	UNIT Op	Qp	Iâ∕P
	- 01.0D2B	85	1.764705	2.01	0.802464	1010	2.269368	0.175592
	TIME (HOURS)				INCREMENT INFLOW Volume (Cu FT)			
	10.5 11 11.3 11.6 11.9 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 13.1 13.2 13.4 13.6 13.8 14 14.3 14.6 15 15.5 16	24 34 53 34 647 1010 623 217 147 123 104 86 76 66 57 51 46 42 38 34 32 29 26	0.033663 0.052475 0.033663 0.640594 1 0.616631 0.214851 0.145544 0.121782 0.122770 0.085148 0.075247 0.065346 0.056435 0.045544 0.045544 0.045544 0.037623 0.033663 0.031683 0.028712 0.025742	0 0.053925 0.076394 1.453744 2.269368 1.399818 0.487577 0.330294 0.276368 0.233677 0.193233 0.170764 0.148295 0.128073 0.114591 0.103357 0.094369 0.085382 0.076394 0.071900 0.065160 0.058419 0.051678	48.53303 70.37290 105.5593 105.5593 275.4249 670.1603 660.4537 339.7312 147.2168 109.1993 91.80833 76.84397 65.51960 114.8615 99.49273 87.35947 78.46174 71.18179 64.71071 87.35947 80.07951 98.68384 111.2215			
-	16.5 17 17.5 18 19 20 22 26	21 20 19 18 15 13	0.020792 0.019801 0.018811 0.017821 0.014851 0.012871	0.047184 0.044937 0.042691 0.040444 0.033703 0.029209 0.026962	88.97723 82.91060 78.86618 74.82176 133.4658 113.2437			

C

		ORIGINAL MODIFIED	CONDITIO RATIIONA	NS 2 YEAR _ Method I	STORM BAN WITH 1c=10	SIN 1 0 MIN AND	STORM DU	RATION 10	MIN			
		AREA (ACRES)	C	ć	SOIL MOIS FACTOR	S Qp						
-		7.11	0.311	0.9	1	1.990089						
		TIME (HOURS)		INCREMEN INFLOW VOLUME (CU FT)	WATER ELEVATIO	STORAGE N VOLUME	INITIAL OUTFLOW (CFS)	STORAGE	FINAL WATER Elevation	FINAL Outflow (CFS)	OUTFLGW Volume (CU Ft)	
		0.167 0.25 0.333 0.417	0.995044 1.990089 0.995044 0.001 0.1	431.3521 445.9789 148.8070 15.2712	0.065778 0.229699 0.304440 0.220637	0 148.6596 519.1200 688.0361 498.6415 338.6300 337.0464	0 0 0 0	519.1200 688.0361 498.6415 338.6300	0.149836	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
	L.,	0.5833 0.6667 0.75 0.833 0.9167 1	0.1 0.1 0.1 0.1	27.985 30.024 27.988 29.88 30.132 29.980	0.149135 0.162404 0.175687 0.188758 0.202179 0.215512	338.6300 337.0464 367.0344 397.0584 427.0464 456.9264 487.0584	0 0 0 0 0	367.0344 397.0584 427.0464 456.9264 487.0584 517.0464	0.162404 0.175689 0.188958 0.202179 0.215512 0.228781	0 0 0 0 0 0 0 0	00000	
	[ORIGINAL MODIFIED	CONDITION Rational	NS 2 YEAR L Method I	STORM BAN NITH TC=10	SIN 1 O MIN AND	STORM DU	ATION 15	M1R			
-		AREA (ACRES)	ĉ	-	SGIL MOIN FACTOR	s igp						
		7.11	0.311	0.76	1	1.680519						
_	• •	TIME (HOURS)	INFLOW (CFS)	INCREMEN INFLOW Volume (Cu FT)	I INITIAL Water Elevatio	INITIAL STORAGE VOLUME (CU FT)	INITIAL OUTFLOW (CFS)	FINAL STORAGE VOLUME (CU FT)	FINAL Nater Elevation	FINAL OUTFLOW (CFS)	OUTTLON Valume (Cuift)	
-		0 0.083 0.167 0.25 0.333 0.417 0.5	0.840259 1.680519 0.840259 0.01 0.1 0.1	125.5348 361.1416 376.6044 127.0288 16.632 29.89	0 0.025702 0.103737 0.166705 0.158219 0.129167	0 58.08672 234.4464 381.2767 357.5764 291.9189 294.3691	000000000000000000000000000000000000000	56.08672 234.4464 381.2767 357.5764 291.9189 224.3691	0 0.025702 0.103737 0.165706 0.158219 0.129167 0.135251 0.143520 0.156805 0.156805 0.156805 0.156805 0.170674 0.183276 0.186278 0.196628	000000000000000000000000000000000000000	000000000000000000000000000000000000000	
		0.5633 0.6667 0.75 0.633 0.9167 1	0.1 0.1 0.1 0.1 0.1	29.988 30.024 29.988 29.88 50.132 29.988	0.130251 0.143520 0.156805 0.170074 0.183296 0.196628	294.3691 324.3571 354.3611 384.3691 414.2491 444.3811	0 0 0 0 0	324.3571 354.3811 384.5891 414.2491 444.3811 474.3691	0.143520 0.156805 0.170074 0.183296 0.196628 0.299897	000000	000000	

·

.

t

	AREA (ACRES)	C	i	SOIL MOIS Factor	Qp					
	7.11	0.311	0.67	1	1.481510					
	•2						t			
. 4	TIME (HOURS)	INFLON (CFS)	INFLOW	WATER	INITIAL STORAGE VOLUME (CU-FT)	INITIAL FINAL OUTFLOW STORAGE (CFS) VOLUME (CU FT)	WATER ELEVATION	FINAL Outflow (CFS)	outf: 04 Volume (CU_FT)	
	0.167 0.25 0.333 0.417 0.5 0.5833 0.6667	1.481510 1.481510 1.481510 0.740755 0.1 0.1 0.1	110.6688 336.0066 442.6753 442.6753 336.0066 125.6088 29.965 30.024	0.445201 0.582440 0.763247 0.944054 1.027437 1.044753 1.046667	446.6754 889.3508 1332.026 1668.032 1793.641 1823.627	0 110.6686 0 446.6754 0 689.5506 0 1332.026 0 1668.032 0 1793.641 0 1823.629 0 1653.653	0.582440 0.763247 0.944054 1.027437 1.044753 1.048887 1.053026	000000000000000000000000000000000000000		
	0.75 0.833 0.9167 1	0.1 0.1 0.1	29.68 30.132	1.053026 1.057160 1.061279 1.065433	1883.641 1913.521	0 1883.641 0 1913.521 0 1943.653 0 1973.641	1.061279	0 0 0	0 0 0 0	
	ORIGINAL Modified	CONDITION RATIIONAL	ns 2 year L Method I	STORN BAS ATTH TC=10	in 1 Min And	STORM DURATION 30	MIN			
	- AREA (ACRES)	ĉ	-)	SOLL MOIS FACTOR	đb					
	7.11	0.311	0.54	1	1.194053					
•	TIME (HOURS)	INFLOW (CFS)	INFLOW	ELEVATION	STORAGE	OUTFLOW STORAGE	WATER	OUTFLOW	OUTFLOW VOLUME (CU FT)	,
	0.167 0.25 0.333 0.417 0.5	1.194053 1.194053 1.194053 1.194053 1.194053	356.7831 356.7831 361.0817 356.7831	0 0.436431 0.547041 0.692766 0.838491 0.985972	360.0071 716.7902 1073.573 1434.655	0 1791.438	0.547041 0.692766 0.838491 0.985972 1.044449	00000000000000000000000000000000000000	0 0 0 0 0	
	0.5833 0.6667 0.75	0.397026 0.1 0.1	104.6376	1.044449 1.081471 1.095896	2059,992	0 2059.992 0 2164.630 0 2194.618	1.095895	0	000000	

•

ORIGINAL CONDITIONS 2 YEAR STORM BASIN 1 MUDIFIED RATIIONAL METHOD WITH TC=10 MIN AND STORM DURATION 40 MIN

-

U.,	HUUTT IED	RHITUNHL	HE HOU H	nin no-to	HIN MOU	D STORE DOWNTON 40 HIM	
	AREA (ACRES)	C	i	SUIL MOIS Factor	ģ)	
	7.11	0.311	0.47	1	1.039268	3	
	TIME (HOURS)		INCREMENT INFLOW VOLUKE (CU FT)	INITIAL WATER ELEVATION	INITIAL Storage Volume (CU-FT)	e outflow storage water outflow volume e (CFS) volume elevation (CFS) (CU FT)	
	0.167 0.25 0.333	0 0.519634 1.039268 1.039268 1.039268 1.039268	235./061 310.5334 310.5334	0.527980 0.654815	313.3395 625.8730	· · · · · · · · · · · · · · · · · · ·	
(0.5 0.5833 0.6657	1.037268 1.037268 1.037268 0.517634 0.1	310.5334 311.6558 312.0300 203.7419 92.57337 30.132	0.910012 1.012436 1.055399	1248.631 1559.214 1870.870 2182.900 2416.642 2509.216	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

ORIGINAL CONDITIONS 2 YEAR STORM BASIN 1 MODIFIED RATIIONAL METHOD WITH TO=10 MIN AND STORM DURATION 50 MIN

AREA (ACRES)	C		L MOIS Dep Actor	
7.11	0.311	0.4	1 0.884484	

TIME (HOURS)		INFLOW	T INITIAL WATER ELEVATION	STORAGE	INITIAL OUTFLOW (CFS)	STURAGE		FINAL Outflow (CFS)	outflow Volume (CU_FT.)
0.167 0.25 0.333 0.417 0.5 0.5833 0.6667 0.75	0.442242 0.884484 0.884484 0.884484 0.884484 0.884484 0.884484 0.884484 0.884484 0.884484 0.884484 0.884484 0.884484 0.442242 0.1 0.1 0.1	200.6009 264.2838 264.2838 267.4679 264.2838 265.2390 265.5574 265.2390 264.2838 199.8845 81.30376 81.30376 29.88 29.88	0.426986 0.508919 0.616864 0.724508 0.834053 0.941997 1.016987 1.02595 1.090160 1.126595 1.154148 1.165356 1.154148 1.165356 1.169476 1.173595	266.6719 530.9557 795.2395 1062.707 1326.991 1592.230 1857.787 2123.026 2387.310 2387.310 2387.195 2666.479 2696.379		66.07095 266.6719 530.9557 795.2395 1062.707 1326.991 1592.230 1657.787 2123.026 2387.310 2587.195 2688.499 2698.379 2698.379 2758.139	C.536919 0.616664 0.724603 0.834053 0.94199/ 1.016787 1.053596 1.090160 1.126593 1.154148 1.165356 1.169476 1.163476		000000000000000000000000000000000000000

ORIGINAL	CONDITION	5 2 YEA	R STO	RM BAS.	IN 1					
MODIFIED	RATIICNAL	METHOD	WITH)c=10	MIN	and	STORM	DURATION	60	MIN

C .:	AREA (ACRES)	C	1	SOLE MOLS FACTOR	S Qp					
1	7.11	0.311	C.34	1	0.751811					
	TIME (Hours)	INFLOW (CFS)	INFL GM	T INITIAL Water Elevation	SLONAGE	INITIAL DUTFLOW (CFS)	STORAGE	FINA) NATER Elevation	FINH OUTFLOW (CFS)	VƏLUHE
	0 0.083 0.125 0.325 0.325 0.4175 0.5565 0.5567 0.5567 0.5567 0.5567 0.5567 0.5567 0.5567 0.5567 0.1257 0.5567 0.1257 0.4175 0.5567 0.1257 0.4175 0.5567 0.1257 0.4175 0.5567 0.1257 0.4175 0.5567 0.1257 0.4175 0.5567 0.1257 0.4175 0.5567 0.1257 0.5567 0.5567 0.1257 0.5567 0.5567 0.1257 0.5567 0.5567 0.1257 0.5567 0.5567 0.1257 0.5567 0.1257 0.5567 0.1257 0.5567 0.1257 0.5567 0.1257 0.5567 0.1257 0.5567 0.1257 0.5567 0.1257 0.5567 0.1257 0.5567 0.1257 0.5567 0.1257 0.5567 0.1257 0.5567 0.1257 0.12777 0.12777 0.12777 0.12777 0.127777 0.12777777777777777777777777777777777777	0 0 0 0 0 0 0 0 0 0 0 0 0 0	56.001207722 1.5001207722 2.22224.4.447122 2.22224.4.344523 2.22224.5.57454532 2.22224.5.544502 2.22224.544502 2.22224.544502 2.22225.544502 2.22225.544502 2.22225.5452 2.2225.5452 2.2225.5452 2.2225.5452 2.2225.5452 2.2225.5452 2.2225.5452 2.2225.5452 2.2225.5452 2.2225.5452 2.2225.5452 2.2225.5452 2.2225.5452 2.2225.5452 2.2225.5452 2.2225.5452 2.2225.5452 2.2255.552 2.2255.5552 2.2255.5552 2.2255.5552 2.2255.5552 2.2255.5552 2.2255.5552 2.2255.5552 2.2555.55552 2.2555.5552 2.2555.5552 2.2555.5552 2.2555.55552 2.2555.55552 2.2555.55552 2.25555.55552 2.25555552 2.255555555	0.024849 0.100298 0.199695 0.2990990 0.399690 0.499089 0.598649 0.5610374 0.5610374 0.5610374 0.5610374 0.5610374 0.5610374 0.5610374 0.5610374 0.5610374 0.5610374 0.5610374 0.5610374 0.5610374 0.5610374 0.562528 0.562528 0.5627228	0 58.16031 220.6711 451.3123 451.3123 451.3123 127.942 127.942 127.942 1253.395 1430.5772 1452.123 1452.123 1452.123 1455.1555 1417.535 1417.535		56.16031 226.671 451.9125 670.9536 903.7.942 1555.395 1655.4723 1660.4723 1669.4723 1699.010 1699.9500 1699.9500 1699.9500 1699.95000 1600000000000000000000000000000	0 0.024549 0.100294 0.199595 0.299094 0.399695 0.598547 0.598547 0.598547 0.594524 0.71598 0.71598 0.71598 0.71598 0.71598 0.71598 0.71598 0.71598 0.71598 0.71598 0.71598 0.54252 0.55252 0.55252 0.554766	020000000000000000000000000000000000000	000000000000000000000000000000000000000
	- GRIGINAL NGOIFIED Area 7.11		NS 2 YEAR L_METROD I i 0.32	STORM BAJ FLIH To=10 SRIL MOIS 1		storii oui	ARTICK 70	KEX		
	TIME (Nours)	inflow (cfs)	INCREMEN INFLOR VOLUTE (CUTT)	T INITIAL Sater Elevation	IN)TIAL STORAGE (HOLUNE (OU FT)	INITIAL GUTFLOW (CFS)	FINAL Storage Volume (CU-F1)	FINAL NATER Elevation	FINAL BUTFLOW (CFS)	UNFLOW VOLUME (CU FT)
	0 0.083 0.167 0.25 0.339 0.417 0.5833 0.5833 0.5833 0.75 0.833 0.9167 1.1669 1.249 1.392 1.41561 1.591 1	0.353793 0.707587 0.7075	\$2.65676 201.4270 211.4270 211.4270 211.4270 212.1912 212.1912 212.4912 211.4270 201.42700 201.42700 201.42700 200.42700 200.42700 200.42700 200.40	0.023387 0.023387 0.024397 0.1875948 0.187597 0.187597 0.227597 0.24597 0.24597 0.245946 0.245946 0.245946 0.245946 0.2577 0.2577 0.2577 0.2778 0.02778778 0.02778778 0.02778778 0.02778 0.027	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000		0	000000000000000000000000000000000000000	000000000000000000000000000000000000000

t]

0...

1 : . -

-

80----

.

-

÷

	AREA (ACRES)	C	· 1	SOIL MOIS FACTOR	Q₽					
	7.11	0.311	0.29	1	0.641250					
en 13 E card	TIME (HOURS)	INFLOW (CFS)	INCREMENT INFLOK VOLUME (CU FT)	INITIAL WATER ELEVATION	INITIAL STORAGE VOLUME (CU FT)	INITIAL DUTFLON (CFS)	FINAL STORAGE VOLUME (CU FT)	FINAL WATER Elevation	FINAL OUJFLOW (CFS)	OUTFLON VOLUNE (CU FT)
	0.25 0.333 0.417 0.5 0.6667 0.75 0.633 0.9167 1.083 1.166 1.249 1.332	0.641250 0.641250 0.641250 0.641250 0.641250 0.641250 0.641250 0.641250 0.641250 0.641250 0.641250 0.641250 0.641250 0.641250 0.641250 0.641250 0.641250 0.641250	145.4357 191.6057 191.6057 191.6057 192.5291 192.6057 192.5291 192.5293 191.6057 192.6057 191.6057 191.6057 191.6057 191.6057 191.6057 191.6057 191.6057 191.6057 193.7043 62.84144 29.88 29.88 29.88 29.88 29.88 29.88 29.88	0.476966 0.557226 0.635486 0.714586 0.791488 0.871490 0.950127 1.009676 1.036090 1.062727 1.089236 1.115550 1.142063 1.168477 1.194891 1.214701 1.223364 1.234693 1.235722 1.239841 1.243760 1.246278 1.255516	193.3371 384.9429 576.5466 770.4629 962.0687 1154.367 1154.367 1154.696 1539.194 1730.800 1924.022 2116.320 2307.926 2499.531 2691.137 2882.743 3026.447 3089.289 3119.169 3149.049 3178.929 3208.609 3270.309 3297.869 3329.769 3359.649		47.90144 193.33/1 364.9429 576.5456 770.4629 962.0697 1154.367 1346.367 1356.194 1730.800 1924.022 2116.320 2307.926 2499.531 3026.447 3089.289 3149.049 3128.209 3149.049 3128.209 3236.689 3229.769 3239.649 3359.649 3359.649 3359.649 3359.649 3359.649 3359.649 3359.649 3359.649 3359.649 3359.649 3359.649	0.478966 0.557226 0.635486 0.772948 0.871490 0.750127 1.009676 1.036070 1.062727 1.639236 1.115650 1.142063 1.168477 1.174891 1.214001 1.22364 1.23364 1.235722 1.23964 1.23964 1.2452387 1.2452387 1.25516 1.26635 1.2664754	000000000000000000000000000000000000000	000000000000000000000000000000000000000

{

CJ ORIGINAL CONDITIONS 2 YEAR STORM BASIN 1 MODIFIED RATIIONAL METHOD WITH TC=10 MIN AND STORM DURATION 80 MIN

r=

				STURM BAS		storm dup	NATION 90	MIN		
	AREA (ACRES)	C	i	SOIL MOIS FACTOR	ip ip					
	7.11	0.311	0.27	1	0.597026					
	en e	. *								
	time (Hours)	INFLON (CFS)	INCREMEN INFLOW VOLUME (CU FT)	I INITIAL WATER ELEVATION		INITIAL OUTFLOW (CFS)	FINAL STURAGE VOLUME (CU FT)	FINAL Nater Elevation	FINAL Outflow (CFS)	outflon Volume (CU FT)
	0.167 0.25 0.333 0.417 0.5 0.5833	0.597026 0.597026 0.597026 0.597026 0.597026	135.4056 178.3915 178.3915 180.5408 178.3915 180.5408 178.3915 179.0363	0 0.418215 0.473520 0.545383 0.619245 0.692966 0.765848	180.0035 358.3951 536.7867 717.3275 895.7191	0 0 0 0 0 0	44.59789 180.0035 358.3951 536.7867 717.3275 995.7191 1074.755 1254.006	0.4/3520 0.546389 0.617245 0.692986 0.765846 0.838974	0 0 0 0 0 0 0 0	C 0 0 0 0 0
L	0.75 0.833 0.9167 1 1.083 1.166 1.249 1.332 1.415	0.597026 0.597026 0.597026 0.597026 0.597026 0.597026 0.597026 0.597026 0.597026 0.597028	179.0363 1/8.3915 179.8960 179.0363 178.3915 178.3915 178.3915 178.3915 178.3915 178.3915	1.093708 1.118500 1.142592 1.167484	1254.006 1433.043 1611.434 1791.330 1970.367 2149.758 2327.150 2503.541 2683.933	000000000000000000000000000000000000000	1433.043 1611.434 1791.330 1970.367 2148.758 2327.150 2505.541 2683.933 2562.325	0.985313 1.017635 1.044434 1.069115 1.093708 1.118300 1.142852 1.167484 1.192076	00000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0
	1.581 1.664 1.747 1.83 1.913 2.083 2.166 2.249 2.332	0.1 0.1 0.1 0.1 0.1 0.1 0.1	133.7936 59.53789 29.88 29.88 29.88 31.32 29.86 29.88 29.88 29.88 29.88	1.216668 1.235112 1.243320 1.247439 1.251558 1.255678 1.2559795 1.264114 1.268233 1.272352	3040.716 3174.510 3234.048 3263.928 3293.808 3323.669 3355.008 3384.866 3414.769 3444.648		3040.716 3174.510 3234.048 3263.928 3273.808 3323.688 3355.008 3364.888 3414.768 3444.648 3474.526	1.235113 1.243220 1.247439 1.251558 1.255678 1.255678 1.259995 1.264114 1.268233 1.272352 1.276472	0 0 0 0 0 0 0 0 0 0 0	
	2.332	0.1	29.88	1.276472	3474.528	0	3504.408	1.280591	0	

ORIGINAL CONDITIONS 2 YEAR STORM BASIN 1 MODIFIED RATIIONAL METHOD WITH TC=10 MIN AND STORM DURATION 90 MIN

-

	ORIGINAL MODIFIED AREA (ACRES) 7.11	RATIIONAL	. Method I	STORM BAS WITH TC=10 SOIL MOIS FACTOR 1	MIN AND	storm our	ATION 120) MIN		
	TIME (HOURS)	INFLON (CFS)	INCREMEN INFLOW VOLUME (CU FT)	t initial Natep Elevatiok	INITIAL STORAGE VOLUME (CUIFT)	INITIA OUTFLOW (CFS)	FINAL Storage Volume (CU_FT)	FINA. Water Elevation	FINAL OUTFLOW (CPS)	OUTFLOW VOLUME (CD + ;)
<	0.137 0.25 0.333 0.417 0.53 0.535 0.535 0.75 0.833 0.9167 1.166 1.166 1.166 1.249 1.332 1.496 1.551 1.551 1.561 1.561 1.561	0.454354 0.464354	158.7490 133.7490 135.7490 135.7490 159.2505 139.2505 135.2505 135.74900 135.74900 14000000000000000000000000000000000	0.570524 0.627676 0.684548 0.741424 0.798666 0.84548 0.84548 0.798665 0.827862 1.027882 1.027882 1.027882 1.027882 1.027882 1.027882 1.027882 1.027882 1.027882 1.027882 1.123518 1.123518 1.123518 1.123518 1.123518 1.123518 1.123518 1.123518 1.123518 1.123518 1.123518 1.225545 1.225545 1.225545 1.225545	140,0027 278,7517 417,5007 557,9214 6%,6704 975,2386 1114,589 975,2386 1114,589 975,2386 1114,589 975,2386 1135,257 1552,507 1552,507 1571,256 1945,754 2057,503 2057,503 2057,503 2057,503 2042,459 2781,248 2019,974 3008,746 3204,182 3308,24182 3308,247 8557,871	000000000000000000000000000000000000000	278.7517 417.5007 557.9214 696.6704 635.9209 975.3386 1114.559	0.513858 0.570324 0.627678 0.627678 0.624548 0.741454	000000000000000000000000000000000000000	000000000000000000000000000000000000000

.

Ľ

ľ

1

-

	ORIGINAL C MODIFIED R	DNDITIONS Z ATTIONAL ME	YEAR STOR THOD WITH	M BASIN To=10 M	V 2 Min And	STORM D	JRATION	10 MIN		
	- AREA (ACRES)	C	i SOIL FA	MGIS CTOR	<u>g</u> p					
рат. 1. 4	1.8	0.3	0.9	•	6.496					
	TIME (HOURS)	INFLOK (CFS)	INCREMEN INFLOW Volome (CC FT)	Ferre						
<u> 2000</u>	CB72527 CB72527 CB72527 CB72527 C		36.3042 110.2248 108.9126 36.4536 15.2712 29.88 29.988							
t in Generation	0.2327 0.75 0.533 0.9107 1	00000	29.88 29.788 20.024 27.788 27.788 29.988 29.988 29.988							
	GRIGINAL Plotfico	CONDITION CATIIONA	(* 2 YEAR 1167400	STORM ATTH T	- BASI c=10	S 2 11N AND	STORM	DURATIO	N 15 MIN	
	ARE4 (ACRES)	Ę		SOIL		ű.p				
жени. 1997 г.	1.8	ĉ			1	0.4104				
	0 : "E (HOURS)	1	INCREMEN INCLOW VOLUME (CU FT))						
	0.283 0.167 0.253 0.417 0.417 0.4417 0.4667 0.4667 0.4667 0.8567 0.5577 0.57777 0.57777 0.57777 0.57777 0.57777 0.577777 0.57777777777	0.2052 0.4104 0.2051 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0	30.65688 93.02872 91.97064 32.15668 29.9286 29.928 29.938 29.938 29.938 29.938 29.938 29.938 29.938							
r - 1	•									

.

•

•

.

~

-

-

6.3

ORIGINAL CONDITIONS BASIN 1 10 year storm

	NGDIFIED	RATIIONAL	METHOD I	WITH To=10) MIN AND	STORM DU	RATION 10	MIN		
سب. ۱	AREA (ACRES)	C	i	SCIL MOIS FACTOR	i Gp		~			
	7.11	0.311	1.68	1	3.714832					
	nan ja na									
 د . أ	TIME (HOURS)	INFLOW (CFS)	INFLOW	E INITIAL WATER ELEVATION	SYORAGE	INITIAL OUTFLOW (CFS)	FINAL STORAGE VOLUME (CU FT)	FINAL WATER Elevation	FINAL OUTFLOL (CFS)	GUTFLOW VGLVME (CU FT)
1100	0 0.083 0.167 0.333 0.333 0.417 0.5833 0.6833 0.655 0.633 0.633 0.9167	0 1.857415 3.714852 1.857416 0.001 0.11 0.11 0.11 0.1 0.1 0.1	277.6474 15.2712 29.88 29.988	0.654298 0.592437 0.548656	1823.677 1710.153 1338.909	0 0 0	277.4980 1120.022 1823.677 1710.153 1338.909 1239.951 1269.939 1259.563 1329.751 1359.831	0.495584	000000000000000000000000000000000000000	000000000000000000000000000000000000000
	OKIGINAL MODIFIED AREA	0.1	19.785 NS 10 YEAR METHOD N	0.613027	1367.763 SJN 1 MIN AND	Ū	1417.751	0.020270	0	U ris
	(ACRES) 7.11	0.311			3.184142					
)IME (HOURS)	INFLOW (CFS)	INCREMENT INFLOW VOLUME (CULFT)	ELEVATION	(CUIFT)	INITIAL OUTFLOW (CFS)	FINAL STORAGE VOLUME (CU F1)	FINAL WATER ELEVATION	FINAL DUTFLOW (CPS)	OUTFLOW VOLUME (CU FT)
	0.333 0.417 0.5 0.5833 0.6667 0.75	C 1.592071 3.184142 1.592071 0.01 0.1 0.1 0.1	237.8554 722.1634 713.5663 239.3454 16.632 29.988 29.988 29.988 30.024 29.988	0.105245 0.375087 0.537739 0.457399 0.457399 0.457399 0.467620 0.460889 0.460889 0.460889 0.460889 0.460889 0.460889 0.520664 0.520664	0 237.8554 647.6983 1220.242 1122.630 1076.741 1056.621 1084.809 1116.833	000000000000000000000000000000000000000	$\begin{array}{c} 237.8554\\ 847.6983\\ 1220.242\\ 1122.630\\ 1026.941\\ 1056.809\\ 1116.833\\ 1146.821\\ \end{array}$	0.3/5087 0.539930 0.496739 0.454399 0.467620 0.467620 0.460889 0.494174 0.507443	000000000000000000000000000000000000000	000000000000000000000000000000000000000
_	0.833 0.9107 1	C.1 C.1 O.1	29,88 30,132 29,988	0.520664 0.520664 0.533997	1146.821 1176.701 1206.833	0	1176.701 1206.893 1169.373	0.533997	000	0 0 0

MODIFIED RATIIONAL METHOD WITH IC=10 MIN AND STORM DURATION 10 MIN

[_____

	GRIGINAL MODIFIED	CONDITION RATIIONAL	NS 10 YEAR Method N	R STORM BA	ASIN I D MIK AND	STORM DUE	RATIOK 20	MIR		
	AREA (ACRES)	C	İ	SOIL MOIS FACTOR	a de					
	T- 7.11	0.311	1.25	1	2.764012					
1										
)IME (HOURS)	INFLOW (CFS)	INCREMENT INFLOW VOLUME (CU_FT)	INITIAL WATER Elevation	INITIAL STORAGE VULUME (CU FT)	INITIAL OUTEON (CFS)	FINAL STORAGE VOLUME (CU FT)	FINAL WATER Elevation	F(NAL OUTFLOW (CFS)	OUTFLOW VOLUME (CUIFT)
	0 0.083 0.157 0.25 0.333 0.417 0.5 0.5835 0.6667 0.75 0.623 0.9167 1	2.764012	626.8780 625.9869 825.9869 626.8760 221.4117 29.986 30.024 29.988 29.988 29.38 30.132	0.197644 0.395518 0.589392 0.678307 0.696172	446.6754 867.3303 1332.026 1668.032 1793.641 1823.629 1853.653 1893.641 1853.275	00000000000000000000000000000000000000	110.8688 446.6754 889.3508 1332.026 1668.032 1753.641 1823.641 1823.641 1853.641 1853.641 1853.641 1853.275 1883.641 1853.275 1883.449 1489.492	0.177644 0.353518 0.589392 0.678507 0.700438 0.704708 0.706973 0.706973 0.706973 0.704634 5.682924	00000000000000000000000000000000000000	000000000000000000000000000000000000000

. .:**:**::4

1.1				STORM BA		storm dup	RATION 30	MIN		
	AREA (ACRES)	C	i	SOIL MOIS Factor	đb					
•	7.11	0.311	1	1	2.21121					
	ngana nga Sa Ta	•								
	TIME (HOURS)	INFLOW (CFS)	INCREMENT INFLOW VOLUME (CU FT)	INITIAL WATER ELEVATION	INITIAL STORAGE VOLUME (CU F1)	INITIAL OUTFLOW (CFS)	FINAL STORASE VOLUME (CU_FT)	FINAL WATER ELEVATION	FINAL OUTFLOW (CFS)	outflow Volume (CV_FT)
(0 0.083 0.167 0.25 0.333 0.417 0.5 0.5 833 0.5 833 0.75 0.833 0.9167 1	2.21121 2.21121 2.21121 2.21121 2.21121 2.21121	660.7093 668.6699 660.7095 497.3232 180.9854 29.988 29.88 30.132	1.254821 1.323380 1.349330 1.352464	1327,389 1988,098 2656,768 3317,478 3814,601 3995,787 4025,775 4025,655	000000000000000000000000000000000000000	165.1773 666.6796 1927.389 1988.098 2656.768 3317.478 3814.801 3995.787 4025.775 4085.555 4085.787 4115.775	0.672299 0.942160 1.071550 1.163739 1.254521 1.325380 1.346330 1.352464 1.356583 1.360737		

 $\begin{array}{c} \text{ORIGINAL CONDITIONS 10 YEAR STORM BASIN 1} \\ \text{NODIFIED RATIIONAL METHOD WITH DE=10 MIN AND STORM DURATION 40 MIN} \end{array}$

APEA ("ACRES")	C	i SO1 - F	L MUIS ACTOR	Q ⊋
7.11	0.31)	0.82	1 1.813	192

e a net Notici

TIME (HOURS)	INFLOW (CFS)	INCREMENT INFLOW VOLUME (CU_FT)	WATER	INITIAL STORAGE VOLUNL (CU FT)	INI/IAL GUTFLOW (CFS)	FINAL STORAGE VOLUME (CU FT)	FINAL WATER ELEVATION	FINAL OUTFLOW (CFS)	OUTFLOU VOLUME (CU FT)
0	0			0			0	0	
0.083	0.906596	135.4454	Û	0	0	135.4454	0.455321	0	0
0.167	1.813192	411.2319	0.455321	135.4454		546.6774		0	0
0.25	1.813192	541.7818	0.623285	546.6774	0	1088.459		0	0
		541.7818			0	10001211		0	0
		548.3093				2178.550		G	
		541.7818				2720.332		0	0
		543.7400	1.172502	2720.332		3264.072		0	0
	1.813192		1.247459		0	3808.465	1.322506	0	0
0.75	0.906596	407.8050	1.322506		0	4216.270	1.378724	0	0
0,833	0.1	150.3854	1.378724	4216.270	0	4366.655	1.399456	0	0 0
0.9167	6.1	30.132	1.399456	4366.655	0	4396.787	1.403610	0	0
1	0.1	29,988	1.403510	4396.787	0	4426.775	1.407744	0	0

l

-

•

~

ORIGINAL CONDITIONS 10 YEAR STORM BASIN 1 MODIFIED RATIIONAL METHOD WITH TC=10 MIN AND STORM DURATION SO MIN

. الندرية

i...

e na

	₿p	SOIL MOIS FACTOR	i	C	AREA (ACRES)
	.614183	1	0.73	0.311	7.11
				-	★** 100 100 100 100 100 100 100 100 100 1
	INITIAL INIT STORAGE DUTFI VOLUME (CI (CU FT)	WATER ELEVATION	INCREMEN INFLOW VOLUME (CU FT)	INFLOW (CFS)	ti n e (Hours)
0 120.5794 0 486.6762	0 0 20.5794	0 0.449249		0 0.807091 1.614183	

6 120.5794 0.449249 6 486.6762 0.598778 0 968.9942 0.795777 0 1451.312 0.992775 0 1939.441 1.064852 0 2421.759 1.131342 0 2905.820 1.198072 C 3390.462 1.264863 0 3674.524 1.331613 0 4356.842 1.396103 0 4721.631 1.448391 0 4857.640 1.467140 C 4887.520 1.471260 0 4917.400 1.475379 0 4947.280 1.479498 0.167 1.614183 366.0957 0.449249 120.5794 0.25 1.614183 366.0957 0.449249 120.5794 0.25 1.614183 482.3179 0.596778 486.6762 0.333 1.614183 482.3179 0.795777 969.9942 0.417 1.614183 482.3179 1.064852 1939.441 0.5833 1.614183 484.0612 1.131342 2421.759 0.6667 1.614183 484.0612 1.131342 2421.759 0.6667 1.614183 484.0612 1.264883 3390.462 0.75 1.614183 484.0612 1.264883 3390.462 0.833 1.614183 484.0612 1.264883 3390.462 0.833 1.614183 482.3179 1.331613 3674.524 0.9167 0.607091 364.7892 1.396103 4356.842 1 0.1 136.0093 1.448391 4721.631 1.063 0.1 29.88 1.467140 4857.640 1.165 0.1 29.86 1.471260 4897.520 1.249 0.1 29.86 1.475379 4917.400 Ő

FINAL FINAL OUTFLOW WATER OUTFLOW VOLUME ELEVATION (CFS) (CU FT)

C 0.449249

GRIGINAL CONDITIONS 10 YEAR STORM BASIN 1 MODIFIED RATIIONAL METHOD WITH TC=10 MIN AND STORM DURATION 60 MIN

AREA (ACRES)	C	i SOIL FAC		
7.11	0.311	0.63	1 1.393062	

 time (Hours)	INFLON (CFS)	INFLOW VOLUME	T INITIAL WATER ELEVATION	INITIAL STORASE VOLUME	INITIAL OUTFLOW (CFS)	STORAGE	FINAL WATER ELEVATION	FINAL OUTFLON (CFS)	OUTFLOW VOLUME (CU FT)	
2		(CU FT)		(CU FT)		(CU FT)				
0	0			0			C	Û		
	0.696531		0	9		104.0617		0	0	
			0.442503			420.0082		Û	Ģ	
			0.571548			836.2552		0	Ũ	
			0.741561			1252.502		0	Ŭ	
			0.911573			1673.764 2090.011		0	0	
0.5	1.373002	410.24/0	1.085609	2000 011		2507.762		0 0	ů n	
			1.143198			2976.015			ŏ	
			1.200856			3343,767		0 0 0	Õ	
			1.258446		0	3760.014	1.315827		0	
0.9167	1.393062	419.7575	1.315827	3760.014		4179.771		0	Q	
			1.373693			4597.523		0	0	
			1.431282			4907.708		Õ	Û	
1.166	Q.1		1.474318			5028.710		0 0	Ų	
1.249	0.1		1.490723			5058.590		0	U O	
1.332	0.1 0.i		1.474842			5086.470 5118.350		U D		
1.498	0.1		1.503081			5148.230		Ő	Č	

ORIGINAL CONDITIONS 10 YEAR STORM BASIN 1 MODIFIED RATIIONAL METHOD WITH TC=10 MIN AND STORM DURATION 70 MIN

1

.

-

-

	AREA 7.11	C 0.311	i 0.59	SOIL MOIS	5 (p 1.304613					
	TIME (HOURS)	INFLOW (CFS)	INFLOU	I INITIAL WATER ELEVATION	STORAGE	INITIAL OUTFLON (CFS)	FINAL Storage Volume (Cu Fi)		FINAL OUTFLON (CFS)	olitflow Volume (CU FT)
	Ũ	0			0			0	Û	
r		0.652306			0		97.45465		0	0
				0.439804			393.3410		0	Ç
۰. ۱				0.550656			783.1597		Q	Q
	0.333	1.504613	367.8186	0.719874	143.137/		1172.978		U	Û
	0.41/	1.304013	374.3132	0.879092	11/2.7/0		1567.493		0	ů n
				1.067316			2348.539			č
	0.6667	1.304613	391.6972	1.121248	2348.535		2740.237		ŏ	õ
	0.75	1,304613	391.2276	1.175246	2740.23/		3131,464		Õ	Õ
	0.833	1.304613	389.8186	1.229179	3101.464	0	3521.283	1.282917	0	Ó
				1.232917			3714.357		0	0
				1.337109			4305.617		Õ	Q
				1.391041			4022.653		0	Û
				1.434746			4791.493		Ű	Ų
				1.458022			4890.131 4985.869		U O	U
				1.495231			5084.050		U ()	0 Û
				1.498352			5085.254		ŏ	0000000000000000000

,

LÉ.	ORIGINAL MODIFIED	CONDITION RATIIONAL	vs 10 year . Method W	STORM BA	ISIN 1 Min And	storm dur	RATION 90	MIN		
	AREA (ACRES)	C	i	SOIL MOIS Factor	i Op					
	7.11	0.311	0.48	1	1.061380					
	er () 1.	x .								
:- ".	(HOURS)	INFLOW (CFS)	INCREMENT INFLOU VOILUME (CU_FT)	INITIAL WATER ELEVATION	STORAGE	INITIAL OUTFLON (CFS)	FINAL STORAGE VOLUME (CU FT)	FINAL WATER Elevation	FINAL OUTFLOW (CFS)	outflow Volume (CU_FT)
	0.167	1.061380	79.28514 240.7211	0.432383	0 0 79.28514	0	79.28514	0.530703	0 0 0	0 0
	0.333 0.417 0.5 0.5833 0.6667 0.75 0.833 0.9167 1 1.083 1.166	1.061380 1.061380 1.061380 1.061380 1.061380 1.061380 1.061380 1.061380 1.061380 1.061380 1.061380	317.1405 317.1405 320.9615 317.1405 318.2866 318.2868 317.1405 317.1405 317.8152 316.2868 317.1405 317.1405 317.1405 317.1405	0.660236 0.789770 0.920864 1.017009 1.060367 1.104817 1.148694 1.192414 1.236502 1.280379 1.324099	637.1468 954.2874 1275.249 1592.389 1910.676 2229.345 2547.632 2864.772 3184.588 3502.875 3820.015		954.2874 1275.249 1592.389 1910.676 2229.345 2547.632 2864.772 3184.588 3502.875 3820.015 4137.156	1.017009 1.060857 1.104817 1.148694 1.192414 1.236502 1.280379 1.324099 1.367818	000000000000000000000000000000000000000	
· · · · · · · · · · · · · · · · · · ·	1.332 1.415 . 1.498	1.061380 1.061380 1.061380 0.530690	317.1405 317.1405 317.1405 237.8554 29.68 27.88 29.68 31.32 29.68 29.68 29.68 29.68 29.68 29.68 29.68	1.411538 1.455257 1.498976 1.542696	4454.296 4771.437 5088.577 5405.718 5643.573 5737.799 5747.679 5797.559 5827.439 5888.639 5916.802 5938.009		5405.718 5643.573 5737.799 5767.679 5797.559 5827.439 5858.759 5888.639 5716.802 5938.009 5747.613	1.455257 1.498976 1.542696 1.575485 1.588475 1.592594 1.596713 1.600832 1.605150 1.609269	000000000000000000000000000000000000000	

••

...

. .

ORIGINAL CONDITIONS 10 YEA	AR STORM RASIN 1
RUUTIEU KATITONAL DETHUU	NITH TC=10 MIN AND STORM DURATION 120 MIN

AREA (ACRES)	C	i SOIL MOIS FACTOR	Qp
7.11	0.311	0.36 1 0.	.796035

•

 $\sum_{i=1}^{n} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{n} \sum_{i$

[]

111

TINE +, (hours)-	INFLOW (CFS)	INCREMENT INFLOW VOLUME (CU FT)	T INITIAL NATER ELEVATION	INITIAL STORAGE V VOLUME (CU FT)	INITIAL DUTFLOW (CFS)	FINAL Storage Volume (Cu FT)	FINAL WATER Elevation	FINAL OUTFLOW (CFS)	outflow Volume (CU FT)	
0.167 (0.25 (0.333 (0.417 (0.5833 (0.5833 (0.5833 (0.6667 (0.6833 (0.9167 (0.9167 (0.796035 0.796035 0.796035 0.796035 0.796035 0.796035 0.796035 0.796035 0.796035 0.796035 0.796035	59.46385 180.5406 237.8554 237.8554 240.7211 237.8554 238.7151 239.0017 238.7151 237.8554 239.6614 238.7151 237.8554	0.498027 0.595177 0.692327 0.790648 0.887778 0.985299 1.027985 1.060693 1.060693 1.093683 1.126749	240.0047 477.8601 715.7156 956.4367 1194.292 1433.007 1672.009 1910.724 2148.579 2389.441			0.498027 0.595177 0.692327 0.790648 0.867798 0.985299 1.027985 1.060893 1.02683 1.126749 1.159657			
 - 1,249 (1,332 (1,415 (1,478 (1,581 (1,581 (1,581 (1,581 (1,747 (1,813 (1,913 (2,000))))))))))))))))))))))))))))))))))	0.796035 0.796035 0.796035 0.796035 0.796035 0.796035 0.796035 0.796035 0.796035 0.796035 0.796035	237.8554 237.8554 237.8554 249.3183 178.3915 74.40385 29.88 29.88	1.225236 1.258026 1.290815 1.323605 1.356394 1.3597184	3102.867 3340.722 3578.576 3816.433 4054.268 4054.268 4054.268 4052.999 4767.855 5095.710 5243.566 5492.884 5492.884 5574.392 5743.3767		4054,288 4292,144 4529,999 4767,855 5005,710 5243,566 5492,884 5671,276	1.258026 1.290815 1.323605 1.356394 1.369184 1.421974 1.454763 1.427553 1.520342 1.554712 1.559384 1.599384 1.592606 1.594529			

.

	:- : 	ORIGINAL MODIFIED	CONDITION RATIIONAL	S 10 YEAF Method W	R STORM BA Vith To=10	SIN 2 Min And	STORM	DURA] I JN	10 MI	N
		AREA (ACRES)	C	i	SGIL MOIS FACTOR	ĝp				
		1.8	0.3	1.68	1	0.9072				
	· ·/-	TIME (Hours)	INFLOW (CFS)	INCREMENT Inflou Volume (C0 FT)	i					
-		037 0.167 0.3357 0.41537 0.41537 0.41537 0.41537 0.41537 0.837 0.837 0.837 0.837 0.837 0.837 0.837 0.837 0.837 0.837 1.1	3.4536	67.76784 205.2523 205.2523 27.91224 29.2568 29.2588 29.988 29.988 29.988 29.988 29.988						

ORIGINAL CONDITIONS IC YEAR STORM BASIN 2 MODIFIED RATIIONAL METHOD WITH TOTIC MIN AND STORM DURATION IS NAK

<u>ب</u> ب	AREA (ACRES)	с. С	1	SOLL MOIS FACTOR	95
	1.8	СN3	1.44	1	0.7776
	TIME (HOURS)	INFLOW (CFS)	INCREMEN INFLOW VOLUME (SU FT)		
	0 0.083 0.167 0.25 0.333 0.417 0.5833 0.5833 0.5833 0.73 0.73 0.833 0.9167 1	0.3388 C.7776 0.3895 0.01 0.1 0.1 0.1 0.1 0.1 0.1 0.1	58.08672 176.3596 174.2601 59.56072 29.986 29.986 29.986 29.986 29.988 29.988 29.988 29.988 29.988 29.988		

|____

	ORIGINAL Modified	CONDITIO RATIIONA	NS 100 YEA L METHDO N	AR STORM E WITH TC=10	BASIN 1 D MIN AND	STORM DURATION 10 MIN
	AREA (ACRES)	C	1	SOIL MOIS Factor	êp	
	~	0.471	3.6	1	12.05371	
	TIME (HOURS)	INFLOU (UFS)	INCREMEN INTLOW VOLUME (CU-FT)	I INITIAL NATER BLEMMTIO	INITAL STORAGE VGLUKE (CULFT)	INITIAL FINAL FINAL FINAL CUTFLOW OUTFLOW STOMAGE WATER (OTFLOW VOLUME (CFS) VOLUME ELEVATION (CFG) (CUTT) (CUTT)
1 m.	0.083 0.167 0.25 0.330 0.417 0.35655 0.417 0.56655 0.835 0.835 0.916 1	0 6.027658 12.05571 6.027558 0.021558 0.1 0.1 0.1 0.1 0.1	900.5519 2734.235 2701.665 900.7116 29.566 30.026 30.026 29.966 30.152 29.968 30.155 29.968	0 0 0 0 0 0 0 0 0 0 0 0 0 0	C0 906.15776 38551.2276 38551.2276 38551.2276 39551.25775 132977.551 13297.9655 13597.9655 13597.9655 13597.9655	0 900,5619 0.398478 0 0 0 3011,754 0.337418 0 0 0 3821,706 0.984619 0 0 0 3821,706 0.984619 0 0 0 3821,706 0.984619 0 0 0 3821,706 0.984619 0 0 0 3821,706 0.984619 0 0 0 2855,227 0.646674 0 0 0 2855,227 0.61646674 0 0 0 2116,596 0.742105 0 0 0 1735,304 0.490/20 0 0 0 1896,577 0.618928 0 0 0 1297,9459 0.575204 0 0 0 1297,9459 0.575204 0 0 0 13257,8951 0.568472 0 0 0 13257,8951 0.601695 0 0 0 1389,951 0.601695 0 0
Į	GR161NAL MCD1F1ED	CONDITIO Ratiiona	NG 100 YEA _ METROD V	HK STORM I KITH TC=10	BASIN 1 3 CIN AND	STORM DURITION 15 MIN
	AREA (ACHES)	Û	1	SG1L MG19 FACIOR	ab ab	
	7.11	0.471	3.64	1	10.18038	
•	T1Mé (rours)	INFLOW (EFS)	INCREMENT INFLOW VOLUME (CULFI)	E INITIAL NATER ELEVATIO!	INITIAL STORAGE VOLDIS (COLFT)	OUTFLOW STORAGE WATER OUTFLOW [VOLUME]
	0.063 0.167 0.25 0.333 0.417 0.5833 0.5833 0.5833 0.5833 0.5833 0.5833 0.5833 0.5833 0.5833 0.5833 0.5833 0.5833 0.9167	C 5.090191 10.18036 5.090191 0.01 0.1 0.1 0.1 0.1 0.1 0.1 0.1	760.4745 2303.910 2281.423 16.632 29.988 35.024 29.988 35.024 29.988 30.132 29.988	C.105245 C.424787 C.424787 C.424787 C.424787 C.424787 C.424787 C.424174 C.507443 C.507443 C.507443 C.507644 C.533997	0 237.8554 9673.614 1600.2242 1600.2242 1600.2242 1479.140 1479.140 1479.140 1116 1036.621 1116 1116 1116 1036.633	0 0 0 0 0 257.8554 0.105245 0 0 0 960.0189 0.424787 0 0 0 1575.585 0.675987 0 0 0 1560.614 0.697164 0 0 0 1476.224 0.651027 0 0 0 1478.224 0.517319 0 0 0 146.809 0.42689 0 0 0 146.853 0.494124 0 0 0 146.853 0.457448 0 0 0 146.8521 0.507448 0 0 0 1476.701 0.520644 0 0

.

٠.

.

.

.

ORIGINAL CONDITIONS 100 YEAR STORM BASIN 1 MODIFIED RATIIONAL METHOD WITH TC=10 MIN AND STORM DURATION 20 MIN

123

[~.,

HOUT ILD	MITTON K		110-10	11111 1810	oronar bo	union 20	11114		
AREA (ACRES)	C	į	SOIL MOIS FACTOR	Q p					
7.11	0.471	2.68	· 1	8.974810					
TIME (HOURS)	INFLON (CFS)	INCREMENT INFLOW VOLUME (CU-FT)	INITIAL WATER ELEVATION	INITIAL STORAGE VOLUME (CU FT)	INITIAL OUTELOW (CFS)	FINAL Storage Volume (CUFT)	FINAL WATER ELEVATION	FINAL OUTFLOW (CFS)	outflow Volume (CU-FT)
0.167	8.974810 6.974810	2035.487 2681.673 2681.673 2035.497 665.3583 29.988 30.024 29.988 30.132		2705.905 5387.576 8069.252 10104.73 10790.09 10820.08 10650.10 10880.09 10890.97	000000000000000000000000000000000000000	10790.07 10820.05 10850.10 10860.09 10909.97 10940.10	1,170513 1,540195 1,909677 2,062846 2,094018 2,095362 2,096748 2,096748 2,096112 2,094471 2,100841	000000000000000000000000000000000000000	

ORIGINAL CONDITIONS 100 YEAR STORM BASIN 1 MODIFIED RATIIONAL METHOD WITH 10=10 MIN AND STORM DURATION 30 MIN

AREA (ACRES)	C	i	SOIL MOIS FACTOR	Qp		
7.11	C.471	2.12	17	.099477		
1 M	INFI AU	INCREMENT	INITIA	INITIA	INITIA	FINA

(HOURS)	INFLOU (CFS)	INCREMENT INFLOW VOLUME (CU-FT)	I INITIAL WATER ELEVATION	INITIAL STORAGE VOLUME (CU FT)	INITIAL OL:TELOW (CFS)	FINAL STORAGE VOLUME (CU_FT)	FINGL WATER ELEVATION	FINAL (U)FLOW (CFS)	OUTFLOW VGLUME (CU FT)	
0.167 0.25 0.333 0.417 0.5	7.099477 7.099477 7.099477 7.099477	1610.161 2121.323 2121.323 2146.861 2121.323 1596.743 547.8987 29.986 29.88 30.132	2.087707 2.160333 2.185253	2140.492 4261.616 6385.139 9530.021 10651.34 12248.08 12795.96 12825.97 12855.85	000000000000000000000000000000000000000		1.092568 1.365005 1.677438 1.973397 2.067707 2.160353 2.185253 2.185253 2.186617 2.187976 2.189347	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

ORIGINAL CONDITIONS 100 YEAR STORM BASIN 1 MODIFIED RATIIONAL METHOD WITH TC=10 MIN AND STORM DURATION 40 MIN

س ا	HOUTFILD	INTEL ORING		1111 10-10		JIONI DOI	1011 40	HIN		
	AREA (ACRES)	C	i	SOIL MOIS Factor	5 Op					
	7.11	0.471	1.83	1	6.128322					
	TIME (HOURS)	INFLOW (CFS)	INCREMENT INFLOW VOLUME (CU_FT)	I INITIAL HATER ELEVATION	INITIAL STORAGE VOLUME (CU FT)	INITIAL OUTFLGW (CFS)	FINAL STORAGE VOLUME (CU FT)	FINAL NATER Elevation	FINAL OUTFLOW (CFS)	outflow Volume (CU FT)
	A 177	3.064161 & 128322 6.128322 6.128322 6.128322 6.128322 6.128322 6.128322 6.128322 6.128322 3.064161 0.1	1389.903 1631.142 1831.142 1653.204 1631.142 1637.761 1839.967 1378.320 472.7256	0 0.584978 1.052204 1.304636 1.557065 1.612541 2.021437 2.105025 2.188713 2.251404 2.272905 2.274275	1847.689 3678.831 5509.974 7363.179 9194.321 11032.08 12872.05 14250.37	0 0 0 0 0 0 0 0	3678.831 5507.974 7363.179 7194.321 11032.08 12872.05 14250.37 14723.09	1.052204 1.304636 1.557068 1.812541 2.021437 2.105025 2.188713 2.251404 2.272905	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	MODIFIED AREA (ACRES)	CONDITION RATIIONAL C 0.471	. ME11100 V i	NTH TC=10 Soil Mois Factor) MIN AND	storn duf	ation 50	Mix		
	1'IME (Hours)		INCREMEN INFLOW VOLUME (CU FT)	INITIAL NATER ELEVATION	INITIAL STORAGE VOLUME (CU FT)	INITIAL OUTFLOW (CFS)	FINAL Storage Volume (CU FT)	FINAL WATER ELEVATION		OUTFLON VOLUME (CU FT)
	0.167 0.25 0.333 0.417 0.5 0.5833 0.6667 0.75 0.833	0 2.626815 5.257631 5.257631 5.257631 5.257631 5.257631 5.257631 5.257631 5.257631 2.628815 0.1	1192.430 1570.980 1570.980 1589.907 1570.980 1576.658 1578.551 1576.658 1570.980 1168.172 409.1586	1.016015 1.232582 1.449150 1.668327 1.884894 2.033734 2.105532 2.177244 2.246697	1585.175 3156.156 4727.136 6317.044 7888.024 9464.683 11043.23 12619.89 14190.67 15379.04		1585.175 3156.156 4727.136 6317.044 7888.024 9464.683 11043.23 12619.89 14190.87 15379.04	1.884894 2.033734 2.105532 2.177244 2.248697 2.302740 2.321350	000000000000000000000000000000000000000	

لسنينة

[__

ORIGINAL CONDITIONS 100 YEAR STORM BASIN 1 MODIFIED RATIIONAL METHOD WITH TO=10 MIN AND STORM OURATION SC MIN

.

	AREA (ACRES)	C	1	SOIL MOIS FACTOR	áb					
	7.11	0.471	1.34	1	4,487405					
	TIME (HOURS)	INFLOW (CFS)	INCREMENT INFLOW VOLUME (CUIFT)	T INITIAL RATER ELEVATION	INITIAL Storage Volume (CU-FT)	INITIAL OUTFLOW (CFS)	FINAL Storase Volume (CU_FT)	FINAL Hater Elevation	FINAL DUTFLOW (CFS)	outflow Volume (courfi)
N da	0.167 0.25 0.333 0.417 0.5 C.5833 0.6667 0.75 0.833 0.9167	4.487405 4.487405 4.487405 4.487405 4.487405 4.487405 4.487405 4.487405 4.487405 4.487405 2.249709	1340.836 1340.836 1356.991 1340.836 1345.6838 1345.6838 1345.6838 1345.6838 1345.683 1345.683 1352.144 1345.683 1305.627 350.1491 29.888 29.888 29.888	0.952201 1.166843 1.3536642 1.725593 1.725593 1.911102 2.031945 2.093155 2.154141 2.215841 2.276846 2.322567 2.338518 2.339872 2.339872	0 335.2091 1352.952 2693.769 4034.626 5391.617 6752.454 8078.137 9425.436 10771.11 10111.95 13464.10 14809.78 15815.41 14165.56 16195.44 16195.43 16255.32 16255.20	00000000000000000000000000000000000000	335.2091 1352.952 2693.789 4034.626 5391.617 5391.617 5732.454 8078.137 9425.436 10771.11 12111.95 13404.10 14807.78 15815.41 15165.56 16195.44 16255.20 16295.06	0.536913 0.952601 1.166545 1.352684 1.540752 1.725593 1.911102 2.051749 2.093155 2.154141 2.215641 2.32587 2.32587 2.32587 2.339872 2.341231 2.342590 2.342590	070000000000000000000000000000000000000	000000000000000000000000000000000000000

ORIGINAL CONDITIONS ICC YEAR STORM SASIN 1 MUDIFIED RATIIONAL METHOD WITH TC=10 MIN AND STORM DURATION 70 MIN

.

48EA 7.11	0.47i) SOIL 1.2	NGIS GP 1 4.018572						
TIME (HGURS)	INFLOW (CFS)	INCREMENT INI IN'LOW K VOLUME ELEV (OU FT)	ATER STORAGE	INITIAL OUTFLOW (CFS)	FINAL STORAGE VULUME (CU FT)	FINAL WATER ELEVATION	Final Outhlow (CFS)	outflow Volume (CU-FT)	
0.167 0.25 0.353 0.417 0.5 0.5833 0.5833 0.75 0.833 0.9167 1.083 1.166 1.249 1.352 1.415	4.018572 4.018572 4.018572 4.018572 4.018572 4.018572 4.018572 4.018572 4.018572 4.018572 4.018572 4.018572 4.018572 4.018572 4.018572 4.018572 4.018572 4.018572 4.018572	911.4121 0.52 1200.749 1.13 1215.216 1.29 1200.749 1.46 1205.089 1.42 1205.089 1.42 1205.089 1.92 1200.749 2.04 1210.876 2.07 1205.089 2.15 1200.749 2.20 1200.749 2.20 1200.749 2.23 1200.749 2.23 1200.749 2.37 1200.749 2.37	0 02666 300.1873 24667 1211.599 30564 22412.348 35574 3613.076 42574 3613.076 4258,314 28627 6029.063 44755 10340.639 45515 10340.639 45515 10340.52 31660 12057.40 36441 13262.49 41066 14463.24 15.00 15665.99 70314 16864.74 45927 16005.49		300.1673 1211.579 2412.346 3613.078 4628.314 6029.063 7234.152 8440.689 9645.778 10846.52 10846.52 10846.52 10846.53 14463.24 15662.59 16854.74 18065.49 17266.73 20166.80	0.894867 1.130045 1.295574 1.463098 1.628627 1.794755 1.794755 1.961082 2.041971 2.096585 2.151660 2.206471 2.261086 2.370314 2.370314 2.370314 2.424959 2.472545	000000000000000000000000000000000000000	000000000000000000000000000000000000000	

.

 	ORIGINAL MODIFIED AREA (ACRES)	RATI IONAL C		INH TC=10 SOIL MOIS FACTOR	min and Qp	storm duf	ATION 60	MIN		
	7.11 Turnovic	0.471	1.07	j :	3.583226					
	TIME (HOURS)	INFLOW (CFS)	INCREMENT INFLOM VOLUME (CU_FT)	INITIAL WATER ELEVATION	INITIAL Storage Volume (cu ft)	INITIAL OUTFLOX (CFS)	FINAL STURAGE VOLUME (CU-FT)	FINAL WATER ELEVATION	FINAL OUTFLOW (CFS)	OUTFLOW VOLUME (CU_FT)
(0.167 0.25 0.330 0.417 0.58 0.5853 0.6667 0.75 0.833 0.9167 1 1.083 1.166 1.249 1.332	3:533226 3:585226 3:585226 3:585226 3:585226 3:585226 3:585226 3:58326 3:58326 3:5932	267.6670 812.6758 1070.668 1070.658 1083.567 1070.668	0 0.509326 0.841256 1.074016 1.241615 1.390990 1.538587 1.635026 1.93156 1.93156 2.043140 2.043140 2.043140 2.043140 2.032248 2.34518 2.35518 2.35518 2.35519 2.365290 2.385200 2.395210 2.3743659 2.374569	0 267.6670 1080.342 2151.010 3221.679 4305.246 5375.915 5450.453 7526.281 8600.819 9671.487 10751.18 11625.72 12876.37 13967.05 15037.72 16108.39 16981.39 17223.86 17223.86 17223.85 17223.46 17354.46 17354.46	000000000000000000000000000000000000000	267.6670 1080.342 2151.010 3221.677 4205.246 5375.915 6450.453 7526.281 8600.819 9671.487 10751.16 11825.72 12896.39 13967.05 15037.72 18108.39 17194.908 17253.76 17283.64 17283.64 17313.52 17343.46	0 0.509326 1.094018 1.241615 1.390790 1.536567 1.666716 1.935626 1.983156 2.092248 2.092248 2.092248 2.092248 2.092248 2.33518 2.32510 2.33518 2.33519 2.335290 2.385649 2.389367 2.390726 2.392510 2.39266 2.392567		000000000000000000000000000000000000000

 \Box

1- --

AREA (ACRES)	3	i .	SOIL MOIS FACTOR	Qp					
7.11	0.471	0.95	1	3.181369					
1997 - 19									
TIME (HOURS)	INFLOW (CFS)	INFLOW	INITIAL WATER ELEVATION	STORAGE	INITIAL DUJFLOV (CFS)	HINAL Storage Volume (CU-FT-)	FINAL WATER ELEVATION	FINAL Outflow (CFS)	outflow Volume (CU_FT)
0.167 0.25 0.333 0.417 0.5 0.5833 0.5457 0.75 0.833 0.5167 1.063 1.166 1.168	3.181369 3.181369 3.181369 3.181369 3.181369 3.181369 3.181369 3.181369 3.181369 3.181369 3.181369 3.181369 3.181369 3.181369	237.6483 721.5346 950.5932 950.5932 954.0290 955.1743 954.0290 955.5932 955.2932 955.5932 955.932 955.932 955.5932 955.5932 955.932 957.932 9	0.791769 1.060763 1.191607 1.324430 1.455474 1.586991 1.718667 1.850184 1.981228 2.037407 2.080800 2.124036	0 237.6483 959.1829 1907.776 2860.369 3822.415 4773.038 5727.037 6652.212 7635.241 8586.834 9545.444 10499.47 11450.06 13351.25 14301.84 15252.43 16203.03 16915.97 17168.56 17198.44 17228.32 17258.20	000000000000000000000000000000000000000	237.6483 959.1829 1909.776 286C.367 8822.415 4773.003 5727.037 6682.212 7636.241 8586.834 9545.444 10497.47 11450.66 13351.25 14301.84 15252.43 16203.03 16915.97 17168.56 17198.44 17228.20	0.497065 0.791769 1.060763 1.191807 1.324430 1.455474 1.586591 1.718657 1.850184 1.961228 2.037407 2.080500 2.124036 2.1672/2 2.210509 2.253745 2.380501 2.3805492 2.386551 2.386551 2.389210 2.3895452 2.3895452 2.3895455 2.399594 3.385455 2.399594 3.385455 2.399594 3.385455 2.399594 3.385455 2.399594 3.3954555 3.39545555555555555555555555555555555555		

ORIGINAL CONDITIONS 100 YEAR STORM BASIN 1 MODIFIED RATIIONAL METHOD WITH TC=10 MIN AND STORM DURATION 9C MIN

.

1...

-

-

	MOCIFIED	RATIIONA	METHOD W	ITH TC=10	MIN AND	storm dur	RATION 120	MIN		
	AREA (ACRES)	C	i	SOIL MOIS FACTOR	Qp					
	7.11	0.471	0.7	1	2.344167					
	، سری افغان رو	1999) 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19				·				
	TIME (HOURS)	INFLOW (CFS)	INCREMENT INFLOW VOLUME (CUIFT)	LIATER	STORAGE	CUTTEL ON	STORAGE	FINAL Water Elevation	FINAL OUTFLOW (CFS)	UTIN HEME
	0.167 0.25 0.333 0.417 0.5 0.5833	2.344167 2.344167 2.344167 2.344167 2.344167 2.344167	175.1092 531.6570 700.4370 700.4370 708.8761 700.4370 702.9687	0.4/1521 0.688672 0.974759 1.085059 1.185761 1.282320	2616.516 3516.953	0000000	175.1092 706.7663 1407.203 2107.640 2816.516 3516.953 4219.922	0.471521 0.588672 0.974759 1.036039 1.185761 1.290320 1.379228	0 0 0 0 0 0	
(0.6667 0.75 0.833 0.9167 1 1.083 1.166 1.249	2.344167 2:344167 2.344167 2.344167 2.344167 2.344167 2.344167 2.344167 2.344167	703.8127 702.9687 700.4370 706.3444 702.9687 700.4370 700.4370 700.4370 700.4370 700.4370 700.4370	1.379228 1.476252 1.573160 1.669718 1.767092 1.863999 1.960558 2.018845	4219.922 4923.735 5626.704 6327.141 7033.485 7736.454 8436.891 9137.328	U 6	2107.340 2816.516 3516.953 4219.952 4923.735 5626.704 6327.141 7035.495 7736.454 8436.691 9137.326 9837.765 10538.20 11236.63	1.803777	000000000000000000000000000000000000000	
	+ 1.498 - 1.581 - 1.664 - 1.747 - 1.83	2.344167 2.344167 2.344167 2.344167 2.344167 2.344167	708.4370 700.4370 700.4370 700.4370 700.4370 700.4370 700.4370 700.4370 734.1931 525.3278 190.0492 29.88 29.88 29.88 29.88	2.114420 2.146278 2.178136 2.209995 2.241853 2.241853	11238.63 11739.07 12639.51 13339.95 14040.38	000000000000000000000000000000000000000	11236.63 11739.07 12639.51 13339.25 14040.38 14740.82 15441.26 16175.45 16700.78 16970.63 16920.71 16950.59 16980.47	2.146279 2.176136 2.209775 2.241953 2.273711 2.305570 2.338963 2.362857 2.371501 2.372860	000000000000000000000000000000000000000	0 0 0 0
										i.

ORIGINAL CONDITIONS 100 YEAR STORM BASIN 1 MCCIFIED RATIIONAL METHOD WITH TC=10 MIN AND STORM DURATIO

	ORIGINAL MODIFIED	CONDITION RATIIONAL	NS 100 YEA . Method I	AR STORM B .)TH To=10	ASIN 2 MIN AND	D STORM DURATION TO MIN	
	AREA (ACRES)	C	i	SOIL MOIS FACTOR	g b	ç.	
	1.8	0.45	3.6	1	2,916	6 · · · ·	
1							
	(HOURS)	INFLOW (CFS)	INCREMENT INFLOW VOLUME (CU FT)	I INITIAL WATER ELEVATION	INITIAL STURAGE VOLUME (OU FT)	L INITIAL FINAL FINAL FINAL OUTFLOW E OUTFLOW STORAGE WATER OUTFLOW VOLUME C (SFS) VOLUME ELEVATION (SFS) (CO F) (CO FT)	
	0.683 0.167 0.5337 0.5337 0.5433 0.5433 0.5433 0.5433 0.5433 0.5433 0.5433 0.5433 0.5433 0.5433 0.5433 0.5433 0.5433 0.5137 1	0.458 4.459 1.459 1.459 1.459 1.2.459 1.1 0.00 0.1 0.1 0.1 0.1 0.1 0.1 0.1	217.8252 661.5486 653.4756 217.974 15.2712 29.884 30.988 29.988 29.988 29.988 29.988 29.988 29.988 29.988 29.988	0 0.096382 0.385015 0.657052 0.692526 0.692526 0.70741 0.705011 0.705011 0.705216 0.12526 0.12526 0.12526 0.12526	0 217.8252 879.174 1532.624 1532.624 1735.775 1825.775 1825.775 1825.775 1825.775 1825.775 1825.775 1825.775 1825.775 1945.787	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	GRIGINAL MODIFIED	COND1116	₩ 100 (EF METHOD (AR STORM B	ASIR 2 BIR ARD	D STORM DURATION 15 MIN	
	AREA (ACRES)	0		SOLL MOIS FACTOR			
	1,8	0.45	3.04	1	2.4624	4	
	(Neurs)	INFLOW (CFS)	INDREMENT TNELGW VOLUME (CULET)	INITIAL WATER ELEVATION	INITIAL STORAGE VOLUME (CU FT)	L INITIAL FINAL FINAL FINAL OUTFLOU E OUTFLOW STORASE WATER OUTFLOW VOLUME E (CFS) VOLUME ELEVATION (CFS) (CJ FT)) (CU FT)	
	0.003 0.167 0.25 0.333 0.417 0.556 0.417 0.556 0.556 0.556 0.556 0.516 0.516 1	2.4624	551.8236 185.4352 16.632 29.88 29.788 29.788 29.58 29.58 29.58 35.132	0.061369 0.325501 0.572571 0.551517 0.551517 0.555153 0.5551398 0.565628 0.566668 0.570933 0.570933 0.570935 0.570933 0.479469	742.4136 1294.237 1479.672 1496.304 1526.184 1556.172 1556.172 1556.196 1645.184 1646.064	6 0 163.9412 0.061387 0 0 2 0 /42.4136 0.328501 0 0 5 9 1294.257 9.572671 0 0 7 0 1479.672 9.651517 0 0 7 0 1479.672 9.6581517 0 0 2 0 1496.304 0.858883 0 0 4 0 4558883 0 0 0 4 0 1556.172 0.662875 0 0 2 0 1586.196 0.666675 0 0 2 0 1586.196 0.675183 0 0 2 0 1646.184 0.675183 0 0 4 0 1676.196 0.675183 0 0	

*****-

۰.

.

				itions /P=.3 AND		hr storm	2 Y	EAR				
	AREA SQ MI)			CN	S			UNIT Op	Qp	Ia/P		
t	0.0139			90.314	1.07248	0.7	0.151294	936	1.968398 0	0.306423		
-	TIME (HOURS)	Tc=.1,Ia q(p)	/P=.3 Xmax		INCREMENT INFLOW VOLUME (CU FT)	WATER	INITIAL STORAGE VOLUME (CU FT)	INITIAL OUTFLOW (CFS)	FINAL Storage Volume (CU FT)	FINAL NATER Elevation		OUTFLOW Volume (CU FT)
-	$\begin{array}{c} 10.5 \\ 11 \\ 11.3 \\ 11.6 \\ 11.9 \\ 12.1 \\ 12.2 \\ 12.3 \\ 12.4 \\ 12.5 \\ 12.6 \\ 12.7 \\ 12.8 \\ 13.4 \\ 13.6 \\ 13.8 \\ 14.3 \\ 14.3 \\ 14.3 \\ 14.3 \\ 15 \\ 15.5 \\ 15.5 \\ 16.5 \\ 17 \\ 17.5 \\ 18 \\ 19 \\ 20 \\ 22 \\ 26 \end{array}$	568 936 524 217 172 149 126 107 97 86 69 56 56 56 56 548 46 42 30 30 287	C.559829 0.231838 0.183761 0.159188 0.134615 0.134615 0.134615 0.0103632 0.09186 C.081197 C.073716 0.067308 0.061966 0.056624 0.056624 0.051282 C.049145 C.044872 0.036325 0.036325 0.036325 C.028246 0.025641 0.021368 0.020299	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	569.3214 552.6657 280.4968 147.2513 121.5108 104.098 88.19939 77.22179 136.545 122.6464 109.7761 99.93408 91.66624 84.03547 114.6971 133.2454 151.4153 136.2737 123.0249 115.4541 109.7761 109.7761 109.7761 109.5568 295.2598	0 0.063208 0.162569 0.369043 0.520889 0.550399 0.553797 0.58144 0.587139 0.573707 0.58144 0.587139 0.597863 0.602169 0.60476 0.604792 0.60476 0.604792 0.604792 0.604792 0.604792 0.604792 0.604792 0.604792 0.604792 0.604792 0.604792 0.604792 0.604792 0.604792 0.604792 0.604792 0.604792 0.604792 0.604792 0.60410 0.60556 0.605966 0.55824 0.55824 0.55824 0.550324 0.550324	C 0 170.661 438.9366 996.417 1527.559 1778.387 1891.529 1976.512 2042.243 2090.683 2127.109 2181.838 2218.439 2240.733 2255.298 2257.109 2111.503 2114.762 2050.277 1980.721 1912.03 1845.887 1782 1782.203 1782.203 2164.577 1782.203 1782.203 2164.577 1782.203	0 0.007822 0.020117 0.045667 0.073909 0.098585 0.104346 0.109802 0.112086 0.114556 0.114556 0.122748 0.122259 0.123047 0.123246 0.122748 0.122259 0.123047 0.123246 0.122935 0.122155 0.12755 0.113719 0.109347 0.109347 0.109347 0.109347 0.109347 0.109347 0.109347 0.109347 0.095755 0.09549 0.095159 0.0252995 0.075006	0 170.661 438.9366 996.417 1527.559 1776.387 1891.529 1976.512 2042.243 2090.683 2127.109 2161.838 2218.439 2240.733 2252.357 2255.298 2250.706 2235.273 2255.298 2250.706 2235.273 2255.298 2250.706 2235.273 2255.298 2250.706 2235.273 2255.298 2250.706 2235.273 2050.277 1980.721 1912.03 1845.887 1782 1641.577 1543.732 1346.766	0 0.063205 0.162569 0.367043 0.520887 0.550377 0.563707 0.58144 0.587139 0.591425 0.597425 0.602169 0.602169 0.602169 0.604792 0.604792 0.604792 0.604792 0.605966 0.605966 0.605966 0.605966 0.598972 0.588985 0.574202 0.588285 0.574202 0.588285 0.574202 0.588285 0.574202 0.588285 0.574202 0.588285 0.574202 0.588285 0.574202 0.588285 0.574202 0.588285 0.574202 0.588285 0.574202 0.58834 0.556824 0.556824 0.522792 0.498802 0.331401	0.020117 0.045667 0.073909 0.090914 0.098585 0.104346 0.108862 0.112086 0.112086 0.112086 0.112086 0.120748 0.12259 0.123047 0.122345 0.122345 0.122355 0.12753 0.122355 0.12753 0.121753 0.121753 0.121753 0.121753 0.121753 0.121753 0.121753 0.121753 0.121753 0.121753 0.121753 0.121753 0.121753 0.121753 0.121753 0.121753 0.121753 0.121753 0.121753 0.029975 0.032955 0.037506 0.032095	5.028924 11.84106 21.52372 29.66827 34.10983 36.52756 38.36674 39.75997 40.79559 83.81593 86.04496 87.48236 88.3016 88.66552 88.66552 88.66552 132.1318 130.6196 171.1442 208.1558 200.7592 192.5806 184.1454 175.9185 167.9847 313.4779 284.4018 492.2261

•

.

OK

.

	FINAL COM MGDIFIED	VDITIONS 2 RATIIONAL	YEAR STO Method W	RM ITH Tc=10	MIN AND	storm du	RATION 10	MIN			
	AREA (ACRES)	C	Ì	SOIL MOIS Factor	Qp						
3	8.91	0.607	0.9	1	4.867533						
	•										
	TIME (HOURS)	INFLOW (CFS)	INCREMENT INFLOW VOLUME (CUIFT)	INITIN: WATER ELEVATION	INITIAL Storage Volume (cuipti)	INITIAL OUTFLOU (CF3)	FINAL STORAGE VOLUME (OU F1)	FINNL Witer Elevation	FINE CUTFLCK (CPS)	OUTFLOU Valume (Chifi)	
	0.083 0.167 0.25 0.333 0.417 0.553 0.553 0.553 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75	0 2.433766 4.667533 2.435766 0.001 0.1 0.1 0.1 0.1 0.1 0.1	565.7541 15.2712 29.988 30.024 29.988 30.024 29.958 29.86 29.182	0.505593 0.602480 0.6224529 0.624529 0.621518 0.618051 0.618051 0.618051 0.618051 0.618059 0.608697	1445.164 2497.534 2786.759 2676.631 2660.735 2625.755 2591.749 2558.765	0.026638 0.105370 0.202480 0.229437 0.224629 0.221518 0.218084 0.214932 0.211857 0.208637	359.6248 1443.154 2467.534 2788.759 2788.376 2696.631 2660.735 2895.755 2591.748 259.765 2592.6392 2495.034	0.611869 0.608897 0.605981	0.211965 0.209877 0.205981	5.979646 20.41685 46.44459 64.65482 66.65482 65.68482 65.68492 65.68492 65.68492 65.68492 63.99470 62.86259 62.50568 61.34608	
	•	•									
			•								
		VOITIONS 2 RATIONS			MIN AND	STOR!! DU	VATION 15	MIN			
	AREA (ACRES)	C		SOIL MOIS FACTOR	Qr.						
r T Ell	8.91	0.607	0. 76	1	4.110361						
	time (Hours)		INCREMENT INFLOW VOLUME (CU FT)	INITIA WATER ELEVATION	INITIA'. Storage Volume (cu ft)	INITIAL OUTELOW (CFS)	FINGL Storage Volume (Cu FT)	FINAL NATER Elevatici	FINAL DUTFLOW N (DFS)	OUTFLON Volue (CU FT)	
ومتري	0.167 0.25 0.333	2.055180	737.2299 -	0 451400	303.6832 1010 czr	n nondes	203.6832 1216.856 2101.449 2358.447 2355.971 2290.314 2265.249 2240.823 2217.077	n 577200	0 17235	8,360760 17,05249 39,54289 53,54034 57,10754 55,53758	
,	0.437 0.5 0.5827 0.6667 0.755 0.9167 1	0.1 0.1 0.1	_ ن د و توان		21747040	0.176040	2265.247 2240.823 2217.077 2174.046 2171.440 2149.544	0.574003	0.174003	55.05315 54.44790 53.73391 52.91080 52.73741 51.88444	

.

,

C.,

1	I	1	[1	1 1	1	I	1	I	1	Ť	1 1		ſ	1	1	
Ĺ.			1 .				,	· 1						/	. .	,	
			0.5853 0.6667 0.75 0.833	0.30 0.417 0.335 0.185		0.	(HCREE)	FINE CON	0,9167				.Х 43	(ACRES) 8.91	FINAL COR		
			.460255 0.1 0.1	and and and a set of the set of the	0 (S:2)) 0 (S:2)	U,0 U	а 5 4 сэ	WIIDK 2 BAIDNL	يو طيبيو العديو -		1.02.000 0.000 0.00000000		•	0,607	r~N		
			234.2262 29.286 29.386 29.386 29.132 20.132 27.783 0	station will be at the states, where	#1.0x10#		n ' S Nor	YEAR STO METHOD K	7.986	8.462.863 9.00.566	270,6985 821,2942 1062,734 1052,734	INCREMENT INCLUSE VCLUSE (CU-FT)		0.67			
			.245510 .867054 .809629 .809447	.079916 .020752 .020752 .020752 .020752			6	TORN VITH TC-10	./10010	0.727195 0.73744016 7.737444	.079155 .579215 .579374			FHCTOS			
			4120.076 4781.006 4518.006 4518.006 4518.006	341.067 531.025 531.025 531.057	Contraction of the second seco	2.72U317		nin and			2122.720 2122.720 2122.521	NUTIA VILUA VILUA		s.623007	MIN AND		
•				.015986 .064159 .182871 .206428	WITH WITH			stort Durat	506115° 20215° 20215°	0.33737 0.33737 0.33737 0.33737 0.33737 0.33737 0.33737 0.33737 0.33737 0.33737 0.33737 0.33737 0.33737 0.33737 0.33737 0.33737 0.33737 0.33737 0.33737 0.33777 0.33777 0.33777 0.33777 0.337777 0.337777 0.337777 0.337777 0.3377777 0.3377777 0.337777777777	.01988 0 .01988 0 .169394	INITIAL WITHOUT (CFC)			story due		
			4667.013 4691.460 4694.256 4516.652	215.7749 866.0225 1707.323 1251.359 8341.059 8341.059				S WIIH	238		1077,7207 1077,521 2107,521 2100,055 3135,477				URATION 20		
			0.807054 0.807054 0.805629 0.805629 0.8054477 0.7824447	0.079916 0.329752 0.522571 0.522571 0.522571 0.522571 0.522571 0.522571				Ē	0.707952	0,744013 0,737644 0,731417 0,731417	0.2279715 0.227971 0.2779710 0.27797710 0.2779710 0.2779710 0.2779710 0.277971000000000000000						
			0.373677 0.304213 0.387925 0.387925 0.387925 0.377382	C.204562 0.20470000000000000000000000000000000000					0.317003 0.305358 0.305358	0,338511 0,328511 0,3227470 0,322175	0.079974 0.079974 0.0798374 0.0798874 0.0798874 0.0798874 0.079887						
			110,517 119,7728 112,1728 112,6722	50 50 00 000 000					94.752 92.752		91.22776 92.22776 92.4392776						

•

.

AREA (ACRES)	C		SOIL MOIS FACTOR) Qr	
8.91	0.607	6 .4 7	1	2.541933	f
÷.					
 TINE (HOURS)	INFLOW (CES)	INCREMEN INFLOW VOLUME (CU FT)	T INITIAL WATER ELEVATIO	INITIAL STORASE (VOLUTE (CU FT)	CATELOR STORAGE WATE COTE OF CLEANE
0 0.083 0.137 0.25 0.333 0.417 0.5	0 1.270966 2.541933 2.541935 2.541935 2.541938 2.541938 2.541938	189.8824 576.3106 759.5298 768.6908 768.6908 759.5296	0 0.069557 0.279175 0.512446 0.512446 0.576977 0.640540	0 167.3040 753.7690 1468.157 2204.447 2209.997	0 0 187.8040 0.069557 0.013911 2.075365 0 0.187.8040 0.069557 0.013911 2.075365 0 0.013911 753.7690 0.279173 0.055364 10.54551 0 0.055864 1489.157 0.512446 0.117446 25.14120 0.112446 2204.447 0.576977 0.175977 43.23993 0 0.176777 2909.999 0.640540 0.240540 63.12868 9 0.240540 3580.554 0.701671 0.301462 80.97596 0 0.301462 4252.327 0.763402 0.355477 95.50161 0 0.301462 4552 0.455746 100.5772 0 0 0.55772 0.55772 0.55772 0 0 0.55772 0.557772 0.55772 0.55772 0.55772 0.557772 0.557772 0.55777
 0.5883 0.6667 0.75 0.833 0.9167 1	2.541733 2.541933 1.270966 0.1 0.1 0.1	30.132	0.895124	5408.679	0.301462 4252,327 0.763402 0.355477 98.50161 0.355477 4899.836 0.831561 0.415116 115.6315 0.415116 5340.965 0.877996 0.455746 130.5772 0.455745 5403.679 0.835124 0.461983 137.1089 0.461983 5301.099 0.578799 0.452074 137.7120 0.452074 5196.957 0.862837 0.442492 134.1299
-					
 f inal com Modified	NDITIONS (RATIONA	2 Year 31 L Nethco I	URN WITH TC=10) MIN AND	STORM DURATION SO MIN
AREA (ACRES)	C	- 1	SOIL MOIS FHOTOR	C Gp	;
5.91	0.607	3.4	1	2.163348	
	•				
 time (Hours)	INFLOH (CFS)	1011	KHTER ELEVATIO	STOPAGE	. INITIAL FINAL FINAL FINAL OUTFLON OUTFLOR STURAGE WATER OUTFLOR OULDE (CTS) VCLOWE ELEVATION (CFS) (CU FT)) (CU FT)
0.167 0.25 0.333 0.417	2.163348	470.6473 646.4083 645.4083 654.1964	0.059197 0.237594 0.459183 0.547490	1266.775	0 159,8322 0.059197 0.011839 1.766821 0.011839 641,5056 0.237594 0.047519 8.974975 5.0.47518 1266,795 0.469183 0.093656 21.11852 5.0.093836 1877,149 0.547490 0.147490 36.05435 5.0.147490 2478,552 0.601671 0.201671 57.79334
 P - 45	2.163348 2.163348 1.081674	645.7447 646.4083 495.8950	0.755116 0.811633 0.865414	41/3.610 4/10.513 5030.934	2 C.201671 3056 717 0.638776 0.233776 68.04386 9.253776 3622.013 0.704685 0.304100 85.64800 8 0.304100 4173.610 0.755116 0.343227 97.92739 9 0.346227 4710.513 0.511633 0.397676 111.8411 8 0.397678 5230.934 C.856414 0.415612 125.9877 4 0.445612 5590.703 0.908281 0.477827 139.1255 6 0.477627 5614.131 0.903750 0.480906 143.7328

.

FINAL COM MODIFIED	DITIONS (RATIIONA)	2 Year st _ Method	ORM WITH Tc=10) min and	storm durati	ION 60 MIN			
AREA (ACRES)	C	j	SOIL MOIS Factor) đị					
8.91	0.607	0.34	1	1.838845					
 TINE (HOURS)	INFLON (CFS)	INCREMEN INFLOW VOLUTE (CUTET)	F INITIAL WATER ELEVATION	INITIAL Storage Volume (CU-F1)	OUTFLOW ST (CFS) V	FINAL FINA IORAGE WATE IGLUME ELEVATI IJ FT)	R DUTE! NU	outflow Volute (cu ft)	
 0.167 0.25 0.333 0.417 0.5 0.5833 0.6667 0.75 0.75 0.75 0.833 0.833 0.833	0 .715422 1.828545 1.838645 1.838645 1.838645 1.838645 1.838845 1.838845 1.838845 1.838845 1.838845 0.519422 0.11 0.1 0.1 0.1	549,4471 549,4471 554,0669 549,4471 551,4350 551,4350 551,4350 551,4350 551,4350 551,4350 551,4350 551,4350 551,4350 551,4350 551,4350 551,4350 551,4350 551,4350 551,4350 55,88 325,88	0.201955 0.392505 0.522167 0.565355 0.612676 0.655025 0.675267 0.764512 0.880145 0.880145 0.890145 0.890145 0.890145 0.890255 0.872451 0.872255 0.87265 0.881064	545.2797 1076.776 1590.005 2108.202 2600.730 3061.886 3061.886 3061.886 3061.770 4607.330 4450.965 4450.965 4450.975 5520.936 5570.112	0.040391 107 0.07761 159 0.162305 280 0.162305 280 0.2256015 355 0.2256015 355 0.225257 400 0.384477 445 0.373773 438 0.453637 557 0.452639 557 0.4778714 547 0.458433 537	.8562 0.05031 .2777 0.20195 6.776 0.59660 6.055 0.52218 9.202 0.508360 0.700 0.8726 1.856 0.626021 0.700 0.49826 7.550 0.76560 7.550 0.7651 6.726 0.820141 7.877 0.87451 0.350 0.904744 0.350 0.904744 0.350 0.904744 0.350 0.904744	5 0.079761 7 0.122157 5 0.166306 5 0.213874 5 0.2560257 7 0.258267 7 0.258267 7 0.373775 5 0.4138777 5 0.4138777 5 0.4138777 6 0.4275744 5 0.475714 5 0.456351 5 0.456351 5 0.457570	1.5034%8 7.628746 17.95075 30.16809 43.91%1 56.91%15 70.27750 85.01052 94.87381 105.8121 116.6273 199.9344 183.0240 142.9108 141.5039 136.4756 135.5255 132.6575	

•

AREA 8.91 TINE (HOURS)	0.607 Inflow (CFS)	INCREMENT		INITIAL STORAGE	INITIAL OUTFLOG (CFS)	FINAL Storage Volume (CU FT)	FINAL WATEP ELEVATION	FINAL Jujflju I (CFS)	OUTFLOW VGLUME (CU FT)
0 0.683 0.167 0.25 0.653 0.5835 0.5835 0.5835 0.5667 0.9167 1.655 1.1249 1.655 1.1249 1.581 1.583 1.58	0.1 0.1 0.1	129.2816 892.5178 517.1267 517.1267 523.3571 517.1267	0.1900/5 0.575346 0.557184 0.557184 0.557184 0.557887 0.557887 0.57806 0.57806 0.57806 0.57806 0.5812171 0.946824 0.946824 0.946824 0.946824 0.946824 0.946824 0.946824 0.946824 0.946824 0.946824 0.946824 0.584595 0.584595 0.5845259 0.5855254 0.5855555555555555555555555555555555555	0 127.5666 513.2046 1502.357 2015.2048 1502.357 2448.638 2901.679 2448.638 2901.679 373.207 84.758 2901.679 373.207 84.978.515 55755.138 2978.515 55755.138 25755.138 25755.138 25755.138 25755.138 25755.138 25755.138 25755.138 25755.138 25755.138 25755.138 25755.138 25755.138 25755.138 25755.138 25755.138 25755.138 25755.138 25755.2595.2595.2595.2595.2595.2595.2595	0.009471 0.0380159 0.075069 0.113725 0.1571847 0.299077 0.299079 0.279596 0.3149815 0.299579 0.279596 0.349815 0.349815 0.494177 0.5150996 0.0503830 0.471827 0.555996 0.0503830 0.4423617 0.4423617 0.442362 0.442362 0.4423617 0.422859 0.4	127.8556 513.2044 1013.435 1502.057 1984.752 2445.465 2701.872 3548.516 3775.207 4190.558 44978.516 5325.572 5758.213 5768.137 5785.332 5785.532 5785.332 5785.5325.532 5785.532 5785.5	0.513725 0.557184 0.557184 0.559803 0.59803 0.579586 0.755956 0.755956 0.755932 0.500131 0.5641945 0.56524856 0.755954 0.948554 0.948554 0.948554 0.948554 0.920420 0.948554 0.5932949 0.920420 0.9653846 0.554834 0.554834 0.554854 0.	0.038015/ 0.075089 0.157184 0.1989798 0.279596 0.279596 0.349615 0.349615 0.349615 0.349615 0.349615 0.349615 0.349615 0.457677 0.5158306 0.457677 0.5158306 0.442265 0.445265 0.445265 0.445265 0.445265 0.445265 0.	1.415057 7.177976 16.67492 26.20600 40.56170 53.21070 65.279176 77.57301 87.30649 97.47567 11.1012 152.0514 142.1052 152.9204 142.5052 142.5052 142.6052 137.4741 156.4991 135.6049 137.62594 135.6049 137.62594 122.52594 122.52594 122.52594 122.5594 122.5594

.

FINAL CONDITIONS 2 YEAR STORM MCDIFIED RATIIONAL METHOD WITH TO=10 MIN AND STORM DURATION 70 MIN

o (spage we all all

í.....

FINAL CONDITIONS 2 YEAR STORM MODIFIED RATIIONAL METHOD WITH TO=10 MIN AND STORM DURATION BO MIN

	AREA (ACRES)	C	i	SOIL MOIS FACTOR	i ip					
	8.91	0.607	0.29	1	1.568427					
	TIM: (HOURS)	INFLON (CFS)	INGREMEN) INFLOW VOLUME (CU FT)	TINITIAL WATER ELSVATION	INITIAL STORAGE VOLUME (CU FT)	INITIAL DUTFLOW (CFS)	STORAGE	FINAL WATER Elevation	FINAL Cutflow (CFS)	OUTFLOW VOLIME (CU FT)
1	00000000000000000000000000000000000000	06 21277777777777777777777777777777777777	117.1615 355.2193 468.6460 458.6460 458.6460 458.6460 458.6460 4770.3295 44770.3295 44770.3295 44770.3295 44770.3295 4488.6460 459.4460 468.6460 4681.41015 29.885 132.29.885 132.29.885 132.29.865 132.29.865 132.29.865 132.29.865 132.29.865 132.29.865 132.29.865 132.29.865 132.29.865 132.29.865 132.29.865 132.29.865 132.29.865 132.29.865 132.29.865 132.29.865 132.29.865 132.29.865 132.29.855 132.29.955 132.29.855 132.29.200 132.29.855 132.29.29.29.	0 0.042718 0.172255 0.340158 0.5405622 0.5415459 0.5415459 0.54559 0.55559	0 115.8791 465.0315 918.4267 1361.8077 2220.857 3420.575 3420.555 3420.549 340.549 340.549 340.549 340.549 340.549 340.549 340.549 340.549 340.549 340.549 340.549 340.549 340.549 340.549 340.549 340.549 340.559 340.549340 340.549340 340.549 340.549 340.549 340.549 340.549340 340.549 340.549 340.549 340.549340 340.549 340.549 340.549340 340.549 340.549 340.549340 340.549 340.549 340.549340 340.549 340.549340 340.549 340.549340 340.549 340.549340 340.549 340.549340 340.549 340.549340 340.549	0 0.008583 0.008583 0.0085031 0.101063 0.101063 0.101063 0.101063 0.101063 0.101063 0.101063 0.101063 0.2503500 0.2503500 0.2503500 0.2503500 0.25035000000000000000000000000000000000	465.0715 918.4267 1361.807 1769.577 2220.575 2601.657 3622.267 3422.267 3600.547 3600.547 4866.562 5555.058 5555.058 5677.231 4075.057	0.501065 0.578430 0.578430 0.415482 0.451589 0.4551589 0.455459 0.725776 0.7355027 0.793022 0.935579 0.955788 0.955788 0.955788 0.955789 0.955788 0.9578888 0.9578888 0.9578888 0.95788888 0.9578888888 0.957888888888888888888888888888888888888	0.034451 0.066031 0.10083 0.140502 0.215480 0.215480 0.215480 0.25589 0.26690 0.26690 0.345148 0.345148 0.345148 0.345148 0.345148 0.545137 0.4464969 0.523154 0.54550 0.447075 0.447052 0.4470552 0.4470552 0.4470552 0.4470552 0.4470552 0.4470552 0.4470552 0.4470552 0.4470552 0.4470552 0.4470552 0.4470552 0.4470552 0.4470555 0.4470555 0.4470555 0.4470555 0.4470555 0.4470555 0.4470555 0.44705555 0.44705555 0.44705555 0.447055555 0.44705555555555555555555555555555555555	1.282995 1.282971 25.28287 25.28287 25.28287 25.28287 25.28287 25.28287 25.28287 25.28287 25.28287 26.52484 27.2972 20.23881 109.3877 28.2972 132.2828 152.6851 152.6851 152.6551 152.6551 152.5651 152.5551

.

تى ئىسى	KOOIFIED	RATIIONAL	. Method W	ITH TC=10	MIN AND	storm dui	GTICN 90	MIN		
	AREA (ACRES)	C	i.	SOIL MOIS FACTOR	ûp					
	8.91	0.607	0.27	1	1.460259					
7 1 1 - 4	tine (Hours)	INFLOW (CFS)	INCREMENT Inflow Volume (Cu FT)	INITIAL WATER ELEVATION	INITIAL STORAGE VOLUME (CU FT)	INITIAL OUTFLOW (CFS)	FINAL STORAGE VOLUME (CU FT)	FINAL WATER ELEVATION	FINV Outflow (CFS)	outflo. Valume (ou ft)
	0.16/ 0.25 0.333 0.417 0.5 0.5833 0.555 0.833 0.5167 1.085 1.165 1.240 1.332 1.332 1.445 1.498	1.450259 1.460259 1.460259 1.460259 1.460259 1.460259 1.460259 1.460259 1.460259 1.460259 1.460259 1.460259 1.460259 1.460259	331.1569 466.3256 436.3256 437.3256 437.3256 437.3256 437.3256 438.4254 438.4254 438.4254 438.4254 438.4254 436.3256 436.3256 436.3256 436.3256 436.3256 436.3256 436.3256 436.3256 122.526 122.556 122.556 122.556 122.556 122.556 122.556 122.556 12	C.312678 D.469599 C.529348 D.564697 D.59231 D.59231 D.59231 D.629555 D.665501 D.629595 D.665501 D.82098 D.862098 D.862098 D.862098 D.862098 D.862098 D.862098 D.862098 D.862098 D.852555 D.970781 C.92003547 C.94060 C.9203547 D.94456 C.920728 D.9445600000000000000000000000000000000000	805.0857 1207.016 1675.7422 2068.138 2451.473 2058.138 2451.473 2058.138 2058.138 2058.454 4222.948 4222.948 4222.948 4254.454 375.881 5476.481 5476.481 5576.881 5576.881 5576.055 5578.406 55788.406 5578.406 55	0.007991 0.032075 0.032075 0.032075 0.1295919 0.1295946 0.199231 0.232865 0.232865 0.232865 0.2374950 0.352771 0.382837 0.382837 0.382837 0.382837 0.440541 0.468224 0.468224 0.5336934 0.5336934 0.5336934 0.5336934 0.5336934 0.5336934 0.5336934 0.5336934 0.5377375 0.4677375 0.4677151 0.457154	$\begin{array}{c} 1267.918\\ 1675.742\\ 2068.138\\ 2451.470\\ 2025.032\\ 3359.19\\ 3550.414\\ 49586.414\\ 4222.946\\ 45175.861\\ 5476.467\\ 5768.833\\ 6053.292\\ 6195.508\\ 6058.699\\ 5934.360\\ 5575.774\\ 5466.356\\ 5575.774\\ 5466.356\\ 5555.774\\ 5456.356\\ 5555\\ 53251.070\\ \end{array}$	0.160376 (0.316576 (0.527346 (0.527346 (0.552737 (0.527231 (0.527231 (0.527354 (0.725526 (0.725526 (0.725527 (0.528078 (0.528078 (0.528078 (0.52625 (0.525547 (0.525776 (0.525776 (0.54058 (0.060339 0.093917 0.125346 0.144597 0.193913 0.252983 0.265602 0.265602 0.265602 0.265602 0.267334 0.352771 0.362857 0.476224 0.352650 0.365534 0.3656534 0.3656534 0.3656534 0.3656534 0.365766 0.367766 0.467131 0.467131 0.467131	1.173954 6.038121 14.25500 25.47458 33.75762 43.9300/ 54.56751 64.86950 84.16285 92.75526 101.6194 109.5999 101.6194 109.5999 115.7676 156.1025 156.1025 157.6866 156.1025 157.6866 156.9435 157.6866 155.9435 157.6866 155.9435 157.6866 155.5903 144.2131 141.1093 128.5903 144.2131 141.1093 128.5903

FINAL CONDITIONS 2 YEAR STORM

 \Box

FINAL CONDITIONS 2 YEAR STORM MCDIFIED RATIIONAL METHOD WITH TC=10 MIN AND STORM DURATION 120 MIN

and a start of the second s

1

11

<u>___</u>

AREA (ACRES)	C	i	SOLL MOIS FACTOR	i ûp					
8.91	0.607	0.21	1	1.135757					
TIME (HOURS)	INFLES (CFS)	INCREMEN INFLOW VOLUML (CU FT)	INITIA. Mater Blevation	INITIAL STORAGE VOLUME (CU FT)	INITIAL (CITELOW (CFS)	FINAL Storase Volum (CU FT)	FINAL Water Elevation	FINAL OUTFLOW (CFS)	OUTFLGA VGLUMF (CD FT)
0.167 1 0.25 1 0.233 1 0.417 1 0.5535 1 0.5535 1 0.5535 1 0.033 1 0.033 1 0.9167 1 1.056 1 1.056 1 1.475 1 1.478 1 1.478 1 1.478 1 1.478 1 1.478 1 1.561 1 1.561 1 1.561 1 1.561 1 1.561 1 1.563 1 1.563 1 1.563 1 1.563 1 1.563 1 1.553 1 1.555 1 1.553 1	.135757 .135757	84,84110 257,5676 339,3644 339,3644 339,3641 337,3641 340,5910 340,5910 340,5910 340,5910 340,5910 340,5910 340,5910 340,5910 339,3644	0.246524 0.365240 0.482748 0.523444 0.552444 0.552444 0.552444 0.55244 0.622807 0.622807 0.622807 0.627408 0.627408 0.627408 0.627408 0.72016 0.725274 0.725274 0.825874	336.7504 565.0675 766.1564 1502.552 1610.450 1907.971 2201.653 2245.509 2760.620 3030.750 5545.381 5757.665 5545.381 4030.566 4277.092 4500.566 4725.810 4725.810 4740.994 4542.281	0.006215 0.024947 0.047264 0.073046 0.096567 0.128464 0.150447 0.150447 0.202307 0.202307 0.227100 0.351436 0.275007 0.351436 0.351636 0.357205 0.3576341 0.356666 0.3576341 0.356686	336.7904 665.0676 966.1564 1903.962 1909.971 2261.353 2245.609 2760.576 3050.950 3050.950 3050.566 4035.597 4035.597 4035.597 4035.597 4035.597 4055.680 5557.804 55557.804 5752.347 5950.597 5750.517 5975.517	0.246521 0.365743 0.482948 0.523454 0.550447 0.576743 0.602307 0.622306 0.627100 0.627100 0.651436 0.675037 0.675376 0.720161 0.720161 0.720161 0.725376 0.785376 0.785378 0.785378 0.78538 0.79538 0.79538 0.79538 0.79538 0.79538 0.79538 0.79538 0.79538 0.79538 0.79538 0.79538 0.79538 0.79538 0.79538 0.79538 0.79538 0.79538 0.79538 0.79538 0.795548 0.7955548 0.7955548 0.7955548 0.795548 0.795548 0.795548 0.795548	0.02494/ 0.049264 0.073048 0.076559 0.123464 0.150447 0.150447 0.202307 0.2251436 0.2251436 0.2251436 0.225569 0.227872 0.317640	0.928631 4.711872 11.03722 13.27355 25.64955 30.57603 41.07039 41.07039 56.53485 64.15306 12.09655 75.93536 85.58655 71.92767 77.75654 103.6675 103.6575 103.6575 103.6575 103.6575 116.1204 122.1809 135.8128 116.1204 125.0789 135.8128 114.6217 1157.4667 1157.4667 1157.5064 149.1771 145.9385

			Fina	1 Con	dition	IS							ب
-	ICS TR 20:	FOR To	=0.1, la/	/P=.1 AND	Tt=0, 24	hr storm		10 YEAR					
	AREA 1 M1)	CN	S	β	Q	UNIT Op	Qp	Ia/P					
,	0.0139	90.31	1.072971	1.12	0.41436	1010	5.817197 0	0.191602					
	TIME (HOURS)	q(p)	2 max	INFLOW (CFS)	INCREMENT INFLOW	T INITIAL WATER	INITIAL STORAGE	INITIAL OUTFLOW	F INAL Storage	FINAL WATER	F I NAL Outflow	outflow Volume	
-													
_					Volu n e (Cu FT)	ELEVATIO	N VOLUME (CUFT)	(CFS)	Volume (CU FT)	ELEVATION	(CFS)	(CU FT)	
-	$\begin{array}{c} 10.5\\ 11\\ 11.3\\ 11.6\\ 12.1\\ 12.2\\ 12.3\\ 12.4\\ 12.5\\ 12.6\\ 12.7\\ 12.8\\ 13.2\\ 13.4\\ 13.6\\ 13.8\\ 14\\ 14.3\\ 14.6\\ 15.5\\ 16.5\\ 16.5\\ 16.5\\ 16\\ 16.5\\ 17\\ 17.5\\ 18\\ 19\\ 20\\ 22\\ 26\end{array}$	34 53 334 1010 6237 147 123 104 86 657 51 462 384 229 24 332 226 23 210 19 115 13	0.052475 0.330693 0.640594 1 0.616832 0.214851 0.145545 0.121782 0.10297 0.085149 0.065347 0.055436 0.050495 0.045545 0.041584 0.037624 0.037624 0.037624 0.037624 0.037624 0.037624 0.037624 0.037624 0.025743 0.022772 0.025743 0.022772 0.019802 0.018612 0.017822 0.017822 0.017822 0.017822	0.13823 0.19526 0.305259 1.923707 3.726462 5.817197 3.585231 1.249833 0.846641 0.708431 0.598998 0.495326 0.495326 0.380134 0.328297 0.228374 0.264942 0.241903 0.218865 0.195826 0.184307 0.167028 0.184307 0.167028 0.184307 0.167028 0.184307 0.167028 0.184307 0.167028 0.184307 0.167028 0.184307 0.167028 0.1636394 0.066394 0.066394 0.069115	270.586 1203.641 1017.03 1717.859 1692.977 870.8516 377.369 279.9166 235.5373 196.9783 167.95 294.4308 255.0351 223.9333 201.1253 182.4642 2165.8765 223.9333 205.2722 252.9617 285.1002 253.9784 228.0802 212.5293 202.162 212.5293 202.162 212.5293 202.164 212.5293 202.164 212.5293 202.164 212.5293 202.164 212.5293 202.164 212.5293 202.164 212.5293 202.164 212.5293 202.164 212.5293 202.164 212.5293 202.164 212.5293 202.164 212.5293 202.164 213.5293 202.164 213.5293 214.5293 215.5293 202.164 215.5293 202.164 215.5293 202.164 215.5293 202.164 215.5293 202.164 215.5293 202.164 215.5293 202.164 215.5293 202.164 215.5293 202.164 215.5293 202.164 215.5293 202.164 215.5293 202.164 215.5293 202.164 215.5293 202.164 215.5293 202.164 215.5293 202.164 215.5293 202.164 215.5293 215	0.107312 0.199925 0.539344 0.654015 0.847377 1.024781 1.05848 1.1069 1.116155 1.121184 1.122691 1.11655 1.021755 1.085436 1.073077 1.060235 1.085436 1.073077 1.060235 1.021755 1.040675 1.021755 0.9973 0.959388 0.82291 0.82291 0.82291 0.82291 0.794697 0.74697	119.4791 289.7421 539.7981 1684.426 2659.1266 4302.704 5880.03 6597.826 6807.974 6912.547 6969.382 6969.382 6976.382 6977.525 6425.765 6280.661 6057.626 5547.361 4354.674 4094.734 3854.925 3416.506 3027.236	0 0.005476 0.013279 0.024739 0.084544 0.26205 0.380456 0.492751 0.498732 0.500784 0.492697 0.492697 0.492697 0.492697 0.492647 0.492657 0.492988 0.399988 0.399988 0.376737 0.348444 0.326597 0.30527 0.284738 0.265573 0.2167350	289.7421 539.7981 1684.426 2659.126 4302.704 5880.03 6599.826 6807.974 6912.547 6969.382 6986.411 6974.319 6911.589 6615.675 6687.059 6565.432 6425.765 6280.661 6059.626 5845.836 6280.661 6059.626 5577.047 5254.802 4940.22 4940.22 4940.22 4940.22 4954.674 4094.734 3854.674 4094.734 3854.925 3416.506 2427.782	1.024781 1.08646 1.1069 1.116155 1.121164 1.122691 1.121621 1.11607 1.107562 1.097085 1.085436 1.073077 1.060235 1.040675 1.021755 0.97388 0.922379 0.8853491 0.82291 0.794697 0.743118 0.697322	0.013279 0.024739 0.084544 0.150624 0.380456 0.380456 0.45874 0.498732 0.498732 0.498732 0.498732 0.498732 0.498732 0.498732 0.498732 0.498732 0.498732 0.498732 0.498732 0.482215 0.487315 0.487315 0.487439 0.348444 0.325577 0.30527 0.30527 0.30527 0.30527 0.284738 0.265573 0.277556 0.277557575755757575755757575757575757575	$\begin{array}{c} 10.12771\\ 20.53007\\ 59.0132\\ 42.33026\\ 74.28129\\ 115.651\\ 151.0552\\ 167.2211\\ 175.3431\\ 178.503\\ 179.949\\ 180.0456\\ 357.1617\\ 350.9503\\ 342.5508\\ 332.7529\\ 322.131\\ 310.9613\\ 444.9687\\ 332.7529\\ 322.131\\ 310.9613\\ 444.9687\\ 537.1617\\ 568.6809\\ 531.0075\\ 495.2602\\ 462.1716\\ 431.6792\\ 780.5937\\ 679.5903\\ 1117.871\\ \end{array}$	

.

·

: • .

or∠

	MODIFIED AREA (ACRES)	C	. KETHOD I i	VITH TC=10 Soil Mois Factor	5 Qp		RATION 10	MIN				
	8.91	0.607	1.68	. 1	9.086661							
	TIME (HOURS)	INFLOW (CFS)	INCREMEN INFLOW Volume (CU_FT)	INITIAL ₩ATER ELEVATION	INITIAL STORAGE VOLUME (CU F1)	OUTFLOW (CFS)	FINAL STORAGE VOLUHE (CU_FT)	FINAL Water Elevation	FINAL OUTFLOW (CFS)	VÚLUME		
<u></u>	0 0.683 0.167 0.332 0.417 0.5533 0.6637 0.75 0.75 0.833 0.9167 1	100.0 1.5 1.0 1.0	2060.718 2036.186 678.6762 15.2712 29.980 29.988 30.024 29.989 29.989 29.989 29.989 29.989 29.989	0.248629 0.620820 0.803761 0.862146 0.849659 0.639586 0.829556 0.819787 0.810297 0.601098	4635.920 5190.395 1073.668 4976.070 4880.783 4787.983 4697.826 4610.432	0.947725 0.220820 0.390808 0.441976 0.431527 0.4231527 0.413361 0.413361 0.396510 0.368460	2691.111 4635.920 5190.395 5073.668 4976.070 4580.782 4787.983 4697.826 5610.432 4524.702	0 0.248629 0.520820 0.803781 0.862146 0.849859 0.839586 0.839586 0.839586 0.819787 0.801098 0.792073 0.792073 0.763336	0.220820 0.370804 0.441876 0.431127 0.422138 0.413361 0.404814 0.370510 0.388460 0.80364 0.80364	40.90667 91.37742 124.4034 127.4779 125.2748 125.2748 122.8245 120.1506 127.479 125.2615		
	MODIFIED AREA (ADRES)	, L	. METHOD 1 	ITH TC=10 Soil Mois Factor			RATION 15	KIN				
	TIME (HOURS)	INALON (CFS)	INCREMENT INFLOM VCLUML (CULFT)	INTITAL WATER Elevation	INITIAL Storage Volume (CU-FT)	INITIAL Cutflow (CFS)	FINAL STORAGE VOLUME (CU FT)	FINAL Water Elevation	FINAL OUTFLOW I (CFS)	OUTFLOK Võlume (Cu FT)		
	0 6.093 0.167 0.25 0.333 0.417 0.5 0.5833 0.5833 0.75 0.75 0.75 0.933 0.9107 1	0 3.894026 7.788052 7.788052 3.894026 0.1 0.1 0.1 0.1 0.1 0.1 0.1	29.88	0.953713	6060.280 5935.898	0 0.0426227 0.362819 0.530596 0.5558474 0.558474 0.545983 0.523818 0.521999 0.510543	5935.898 5613.887	0 0.213111 0.565227 0.794650 0.963995 1.010020 0.961123 0.961123 0.961123 0.961123 0.961123 0.961221 0.953713 0.940620 0.927777 0.915344	0.510543	154.2618	•	
		·										

•

.

1.3	FINAL CON Modified	NDITIONS RATIIONAL	10 YEAR S' L Method I	TORM AITH TC=10) MIN AND	STORM DU	RATION 20	MIN	
	AREA (ACRES)	C	i	SOIL MOIS FACTOR	S Qp				
	8,91	0.607	1.25	ì	6.760462				
	an a								
	TIME (KOURS)	INFLOW (CFS)	INCREMEN INFLOW VGLUME (CU FT)	T INITIAL WATER ELEVATION	INITIAL STORAGE VOLUME (CU FT)	INTTTAL GUYFLGW (SFS)	FINAL STORAGE VOLUME (CU.FT)	FINAL FINAL WATER OUTFLOW ELEVATION (CFS)	OUTFLOU VOLUME (CULFT)
L	0 0.083 0.167 0.25 0.333 0.417 0.5 0.5833 0.5833 0.5667 0.75 0.833 0.9167 1	0 3.380231 6.760462 6.760462 5.380291 0.1 0.1 0.1 0.1	505.0065 1533.272 2020.026 1553.272 519.9465 30.024 29.966 29.966 29.966 29.986 30.132 29.988	0.184792 0.556641 0.734246 0.931140 1.074552 1.109055 1.091593 1.050336 1.042403 1.026774	0 499.4789 2003.140 3750.139 5845.632 7208.252 7536.120 7371.085 7210.359 7054.201 4902.836 6754.356	0.036798 0.158841 0.329965 0.502247 0.627733 0.657932 0.627927 0.627927 0.627927 0.629927	2003.140 3950.139 5845.832 7258.252 7536.120 7371.086 7210.259 7054.201 8902.835 6754.356	C 0 0,184992 0.036998 0,558641 0.158841 0,734246 0.529985 0,931140 0.502247 1,074552 0.627763 1,107065 0.657932 1,091699 0.642731 1,074774 0.627927 1,058336 0.613544 1,042405 0.599303 1,026774 0.555927 1,011644 0.572688	5.527567 29.61100 124.2327 170.6552 170.6552 190.7514 190.7514 181.2443 178.6129 173.7229
				1					
	FINAL CON MODIFIED	WDITIONS RATIIONG	10 YEAR S' L METHOD I	TORN NTTH 1c=10	D MEN AND	STORM DU	RATION 30	MIN	
	MODIFIED	NDITIONS RETIIONAL C	L METHOD I	SOL MOLS		STORM DU	RATION 30	Min	
	MODIFIED	NDITIONS RATIIONA C D.607	L METHOD I	NTIH 1c-10		STORM DU	RATION 30	Min	
	NODIFIED AREA (1.CRES)	RATIIONN C	L METHOD I	SOL MOLS	5 Qp	STORK DU	Ra(10N 30	MiN	
	MODIFIED AREA (ACRES) 8.91 TIME (HDURS)	RATIIONN C	L METHOD I 1	SOL MOLS	5 Qp 5.40837	STORM DU INITIAL DU)ELOW (CFS)	FTNA	MIN FINAL FINAL WATER QUTFLOW ELEVATION (CFS)	OUTFLOW Volume (cu fi)
	MODIFIED AREA (ACRES) 8.91 TIME (HDURS)	RATIIONA C 0.607 INFLOW (CFC) 2.704165 5.40837 5.40837 5.40837 5.40837 5.40837 2.704185	L ME1100 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NITH 10-10 SOL MOIS FACTOR I INITIAL WATER ELEVA: 10 0.147993 0.522907 0.6522907 0.653199 0.965737 1.17014 1.222697 1.221697 1.221697 1.221697	5.40837 5.40837 INITJAL STURAGE (CU FT) 397.5831 1603.157 3161.507 4679.225 6174.506 7611.634 8614.790 8605.748 865.748 865.748	INITIAL OU) FLOW (CFS) 0.029598 0.122807 0.263199 0.263199 0.394797 0.332520 0.664887 0.757283 0.774871 0.754850 0.738660	FINAL STERASE VOLUME (CU FT) 399.5831 1603.157 3161.509 4679.225 6174.506 7611.634 8605.748 8805.748 8412.629 8222.821	FINAL FINAL WATER OUTFLOW ELEVATION (CFS) 0 0 0 0 0.147993 0.329598 0.522807 0.122807 0.663199 0.263199 0.808339 0.374797 0.965757 0.532520 1.17014 0.664987 1.222609 0.757283 1.242710 0.774871 1.221697 0.756485 1.201329 0.756485 1.181349 0.721180	VGLUME (CU F1) 4.422053 23.64575 57.66930 98.30462 140.2103 176.8927 213.2402 230.0370 229.6116 223.3751 219.9401

۶.

	AREA (ACRES)	C	: ************************************	SOIL MOI Factor	S Qp				
	8.91	0.607	0.82	1	4.434563				
) IML (HOURS)	INFLOW (CFS)	INCREMEN INFLOR Volume (CU FT)	T INITIAL Mater Elevation	INITIAL Storage N Velone (cu ft)	INITIAL OUTH_OW (CF3)	- 516246F	FINAL FINAL WATER OUTFLOW ELEVATION (UTS)	OUTFLOW VOLUME (CU F1)
	0.167 0.25 0.333 0.417 0.5883 0.6667	0 2.217431 4.434863 4.4348633 4.43486633 4.43486633 4.4348663 4.4348663 4.4348663 2.2170 0.11 0.11	331.2842 1005.827 1325.137 1325.137 1325.137 1325.137 1325.137 1325.137 1325.224 1331.323 346.2249 20.1322	0.121354 0.487069 0.412070 0.24274 0.879145 0.879145 0.9714580 1.074680 1.026600 1.026600 1.02660000000000000000000000000000000000	0 327.6582 1515.686 2593.985 3839.447 5666.886 6147.148 7399.462 8521.710 9284.103 9564.255	0.024276 0.097413 0.212070 0.420502 0.420502 0.555211 0.645945 0.555211 0.645945 0.555211 0.645945 0.5552615 0.625524	327.0582 1315.086 2859.447 50067.1482 85247.1482 85214.103 85214.1	0 0 0.121354 0.024270 0.467029 0.097413 0.612070 0.212070 0.724274 0.321240 0.649145 0.4305021 1.954680 0.645345 1.212811 0.748710 1.293063 0.815930 1.303505 0.825154 1.253826 0.869222 1.256758 0.788922	3.626084 18.39874 46.20701 79.67667 113.66855 144.8752 144.8752 209.2758 209.2758 209.2758 209.2758 205.0520 246.8745 246.5866
•	•	V	27.700	liroduke	1247.090	0.000222	-9-96 - 969	, .2 3 0/00 0.766775	23*.4/60
ī.	FINAL COM NGDIFIED AREA - (AGRED)	NDETIONS 1 Ratifional C	. METHOD I	OPH VITE 16-10 SOIL MOLE FACTOR		STORM DU	RATION 50	MIN	•
,	-(ALHES) 8.91	0,697			3.948110				
	TIME (HOURS)	INFLOW (CFS)	INCREMEN) NFLOW Volume (CU-F1)	E INITIA. NATER ELEVATION	INITIAL Storage Volome (cu ft)	INTITAL OUTFLOW (CFS)	FINAL Storage Volume (cu fi)	FINAL FINA KATER OUTILOW ELEVATION (LFS)	GUTFLON Volume (CU F1)
_	0.16/ 0.25 0.333 0.417 0.5833 0.5833 0.6667 0.75	3.948110 3.948110 3.948110	895.4313 1179.695 1179.695	0.086453	2309.630	0.021607 0.086722 0.186453	1170.747 2309.630 3416.685		16.37936 40.81236 70.63951

#~

	AREA ACRES)	C	. · i	SOIL MOIS FACTOR	S Qp					*	
	8.91	6.607	0.63		3.407273						
	T IME HOURS)	INFLO⊮ (CFS)	1NFLOW	ELEVATION	STORAGE VGLUME (CU FT)	INITIÀL Dutflow (CFS)	STORAGE	FINAL WATER Elevation	00171.08		
	0.167 0.25 0.333 0.417 0.5 0.5833 0.6667 0.75 0.833 0.9167 1	3.407273 3.407273 3.407273 3.407273 3.407273 3.407273 3.407273 3.407273 3.407273 3.407273 3.407273	1016.093 1016.093 1030.359 1018.093 1021.773 1022.999 1021.773 1018.093	0.093236 0.374211 0.557989 0.644294 0.729355 0.821534 0.914972 1.005972 1.024385	1010.371 1993.679 2951.671 3895.649 4804.577 5692.237 6556.736 7396.660 7396.660	0.018647 0.074842 0.157989 0.244294 0.325686 0.468100 0.567725 0.5657725 0.5650725	1010.371 1995.679 2951.671 3895.849 4804.577 5692.237 6556.756 7396.660 8210.799	0.914972 1.005972 1.094385 1.160064	0.074842 0.157989 0.244274 0.325686 0.483100 0.483100 0.567725 0.645087 0.720073	14.13561 34.78502 60.10121 86.19113 109.3651 134.1179 158.5006 181.8491 203.9550	
	1.100 1.249 1.332 1.415 1.498	0.11	29.88 29.88 29.88 29.68 29.68	1.37814 1.372770 1.348518 1.324712	10263.62 10262.38 10043.41 9810.928 9584.768	0.910677 0.889866 0.867453 0.846623	19282.38 19343.41 9810.928 9584.765 9364.779	1.204147 1.345529 1.397981 1.398146 1.372990 1.348518 1.324712 1.301555	0.863666 0.867455 0.846623 0.826361	272,1488 268,5818 262,3945 256,0851 249,9439	
FI Kj	CIFIED AREA	RATIIONA	į	1178 Tc=10 SET Mile	ûn	STORK OU	RATION 70	MIN			
	8.91 TIME	INFLOW			3.190938 INITIAL	INITIAL	FINÁL	FINEL	FINAL	OUTFLOW	
, ,	HOURS)	(CFS)	INFLOR VOLUME (CCLFT)	T INITIAL NATER ELEVATION	STORAGE I VOLUME (CU FT)	OUTFLOW (CFS)	STORAGE \OLUNE (CU_FT)	₩ATER ELEVATION	OUTFLOW (CFS)	VOLUME (CUIFT)	
-	0.093 0.167 0.3317 0.417 0.5337 0.5377 0.5377 0.5377 0.53777 0.537777 0.53777777777777777777777777777777777777	0 1.595465 1.190938 5.190938 5.190938 3.190938 3.190938 3.190938 3.190938 3.190938 3.190938 3.190938 3.190938 3.190938 3.190938			· · · 0		235.7540 946.2207 1667.299 2764.265 3649.109 4500.289 5332.249 6142.501 6929.719 7692.770 8441.261 9165.871	C.087316 C.350452 C.3464635 C.767126 C.767126 C.767126 C.789507 C.799507 C.	C 0.017463 0.070090 0.146603 0.227465 C.306236 0.378316 0.454944 0.529572 0.602077 C.672360 C.72360 C.741302 0.808040	2.607011 13.23811 32.37407 55.88587 80.69566 102.2721 124.7370 147.6798 167.6798 157.4013 212.3824 232.5885	
u., an il i	1.083 1.166 1.249 1.332 1.415 1.499	3.190938 3.190938 1.595469 0.01 0.01 0.01	953.4523 953.4523 715.0892 239.8570 2.988 2.988	1.280618 1.354549 1.428476 1.458934 1.458934 1.434425 1.43680	9165.871 9868.217 10551.49 10859.87 10627.04 10619.96	0.302040 0.872730 0.935664 0.964067 0.942622 0.941970	7968.217 10551.49 10859.87 10627.04 10619.96 11018.98	1.354549 1.426473 1.458934 1.458934 1.433480 1.433680 1.475682	0.872730 0.935664 0.964067 0.942622 0.941970 0.978722	251.1072 270.1741 263.6199 264.8595 261.5581 286.9514	

r.

.

	ARÉA (ACRES)	0	· i ·	SOIL MOIS Factor) Q p					
3	8,91	0.607	0.52	1	2.812352					
	TTM		T FORD MITHING	• • • • • • • • • • • • • • • • • • •	11 17 1 4:	1 11 7 7 AI	5 1 1 A I	C71/A	E FRA:	607E) 0
	TIME (HOURS)	INFLOW (CFS)	INCREMENT INFLOW VOLUME (CU FT)	INITIAL WATER ELEVATION	(CH FT)	INITIAL GUTFLOW (CFS)	FINAL STORAGE VOLUME (CU FT)	FINAL WATER Clevation		OUTFLOI VOLUMI (CU FI
	0.083 0.137 0.25	0 1.406176 2.812352 2.612352	210.0827 637.8415 840.3308	0 0.076956 0.308873	0 0 207.7832 533.9572	0 0.015391 0.061774	207.7832 833.9572 1646.133	0 0.076356 0.306873 0.526676 0.593015 0.668279 0.755913 0.810820 0.810820	0 0,015391 0.061774 0.126678	2.29946 11.6574 28.1549
	0.335 0.417	2.812352 2.812352 2.812352 2.812352	840.3308 850.4553	0.526678 0.598013 0.668279	1645.133 2437.955 3217 904	0.126678 0.198013 0.268279	2437.955 3217.906 3968.641	0.398013 0.668279 0.735913	0.198013 0.268279 0.391492	48.5070 70.5036 82.5758
. 1	0.5 0.5833 0.6657 0.75	2.812352 2.812352 2.812352 2.812352	843.3682 844.3806 843.3662	0.668279 0.735913 0.810820 0.866115	3965.641 4702.794 5418 099	0.331424 0.396967 0.462951	4702.794 5418.079 6113.070	0.810820 0.886115 0.959270	0.396967 0.462851 0.526861	109.215 129.076 148.397
	0.933 0.9167	2.812352 2.812352	840.3308 847.4180 843.3682	1.030179	6786.705	0.462851 0.526861 0.588907 0.649770	6786.705 7447.504 8082.185	1.030179 1.099737	0.588907 0.649770 0.708686	166.695 186.619 203.687
	1.083 1.166 1.249	2.812352 2.812352 2.812352 2.812352 2.812352	840.3308 840.3308	1.167072 1.232339 1.295835	8087.185 8707.227 9310.438	0.708689	0717 335	1.232339 1.293830	0.765797 0.821356 0.875406	220.288 237.120 253.496
	1.332	2.612352	840.3308 630.2481	1.357607	9897.272 10468.17 10465.17	0.821356 0.875406 0.927989 0.927989	9310.433 7897.272 10465.17 10468.17 10416.62 10173.97 9737.920	1.417702	0.927989 0.927989 0.927989 0.923241	269.427 277.283 276.574
	1.498 1.581 1.664	0.1 0.1 0.1	29.88 · 29.88	1.412276 1.386734	10416.62 10173.97	0.923241	10173.97	1.386734 1.351886	0.900892	272,525 265.733
	1.747 1.83 1.913	0.1	27.88 29.88	1.361886 1.337712 1.314195 1.291316	9937.920 9708.270 9484.854	0.879150 0.857998 0.837420	9708.270 9484.854 9267.504	$1.314195 \\ 1.291316$	0,857998 0.837420 0.817401	259.530 253.295 247.230
	2.083 2.165	0,1 0,1 0,1	31.32 29.66 29.88	1.268000	9267.504 9046.008 8840.572	0.81/401 0.797000 0.778079	9046.008 8540.572 8640.712 8446.278	1.268000 1.246376 1.225338	0.797060 0.778079 0.759670	232.815 235.316 229.737
	2.249 2.332 2.415	0.1 0.1 0.1	29.88 29.88 29.88	1.225335 1.204871 1.194960	8640.712 8446.278 8257.122	0.759670 0.741762 0.724340	8446.278 8257.122 8073.101	1.204871 1.184960 1.165589	0.741762 0.724340 0.707390	224.314 219.035 213.900

FINAL CONDITIONS 10 YEAR STORM MODIFIED RATIIONAL METHOD WITH TC=10 MIN AND STORM DURATION 80

12

e da

•

1	FINAL CON MODIFIED	NDITIONS 1 RATIIONAL	IO YEAR ST _ METHOD W	IORM HITH Tc=10) MIN AND	STORM DU	RATION 90	MIK		
	AREA (ACRES)	, C	i	SOIL MOIS Factor	S Qp					
	8,91	0.607	0.48	1	2.596017					
	(HOURS)	INFLOW (CFS)	INCREMENT INFLOW VOLUME (CU FT)	INITIAL WATER Elevation	INITIAL STORAGE VOLUME (CU TT)	INITIAL Dutfelou (CFS)	FINAL STORAGE Volume (cu ft)	FINAL NATER ELEVATION	FINAL OUTFLOW (CFS)	OUTFLOW VGLUME (CU F1)
	$\begin{array}{c} 0 & 3 \\ 0 & 0 \\$	C8777777777777777777777771000111100000000	778.4937 778.4937 779.4283 778.4937	0.5152934 0.5460219 0.6460219 0.7722982 0.77229729 0.772297297 0.77229720 00	8400.657 91-3.036 9670.652 10183.94 10483.30 10683.30 10683.30 10665.36 10362.07 16120.51 9886.292 9647.200 9425.442 9209.705	0.755985 0.205937 0.854533 0.901810 0.947604 0.947804 0.941049 0.918217 0.874395 0.874395 0.874395 0.852373	9145.036 9670.052 10183.94 10683.30 10683.30 10683.30 10562.07 10120.91 9586.292 9647.200 9425.442 9209.705 9993.826	1.276214 1.333752 1.667763 1.440347 1.432626 1.402626 1.402626 1.402634 1.361149 1.356451 1.331264 1.307941 1.285232 1.263159 1.264154	0,805937 0,854533 0,901610 0,947804 0,947804 0,941049 0,918217 0,898094 0,878094 0,852372 0,852372 0,831948 0,812075 0,812075 0,792747	235.3512 248.0744 262.3975 275.3324 283.2038 282.1947 277.7745 271.0448 264.4977 275.4120 251.6377 245.6175 235.7608 234.0631

.

ن <u>ـــــ</u>	MODIFIED	RATIIONS	LO TERR ST _ Method W	URA ITH TC=10) MIN AND	STORM DUI	RATION 120	NIN .		
	AREA (ACRES)	C	i	SOIL MOIS Factor	S Qp					
	8.91	C.607	0,36	1	1.947013					
faid.	TIME (HOURS)	INFLOW (CFS)	INCREMENT INFLOW VOLUME (CU FT)	INITIAL WATER ELEVATION	INITIAL STORAGE VOLUME (CU FT)	INITIAL GUTFLOW (CFS)	FINAL STORACE Volume (CU FT)	FINAL Watep Elevation	FINAL OUTFLOW (CFS)	OUTFLON Volume (Coupt)
	0.167 0.333 0.417 0.53 0.533 0.535 0.533 0.533 0.5167 1.166 1.249 1.365 1.498 1.498 1.498 1.498 1.581 1.913 1.913 2.2	1.947013 1.947013 1.947013 1.947013 1.947013 1.947013 1.947013 1.947013 1.947013 1.947013 1.947013 1.947013 1.947013 1.947013 1.947013 1.947013 1.947013	441.5825 581.7675 581.7675 581.7675 584.5715 584.5715 584.5715 584.5715 584.5715 584.5715 584.5715 581.7675 581.8675 581.76755 581.76755 581.76755 581.76755 581.76755 581.76755 581.76	0.053277555 0.21325554 0.5579427 0.5579427 0.5579427 0.577555 0.57752 0.57752 0.57752 0.57752 0.57752 0.57752 0.57752 0.57752 0.597573 0.59757 0.592555 0.592555 0.592555 0.5925550 0.5925550 0.592550 0.59255000000000000000000000000000000000	147.0 147.0 147.0 149.0 157.0 149.0 157.0 149.0 157.0 15	0.084433 0.1379426 0.224377 0.224377 0.224377 0.224377 0.224377 0.224377 0.224377 0.224377 0.224377 0.224377 0.224377 0.224377 0.224377 0.23437 0.234312 0.444312 0.444412 0.4444120000000000000000000000	1657.755 2251.652 2752.792 3758.3373 4711.2740 5517.692 4711.2740 5517.692 4711.2740 5517.392 46878.622 7763.425 8762.520 7763.425 8762.520 7163.425 9774.509 910108.85 9774.649 9774.509 9774.509 9774.699 9774.699 9774.609 9774.709 97774.709 97777777777777777777777777777777777	0.579426 0.626377 0.672245 0.716987 0.762295 0.867174 0.967092 0.952570 0.952570 0.976813 1.039855 1.081729 1.122465 1.226160 1.226160 1.236160 1.310149 1.34685 1.375879 1.325962	C.1306086 0.179427 0.2762745 0.2762745 0.314514 0.3577452 0.35977452 0.35977452 0.35977452 0.3597713 0.55977113 0.5597720 0.55977113 0.5597720 0.5597712 0.5597720000000000000000000000000000000000	$\begin{array}{c} 52.13017\\ 44.67752\\ 74.76322\\ 88.13385\\ 13385\\ 112.38570\\ 124.2376\\ 135.14655\\ 112.3870\\ 124.2376\\ 135.14685\\ 149.4582\\ 149.4582\\ 183.5684\\ 172.9584\\ 149.4582\\ 1894.5684\\ 1172.9584\\ 1894.5684\\ 225.4386\\ 112.5486\\ 225.4386\\ 225.4386\\ 225.5653\\ 2265.5653\\ 2260.52783\\ 254.2783\\ 254.2783\\ 254.2783\\ 255.285\\ 255.28$

FINAL CONDITIONS 10 YEAR STORM MODIFIED RATIIONAL METHOD WITH TC=10 MIN AND STOR

.....

Final Conditions 100 year storm

•

SUS TR 20:	FOR T	c=0.1, Ia/	'P=.1 AND	Tt=0, 24	hr storm						-
area 30 mi)	CN	S	þ	Q	UNIT Op	Ûp	la/P				
0.0139	90.31	1.072971	2.01	1.1238	1010	15.77703 0	0.106763				
TIME (HOURS)	q(p)	Xm ax	INFLOW (CFS)	INCREMENT INFLOW VOLUME (CU FT)	WATER Elevatio	STORAGE	OUTFLOU (CFS)	Final Storage Volume (CU FT)	FLEVATION	FINAL Outflow (CFS)	VOLUNE
$\begin{array}{c} 10.5 \\ 11 \\ 11.3 \\ 11.6 \\ 11.9 \\ 12.1 \\ 12.2 \\ 12.3 \\ 12.4 \\ 12.5 \\ 12.6 \\ 12.7 \\ 12.8 \\ 13.2 \\ 13.4 \\ 13.4 \\ 13.6 \\ 13.8 \\ 14.3 \\ 14.6 \\ 15.5 \\ 16.5 \\ 16.5 \\ 16.5 \\ 17 \\ 17.5 \\ 18 \\ 19 \\ 20 \\ 22 \\ 26 \end{array}$	34 53 334 647 1010 623 217 147 123 104 86 57 51 46 57 51 46 57 51 42 38 34 32 29 26 23 21 20 19 18 15 13	0.023762 0.033663 0.052475 0.330693 0.640594 1 0.616832 0.214851 0.145545 0.121782 0.10297 0.085149 0.075248 0.065347 0.056436 0.050495 0.045545 0.041584 0.037624 0.037624 0.037624 0.037624 0.037624 0.037624 0.037624 0.037624 0.037624 0.037624 0.037624 0.037624 0.028713 0.022772 0.020792 0.018812 0.017822 0.018812 0.017822 0.018821 0.017822 0.018821 0.012871	0.531108 0.827904 5.217354 10.10667 15.77703 9.731772 3.389718 2.296261 1.921361 1.624565 1.343391 1.187182 0.630974 0.890387 0.796662 0.718558 0.4590397 0.531108 0.499856 0.453004 0.258177 0.328037 00	489.2441 733.8662 3264.439 2758.325 4659.066 4591.584 2361.868 1023.476 759.1719 638.2668 534.2321 455.5032 778.5364 691.69 607.3375 545.4791 494.8676 449.8797 607.3375 556.7261 686.0665 773.2307 688.8782 618.5845 576.4083 548.2908 520.1734 927.8768 787.2894 1405.874	0.120016 0.291044 0.513259 0.875227 1.137546 1.517219 1.763145 1.869044 1.892665 1.899922 1.879742 1.8797821 1.8738383 1.857409 1.827515 1.795308 1.729201 1.6762378 1.729201 1.67622 1.648021 1.602894 1.548062 1.430559 1.399618 1.327444 1.264739 1.210989 1.164555 1.096095 1.022921	324.0436 765.82 1462.701 4539.431 7154.27 11540.01 15681.89 17465.45 17863.27 17985.49 17985.49 17985.82 17882.73 17706.94 17269.47 16766 16223.58 15668.97 15110.21 14554.73 13742.97 15182.94 12982.94 12059.46 11030.32 10115.68 9300.112 8591.556 6572.877 5859.007	0.014851 0.036015 0.069512 0.278099 0.51904 0.999456 1.498888 1.713951 1.761921 1.776659 1.776659 1.776659 1.776659 1.764268 1.743071 1.690321 1.629611 1.564205 1.49733 1.429954 1.362974 1.265092 1.173446 1.062093 0.940594 0.84112 0.752419 0.675358 0.607299 0.552234 0.455809 0.378169	785.82 1462.701 4539.431 7154.27 11540.01 15681.89 17465.45 17863.27 17985.49 17985.82 17882.73 17706.94 17706.94 16766 16223.58 15668.97 15110.21 14554.73 13742.97 12982.94 12059.46 11030.32 10115.68 9300.112 8591.556 7984.171 7459.475 6572.877 4831.125	0 0.120016 0.291044 0.513259 0.875227 1.137545 1.517219 1.763145 1.869044 1.892665 1.899922 1.899942 1.893833 1.857409 1.827515 1.795308 1.729201 1.69622 1.648021 1.69622 1.648059 1.262894 1.327444 1.264739 1.264739 1.210969 1.210969 1.210969 1.210969 1.210969 1.210969 1.22921 0.909544 0.677135 1.02921 0.677135 0.67713	0.036015 0.069512 0.278099 0.51904 0.999456 1.498888 1.713951 1.761921 1.776659 1.776659 1.776659 1.776659 1.776659 1.776659 1.764268 1.743071 1.690321 1.690321 1.690321 1.690321 1.690321 1.690321 1.690321 1.690321 1.690321 1.690321 0.62093 0.940594 0.62093 0.940594 0.625358 0.609299 0.552234 0.455809 0.378169 0.455809 0.378169 0.455809 0.378169	27.46772 56.98476 187.7101 143.4851 273.3293 449.7019 578.3111 625.6569 636.9443 637.374 631.3209 1236.621 1195.176 1149.774 1102.153 1053.822 1005.454 1419.774 1102.153 1053.822 1005.454 1419.756 1316.811 1609.586 1802.418 1603.542 1434.185 1284.9999 1156.191 1045.38 1614.477 1501.161 2433.757

-

Ľ

.....

...

(AREA ACRES)	C	-	SOIL MOIS Factor	•						
ي م	8.91	0.699	3.6	1	22.42112						
) (TIME HOURS)	INFLOW (CFS)	INCREMEN INFLOW Volume (CU FT)	WATER ELEVATION	INITIAL STORAGE VGLUME (CU F1)	INITIAL OUTFLCW (CFS)	F1NAL Storage Volume (cu ft)	FINAL NATER Elevation	OUTFLOW	OUTFLOW Volume (Cu FT)	
	0.083 0.167 0.25 0.333 0.417 0.5833 0.5833 0.5833 0.5833 0.75 0.833 0.9167 1	0 11.21056 22.42112 11.21056 0.001 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1674.857 5085.110 5024.573 1675.007	0 0.527549 1.014179 1.510150 1.590064 1.570159 1.552024 1.534459 1.517489 1.517489 1.517489 1.51132 1.446578	1655.802 6634.701 11420.95	0.127549 0.574906 1.020300	6634.701 11420.95 12767.20	0 0.527549 1.014179 1.510150 1.570159 1.52024 1.534459 1.517489 1.517489 1.501132 1.4746578 1.420046	0.574906 1.020500 1.180169	19.05593 106.2114 238.3239 329.7502 350.8578 335.3084 325.6147 315.8370 305.4645 295.7425 290.6530 282.3815	
KO	NAL CON DIFIED AREA ACRES) 8.91	IDITIONS Ratiional C 0.699	Ì	VITH TC=10 SOIL MOIS FACTOR		STORN DUR	AT10K 15	MIN			
()	TIME Hours)	INFLOW (CFS)	INCREMENT INFLOW VOLUME (CU FT)	TINITIAL Water Elevation	INITIAL STORAGE VOLUME (CU FT)	INITIAL OUTFLOW (CFS)	FINAL Storage Volume (cu ft)	FINAL Kater Elevation	FINAL Outflow (CFS)	OUTFLOW Volume (CU FT)	
(0 0.083 0.167 0.25 0.333 0.417 0.5 0.5833 0.6667 0.75 0.833	0 9.466696 18.9339 18.9339 9.466696 0.1 0.1 0.1 0.1 0.1	4294.093 5657.298 4242.973 1446.484 29.88 29.988 30.024 29.988 29.988 29.88	0 0.504389 0.905732 1.478261 1.7716222 1.77256 1.7751915 1.749234 1.750572 1.751249	15470.14	0.104389 0.480016 0.980978 1.436444 1.554512 1.503830 1.498469 1.501145 1.502498	5604.460 11043.48 14925.29 15919.54 15492.75 15447.61 15447.61 15461.54 15488.11	1.751249	0.480016 0.980978 1.436444 1.554512 1.503830 1.498469 1.501145 1.502498 1.502498	88.36219 218.2726 361.1630 452.2326 456.9163 450.1648 450.3022 450.3664	

én

· ·

FINAL CONDITIONS 100 YR MODIFIED RATIIONAL METHOD WITH TC=10 MIN AND STORM DURATION 20 MIN

÷.,

04

AREA (ACRES)	C	i SOI F	L MOIS Actor	Q p
8.91	0.699	2.68	1 16.	69128

2

ت__

| | |....

K :::::

-

AREA (ACRES)

8.91

C

0.699

.

·. .. ·*

•

TIME (HOURS)	INFLOW (UFS)	Increment Inflow Volume (CU_FT)	INITIAL WATER Elevation	INITIAL STORAGE VOLUME (CU FT)	INITIAL OUTFLOW (CFS)	FINAL STORAGE VOLUME (CU FT)	FINAL WATER ELEVATION	FINAL Outflow (CFS)	outflow Volume (CV FT)
Û	Û			0			n	n	
6 083	8 345640	1246.838	0	ň	٥	1219 839	0.451792	0 180716	26 99911
		3785.582		1219 839					
0.25	16.69128	4987.354	0.833780	4926.914	0.378195	9724.754	1.339447	0.850151	183.5149
14		4987.354							331 9459
		3785,582							474.2600
0.5	0.1	1261.778	1.882465	17691.48	1.764931	18413.10	1.925311	1.850623	540.1639
0.5833	0.1						1.894686		
0.6667	0.1	30,024					1.865097		
0.75	0.1	29.988	1.865097	17398.97	1.730195	16918.66	1.836579	1.673158	510.2988
0.833	0.1	29.88	1.836579				1.807155		491.7455
0.9167	0.1						1.782468		
- 1	0.1			16007.34	1.564937	15575.72	1.756841	1.513682	461.6083
FINAL CON	DITIONS	100 YFAR S	TORM						

Qp

1 13.20355

MUDIFIED RATIONAL METHOD WITH TC=10 MIN AND STORM DURATION 30 MIN

i SOIL MOIS FACTOR

2.12

									·.	
	TIME (HOURS)	INFLOW (CFS)	INCREMENT INFLOW VOLUME (CU FT)	T INITIAL WATER ELEVATION	INITIAL STORAGE VOLUME (CU FT)	INITIAL OUTFLOW (CFS)	FINAL STORAGE VOLUME (CU FT)	FINAL WATER Elevation	FINAL Outflow (CFS)	outflon Volume (Cu FT)
м. 	0.167 0.25 0.333 0.417 0.5	13.20355 13.20355 13.20355 13.20355 13.20355 13.20355	3945.220 3945.220 3992.753 3945.220 2969.610 1005.070 29.988 29.88 30.132	0.729170 1.126123 1.508560 1.723509 1.928450 2.056200 2.073017 2.042911 2.014190	3893.797 7698.176 11394.17 15014.34 18465.96 20831.99 21179.38 20557.46 19964.15	0.142955 0.291668 0.651048 1.017120 1.447019 1.856901 2.168601 2.219051 2.128734 2.042572	3893.797 7698.176 11394.17 15014.34 18465.96 20831.99 21179.38 20557.46 19964.15 19390.25	0 0.357368 0.729170 1.126123 1.508560 1.723509 1.928450 2.056209 2.073017 2.042911 2.014190 1.983330 1.950675	0.291668 0.651048 1.017120 1.447019 1.856901 2.168601 2.219051 2.128734 2.042572 1.966661	65.71509 140.8419 249.2245 372.5779 493.6057 603.5838 658.6744 651.9070 623.1933 604.0312

FINAL CONDITIONS 100 YEAR	STORM	
MODIFIED RATIIONAL METHOD	WITH TC=10 MIN AND STORM DURATION 4	O MII

ł

T

			100 year s _ Method W		MIN AND	storm du	RATION 40	MIN			
	AREA (ACRES)	C	i	SOIL MOIS Factor	Qp						
	8.91	0.699	1.83	1	11.39740						
	• 	A									
	TIME (HOURS)	INFLOW (CFS)	INCREMENT INFLOW VOLUME (CU FT)	INITIAL WATER Elevation	INITIAL STORAGE VOLUME (CU FT)	INITIAL OUTFLOW (CFS)	FINAL STORAGE VOLUME (CU FT)		F INAL Utflow (CFS)	outflow Volume (CU FT)	
-	0.167 0.25 0.333 0.417 0.5 0.5833 0.6667	11.39740 11.39740 11.39740 11.39740 11.39740 11.39740 5.498702	2584.931 3405.544 3405.544 3446.575 3405.544 3417.653 3421.956 3421.956 3563 390	1.014857 1.351188 1.602159 1.779846 1.951947 2.096009	6641.144 9836.287 12970.56 15963.17 16861.69 21654.36	0.123400 0.272361 0.547200 0.861108 1.204318 1.559692 1.903894 2.288027	3358.042 6641.144 9836.287 12970.56 15963.17 18861.69 21654.36 23691.61	0 0.308500 0. 0.660904 0. 1.014857 0. 1.351188 0. 1.602159 1. 1.779846 1. 1.951547 1. 2.095007 2. 2.184945 2. 2.184945 2. 2.149905 2. 2.116523 2.	272361 547200 861108 204318 559692 903894 268027 554837	59.83920 122.4425 210.4013 312.2926 412.9433 519.3302 629.2913 726.1392	
	FINAL COM MODIFIED	IDITIONS 1 RATIIONAL	100 year s Method N	TORM 11H Tc=10	min and	storm du	RATION 50	MIK			
	AREA (ACRES)	C	j	SOIL MOIS FACTOR	Qp						
	- 8.91	0.699	¥.57	1	9.778101						
	time (Hours)	INFLOW (CFS)	Increment Inflow Volume (Cu F1)	INITIAL Water Elevation	INITIAL STORAGE VOLUME (CU FT)	INITIAL OUTFLOH (CFS)	FINAL Storage Volume (cu ft)		FINAL UTFLOW (CFS)	outflow Volume (CU FT)	
	0 0.083	0 4.889050	730.4241	0	0	0 1050/7	714.6075	0.264669 0.	0 105867 (15.81664	

٢....

[

	0	0			0			0	0	
		4.889050		0	0	0	714.6075	0.264669	0.105867	15.81664
	0.167		2217.673							
			2921.696							
	0.333	9.778101	2921.696	0.915101	5693.459	0.454094	8439.171	1.204123	0.723848	175.9846
			2956.897							
			2921.696							
			2932.257							
			2935.777							
			2932.257							
			2921.696							
	0.9167		2209.753							
-	1	0.1	748.0582							
	1.083	0.1				2.706540				
	1.166	0.1				2.595932				
	1.249	0.1	29.88	2.163320	23044.86	2.489960	22346.07	2.129493	2.388490	728,8390

FINAL CONDITIONS 100 YEAR STORM MODIFIED RATIIONAL METHOD WITH TC=10 MIN AND STORM DURATION 60 MIN

OK

i.

-

-

	AREA (ACRES)	C	i	SOIL MOIS FACTOR	Qp					
	8.91	0.699	1.34	1	8.345640					
	1990 - S 1990 1990 -									
 - - -	TIME (HOURS)	INFLOW (CFS)	INCREMENT INFLOW VCLUME (CU FT)	INITIAL WATER ELEVATION	INITIAL STORAGE VOLUME (CU FT)	INITIAL OUTFLOW (CFS)	FINAL Storage Volume (cu ft)	FINAL WATER ELEVATION	FINAL Dutflow I (CFS)	outflow Volume (CU FT)
	0.167 0.25 0.333 0.417 0.5 0.5833 0.6667 0.75 0.833 0.9167	8.345640 8.345640 8.345640 8.345640 8.345640 8.345640 8.345640 8.345640 8.345640 8.345640 8.345640 8.345640 8.345640 4.172820	1892.791 2493.677 2473.677 2523.721 2493.677 2502.690 2505.695 2502.690 2493.677 2514.708 2502.690 1870.258 638.3593 29.98 29.98 29.88	0.599351 0.826855 1.074027 1.316898 1.528058 1.655581 1.655581 1.676787 2.009524 2.009524 2.097693 2.165597 2.238012 2.229835 2.193141 2.158039	2452.600 4855.123 7203.261 9510.536 11722.56 13870.30 15945.33 19867.76 21730.46 23505.06 24587.86 24418.93 23660.90 22935.76	0.090358 0.239740 0.371731 0.602425 0.829105 1.056117 1.311162 1.557575 1.795076 2.028573 2.299079 2.556791 2.714037 2.689505 2.579423 2.579423 2.579423	2452.800 4855.123 7203.261 9510.536 11722.56 13870.30 15945.34 17945.33 19867.76 21730.46 23505.06 24587.86 24418.93 23660.90 22935.78 22241.46	0.826855 1.074027 1.316898 1.528058 1.655581 1.778787 1.897538 2.009524 2.099693 2.185597 2.238012	0.239740 0.571731 0.602425 0.829105 1.056117 1.311162 2.028573 2.299079 2.556791 2.714037 2.689505 2.579423 2.579423 2.579423 2.579423	49.91097 91.35391 145.5390 216.4474 281.6522 354.9499 430.6549 502.6965 571.2533 652.0043 728.0693 787.4618 807.2892 787.1779 754.9993 724.2028
1										
	κ.		•							
			oo year s . Method W		MIN AND	storm duf	RATION 70	MIN		
	AREA 8: 91	. C •61	i 1.2	SOIL MOIS		73708	3			
	TINE (HOURS)	INFLOW (CFS)	INCREMENT INFLOW VOLUME (CU FT)	INITIAL WATER ELEVATION	INITIAL STORAGE VOLUME (CU FT)	INITIAL OUTFLOW (CFS)	FINAL Storage Volume (CU FT)	FINAL WATER ELEVATION		outflon Volume (CU FT)

	(00 / / /	(0011)	(0011)	
0 0)	0	C	0 0.080918 12.08915
0.083 3.736854	558.2859 () 0 0	546.1968 0.202295	0.080918 12.08915
0.167 7.473708	1695.036 0.20229	5 546.1968 0.080918	2194.159 0.576050	0.230420 47.07433
) 2194.159 0.230420		
0.333 7.473708	2233.143 0.773140	4344.831 0.321597	6450.968-0.994838	0.528516 127.0069
		3 6450.968 0.528516		
		8520.453 0.731834		
		10505.78 0.926884		
		5 12436.94 1.140951		
		14304.99 1.362782		
		5 16105.48 1.576591		
		5 17836.82 1.782190		
		2 19521.64 1.982264		
1.083 7.473708	2233.143 2.07081	5 21133.90 2.212446	22672.58 2.145299	2.435897 694.4626
1.166 7.473708	2233.143 2.14529	22672.58 2.435897	24145.92 2.216619	2.649857 759.8118
		24145.92 2.649857		
		25010.24 2.775377		
1.415 0.1		24759.62 2.738981		
1.498 0.1	29.88 2.20896	7 23987.84 2.626901	23248.84 2.173194	2.519582 768.8847

FINAL CONDITIONS LOG YEAR	STORM TC=10	min and	storm	DURATION 8	0 MIN

	AREA (ACRES)	C		IL MOIS FACTOR	Qp
IJ	8.91	0.699	1.07	1 6.6	64056

0 0	TIME INFLOW	INCREMENT INITIAL INITIA INFLOW WATER STORAG VOLUME ELEVATION VOLUM (CU FT) (CU FT	e outflow stor e (CFS) vol	UME ELEVATION (CFS)	VOLUME
0.6667 6.664056 2000.816 1.484072 11098.68 0.985134 12774.32 1.590507 1.181014 325.1822 0.75 6.664056 1998.417 1.590507 12774.32 1.181014 14389.81 1.686427 1.372855 382.9272 0.833 6.664056 1991.220 1.686427 14389.81 1.372855 15943.26 1.778664 1.557328 437.7694 0.9167 6.664056 2008.013 1.778664 15943.26 1.557328 17454.97 1.868422 1.736845 496.3003 1 6.664056 1991.220 1.686427 1736845 18706.70 1.954619 1.909238 546.6939 1.083 6.664056 1991.220 1.954619 18906.70 1.909238 20300.22 2.030459 2.091377 597.6921 1.166 6.664056 1991.220 2.030459 20300.22 2.091377 21637.53 2.05194 2.285583 653.9180 1.249 6.664056 1991.220 2.095194 21637.53 2.285583 22918.03 2.157180 2.471541 710.7145 1.332 6.664056 1991.220 2.05174 21637.53 2.285583 22918.03 2.157180 2.471541 710.7145 1.332 6.664056 1991.220 2.157180 22918.03 2.471541 24144.15 2.216533 2.649601 765.0988 1.415 3.332028 1493.415 2.216533 24144.15 2.649601 24144.15 2.216533 2.649601 791.7009 1.498 0.1 512.7450 2.216533 24144.15 2.649601 23871.12 2.203317 2.60951 785.7772 1.581 0.1 29.88 2.167783 23137.07 2.503351 22434.20 2.133759 2.401278 732.7517 1.664 0.1 29.88 2.167783 23137.07 2.503351 22434.20 2.333759 2.401278 732.7517 1.747 0.1 29.88 2.167783 23137.07 2.503351 22434.20 2.333759 2.401278 732.7517 1.664 0.1 29.88 2.101180 21761.18 2.303541 21116.74 2.069984 2.20954 674.3163 1.913 0.1 29.88 2.069984 21116.74 2.209974 60499.48 2.00114 2.120334 646.9465 2 0.1 31.32 2.040114 20499.68 2.320349 19315.02 1.97782 1.578683 1.957727 595.8402 2.063 0.1 29.88 2.001644 19880.98 2.030494 19315.02 1.978643 1.957727 595.8402 2.0663 0.1 29.88 2.001148 0499.7772 18769.60 1.946479 1.852595 75.2925 2.249 0.1 29.88 1.978863 19315.02 1.957727 18769.60 1.946479 1.852595 75.2925 2.249 0.1 29.88 1.978863 19315.02 1.957727 18769.60 1.946479 1.852595 75.2925 2.249 0.1 29.88 1.978863 19315.02 1.957727 18769.60 1.946479 1.852595 75.2925 2.249 0.1 29.88 1.978863 19315.02 1.957727 18769.60 1.946479 1.852595 75.2925 2.249 0.1 29.88 1.978863 19315.02 1.957727 18769.60 1.946479	0.083 3.332028 0.167 6.664056 0.25 6.664056 0.333 6.664056 0.417 6.664056 0.5 6.664056	497.8050 0 1511.407 0.180379 487.025 1991.220 0.554413 1953.99 1991.220 0.726904 3868.64 2015.210 0.920819 5747.78 1991.220 1.115431 7596.59	0 0 487.0 5 0.072151 1953 3 0.221765 3868 1 0.290761 5747 2 0.459431 7596 7 0.641069 9370	255 0.180379 0.072151 993 0.554413 0.221765 641 0.726904 0.290761 782 0.920819 0.459431 597 1.115431 0.641069 233 1.302129 0.815321	10.77949 44.44031 76.57159 112.0788 166.3956 217.5847
1.498 0.1 512.7450 2.216533 24144.15 2.649601 23871.12 2.203317 2.609951 785.7772 1.581 0.1 29.88 2.03317 23871.12 2.609951 23137.07 2.167783 2.503351 763.9274 1.664 0.1 29.88 2.167783 23137.07 2.503351 22434.20 2.133759 2.401278 732.7517 1.747 0.1 29.88 2.167783 23137.07 2.503351 22434.20 2.133759 2.401278 732.7517 1.747 0.1 29.88 2.167783 23137.07 2.401278 21761.18 2.101180 2.303541 702.7507 1.83 0.1 29.88 2.101180 21761.18 2.303541 2116.74 2.069984 2.209754 674.3163 1.913 0.1 29.88 2.069984 21116.74 2.0699784 2.030494 650.0210 2.063 0.1 29.88 2.04014 2.0299768 2.010164 2.030494 650.0210 2.0663 0.1 29.88 2.978863 19315.02 1.978663	0.5833 6.664056 0.6667 6.664056 0.833 6.664056 0.813 6.664056 1.664056 1.083 6.664056 1.166 6.664056 1.249 6.664056 1.332 6.664056	1998.417 1.302129 9370.23 2000.816 1.484072 11098.6 1998.417 1.590507 12774.3 1991.220 1.686427 14389.8 2008.013 1.778664 15943.2 1998.417 1.868422 17454.9 1991.220 1.954619 18906.7 1991.220 2.030459 20306.2 1991.220 2.055194 21637.5 1991.220 2.157180 22918.0	3 0.815321 11092 8 0.985134 12774 2 1.181014 14385 1 1.372855 15943 6 1.557328 17454 7 1.736845 18706 0 1.909238 20300 2 2.091377 21633 3 2.285583 22918 3 2.471541 24144	1.68 1.484072 0.985134 1.32 1.590507 1.181014 1.686427 1.372855 1.26 1.778664 1.557328 1.97 1.868422 1.736845 1.97 1.954619 1.909238 1.22 2.030459 2.091377 1.53 2.095194 2.285583 1.03 2.157180 2.471541 1.5 2.216533 2.649601	269.9603 325.1822 382.9272 437.7694 496.3003 546.6939 597.6921 653.9180 710.7145 765.0988
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	512.7450 2.216533 24144.1 29.88 2.203317 23871.1 29.88 2.167763 23137.0 29.88 2.167763 23137.0 29.88 2.101180 21761.1 29.88 2.005984 21116.7 31.32 2.040114 20499.6 29.88 2.010164 15880.9 29.88 1.978863 19315.0 29.88 1.946479 18769.6 29.89 1.915224 18243.2	5 2.64960: 23871 2 2.609951 23137 7 2.503351 22436 0 2.401278 21761 8 2.303541 21116 4 2.209954 20495 8 2.120343 19880 8 2.030494 19315 2 1.957727 18765 0 1.892959 18243 1 1.830449 17735	.12 2.203317 2.609951 .07 2.167783 2.503351 .20 2.133759 2.401278 .18 2.101180 2.303541 .74 2.069984 2.209954 .68 2.040114 2.120343 .98 2.010164 2.030494 .02 1.978663 1.957727 .60 1.946479 1.892959 3.21 1.915224 1.830449 .16 1.885059 1.770118	785.7772 763.9274 732.7517 702.9001 674.3163 646.9465 650.0210 595.8402 595.8402 575.2925 556.2771 537.9247

•.

.

FINAL CONDITIONS 100 YEAR STORM

[]-

[__

.

L....

1.

÷....

-

NODIFIED RATIIONAL METHOD WITH TC=10 MIN AND STORM DURATION 90 MIN

AREA (ACRES)	C		l mois Actor	Qp
8.91	0.699	0.95	1 5.9	16685

TIME INFLOW (HOURS) (CFS)		INITIAL STORAGE VOLUME (CU FT)	INITIAL OUTFLOW (CFS)	FINAL STORAGE VOLUME (CU FT)	FINAL FINAL OUTFLO WATER OUTFLOW VOLUM ELEVATION (CFS) (CU FT	E
0.25 5.916685 0.333 5.916685 0.5 5.916685 0.5833 5.916685 0.5833 5.916685 0.6867 5.916685 0.75 5.916685 0.9167 5.916685 1.916685 1.083 5.916685 1.083 5.916685 1.166 5.916685	441.9764 0 1341.904 0.160150 1767.905 0.534441 1767.905 0.687135 1789.205 0.852104 1767.905 1.025286 1774.295 1.191425 1776.425 1.353333 1774.295 1.506032 1767.905 1.591833 1782.815 1.674340 1774.295 1.506032 1767.905 1.991833 1767.905 1.831733 1767.905 1.905875 1767.905 1.905875 1767.905 2.037760 1767.905 2.037760 1767.905 2.037760 1767.905 2.037760 1767.905 2.037760 1767.905 2.043163 1325.929 2.192531 456.9164 2.192531 29.88 2.139781 29.88 2.139781 29.88 2.105216 31.32 2.075506 29.88 2.015216 29.88 1.594619 29.88 1.954227	0 432.4058 1732.301 3427.205 5094.990 6740.216 8318.545 9856.669 11351.59 12796.66 14186.23 15538.47 16837.05 18085.75 19290.93 20451.05 21563.37 22628.46 23648.30 21230.60 21230.60 21979.53 31845.33 18856.42	0.064060 0.213776 0.274854 0.395297 0.556933 0.711997 0.863111 1.012064 1.183667 1.348660 1.509259 1.663466 2.132815 2.272815 2.272815 2.577593 2.577593 2.577593 2.577593 2.577593 2.52269 2.419344 2.320839 2.226518 2.131947 2.045648 1.964639 1.904455	1732.301 3427.205 5094.990 6740.216 8318.545 9856.669 11351.59 127%6.66 14186.23 15538.47 16837.05 18085.75 21563.37 22628.46 23648.30 23648.30 23648.30 23648.30 23267.34 22558.60 21230.80 21330.80 212	1.353333 0.863111 236.171 1.506032 1.012064 281.501 1.591833 1.183667 329.227 1.674340 1.346680 378.337 1.754629 1.509259 430.577 1.831733 1.663464 475.718 1.905875 1.811751 519.197 1.977433 1.954866 562.732 2.037760 2.113281 607.781 2.091605 2.274815 655.581 2.143163 2.429489 702.823 2.192531 2.577593 748.058 2.192531 2.577593 748.058 2.192531 2.577593 770.184 2.174069 2.522269 761.919 2.139781 2.419344 736.277 2.106746 2.320839 708.183 2.075506 2.226518 679.375 2.043982 2.131947 682.5132 2.015216 2.045648 624.132 1.984819 1.967639 599.884	1156333839814573631195146278085

OC

l

FINAL CON MODIFIED	DITIONS RATIIONA	loo year s . Method k	STORM 11TH Tc=10) min and	storm du	RATION 12) MIN		
AREA (ACRES)) (i	SOIL MOIS FACTOR	G Qp					
8.91	0.699	0.7	1	4.359663					
time (Hours)	INFLOW (CFS)	Increment Inflow Volume (CU_FT)	' INITIAL WATER ELEVATION	INITIAL STORAGE VOLUME (CU FT)	INITIAL OUTFLOW (CFS)	FINAL Storage Volume (CU_FT)	FINAL WATER ELEVATION		OUTFLON VOLUME (CU FT)
0.167 0.25 0.333 0.417 0.5 0.5833 0.6667 0.75 0.833 0.9167 1 1.083 1.166 1.249 1.332 1.415 1.498 1.581 1.664	4.359663 4.359663 4.359663 4.359663 4.359663 4.359663 4.359663 4.359663 4.359663 4.359663 4.359663 4.359663 4.359663 4.359663 4.359663	1302.667 1302.667 1302.667 1302.667 1307.375 1308.945 1307.375 1302.667 1313.653 1307.375 1302.667 1302.667 1302.667 1302.667 1302.667 1302.667 1302.667	0.471022 0.604518 0.714773 0.836997 0.960320 1.080502 1.197332 1.310633 1.420253 1.515513 1.573744 1.629739 1.683782 1.735940 1.785940 1.884865 1.681757 1.927013	1271.761 2510.154 3733.981 4951.476 6123.046 6374.662 9451.015 10492.40 11511.28 12492.09 13435.07 14345.26 15223.71 16071.54 1689.81 17679.55	0.047202 0.188409 0.241807 0.285909 0.391197 0.456299 0.606468 0.717510 0.823257 0.925569 1.031027 1.147489 1.259479 1.367564 1.471881 1.567731 1.669731 1.763514 1.854026	1271.761 2510.154 3733.981 4951.476 6123.046 7264.772 8374.662 9451.015 10492.40 11511.28 12492.00 13435.07 14345.26 15223.71 16071.54 16697.81 17679.55 18441.75	0 0.116005 (0.471022 (0.604518 (0.714773 (0.836997 (0.960320 (1.97332 (1.97332 (1.310633 (1.420253 (1.515513 (1.515513 (1.515513 (1.517513 (1.573744 (1.629739 (1.683782 (1.735940 (1.735940 (1.78280 (1.834865 (1.834865 (1.82701 (1.970691 (2.010433 (2.010433 (1.970691 (1.9706) (1.970691 (1.970691 (1.970691 (1.9706) (1.970691 (1.9706) (0.188409 0.241807 0.285909 0.381197 0.496299 0.608468 0.717510 0.823257 0.925569 1.031027 1.147489 1.259479 1.367564 1.471681 1.572561 1.669731 1.763514 1.854026 1.854026	35.62443 64.27435 78.84086 100.8665 131.0980 165.6489 199.0560 231.0227 261.2748 294.7809 326.6467 359.6011 392.4803 424.2132 454.8398 484.3986 512.9269 540.4606 557.0343
1.83 1.913 2	4.359663 4.359663 4.359663 2.179831 0.1 0.1	1302.667 1302.667 1365.446 977.0004 340.6068 29.88 29.88	2.010433 2.0433%6 2.074%58 2.106605 2.106605 2.08%84 2.05%167	19886.54 20567.48 21219.50 21873.24 21873.24 21527.83 20893.28	2.031301 2.130188 2.224876 2.319815 2.319815 2.269653 2.177503	20567.48 21219.50 21873.24 21873.24 21527.83 20893.28 20285.69	2.043396 2.074558 2.106605 2.106605 2.069884 2.059167 2.029755 2.001573	2.130168 2.224876 2.319815 2.319815 2.319815 2.269653 2.177503 2.039267	621.7266 650.6468 711.6988 693.1608 685.6667 664.4052 637.4556

	ORIGINAL CON RUNOFF SUMMA	IDT TIONS Ry		
	BASIN PARAMETER	BASIN 1	BASIN 2	
	AREA (ACRES) AREA (SQUARE MILES) MAXIMUM ELEVATION MINIMUM ELEVATION	7.11 0.0111 4660.63 4638.38	4658.68	
	LONGEST WATER COURSE LENGTH (FEET) SLOPE TIME OF CONCENTRATION (MINUTES)	869.00 0.0256 9.05		
	"2-YEAR RAINFALL RATIONAL METHOD (INCH/HR) SCS METHOD (INCH/24 HOUR) SCS METHOD (INCH/24 HOUR)	0.90 0.70 0.55	0.90 0.70 0.55	
-	10-YEAR RAINFALL RATIONAL METHOD (INCH/HR) SCS METHOD (INCH/24 HOUR) SCS METHOD (INCH/6 HOUR)	1.68 1.12 0.87	1.68 1.12 0.87	
	100-YEAR RAINFALL RATIGNAL METHOD (INCH/HR) SCS METHOD (INCH/24 HOUR) SCS METHOD (INCH/6 HOUR)	3.60 2.01 1.56	3.60 2.01 1.56	
	RUNOFFSCS METHOD (INCH) 24 HOUR 2-YEAR 10-YEAR 100-YEAR	0.052 0.222 0.782	0.057 0.232 0.602	
	RUNGEFSCS METHOD (INCH) 6 Hour 2-Year 10-Year 100-Year 100-Year	0.017 0.110 0.475	0.098 0.282 0.807	
···	2-YEAR PEAK FLOW (CFS) RATIONAL METHOD SCS METHOD (24 HOUR) SCS METHOD (6 HOUR)	1.99 0.22 0.34	0.49 0.09 0.09	
	10-YEAR PEAK FLOW (CFS) RATIONAL METHOD SCS METHOD (24 HOUR) SCS METHOD (6 HOUR)	3.72 1.83 1.88	0.91 0.61 0.46	
	100-YEAR PEAK FLOW (CFS) RATIONAL METHOD SC3 METHOD (24 HOUR) SC5 METHOD (6 HOUR)	12.05 7.57 5.25	2.92 2.27 1.22	
•	2-YEAR RUNDFF VOLUME (CU. FJ.) MODIFIED RAJIONAL NETHOD (24 HR) SCS METHOD (24 HOUR) SCS METHOD (6 HOUR)			
	IO-YEAR RUNOFF VOLUME (CU. FT.) MODIFIED RATIONAL MEIHOD (24 HR) SCS METHOD (24 HOUR) SCS METHOD (6 HOUR)			
	100-YEAR RUNOFF VOLUME (CU. FT.) MODIFIED RAJIONAL METHOD (24 HR) SCS METHOD (24 HOUR) SCS METHOD (6 HOUR)	23150.00 20944.00 20823.00	5961. C 0 5419.90 5842,00	
• •	2-YEAR OFF-SITE DISCHARGE (CFS) MODIFIED RATIONAL METHOD SCS METHOD (24 HOUR) SCS METHOD (6 HOUR)	0.00 0.00 0.00	0.49 0.09 0.09	
	IC-YEHR OFF-SITE DISCHARGE (OFS) MODIFIED WAIJONAL MEIHUD SC3 MEIHOD (24 HUUR) SC5 MEIHOD (6 HOUR)	0.00 6.00 0.00	0.91 6.31 6.48	
	100-YEAR OFF-SILE DISCHARGE (CFS) Modified Rayional Method Sos Method (24 Hour) Sos Hethod (6 Hour)	0.00 0.00 0.00	2.92 2.27 1.22	

ST MARY Final Cond Runoff Sum	S ITIONS MARY	
BASIN PARAMETER	BASIN 1	
AREA (ACRES) AREA (SQUARE MILES) MAXIMUM ELEVATION MINIMUM ELEVATION	8.91 0.0139 4660.63 4638.38	
LONGEST WATER COURSE LENGTH (FEET) SLOPE TIME OF_CONCENTRATION (MINUTES)	869.00 0.0256 4.40	
2-YEAR RAINFALL RATIONAL METHOD (INCH/HR) SCS METHOD (INCH/24 HOUR) SCS METHOD (INCH/6 HOUR)	0.90 0.70 0.55	
-J 10-YEAR RAINFALL RATIONAL METHOD (INCH/HR) SCS METHOD (INCH/24 HOUR) SCS METHOD (INCH/6 HOUR)	1.68 1.12 0.87	
100-YEAR RAINTALL RATIONAL METHOD (INCH/HR) SCS METHOD (INCH/24 HOUR) SCS METHOD (INCH/2 HOUR)	3.60 2.01 1.56	
RUNOFFSCS METHOD (INCH) 24 HOUR 27 TEAR 10-YEAR 100-YEAR	C.151 0.415 1.124	
RUNDFFSCS METHOD (INCH) 6 HOUR 2-YEAR 10-YEAR 100-YEAR	0.080 0.249 0.749	
2-YEAR PEAK FLOD (CFS) RATIONAL METHOD SCS METHOD (24 HOUR) SCS METHOD (6-HOUR)	4.87 1.97 1.48	
10-YEAR PEAK FLOW (CFS) RATIONAL METHOD SCS METHOD (24 HOUR) SCS METHOD (6 HOUR)	9.08 5.82 3.21	
10C-YEAR PEAK FLCW (CFS) RATIONAL METHOD SCS METHOD (24 HOUR) SCS METHOD (6 HOUR)	22.43 15.78 8.19	
2-YEAR RUNDEF VOLUME (CU. FT.) MODIFIED RATIONAL METHOD (90 MIN) SCS METHOD (24 HOUR) SCS METHOD (6 HOUR)	8159.00 5072.00 6346.00	
10-YEAR RUNOFF VOLUME (CU. FT.) MUDIFIED RATIONAL HETHOD (70 MIN) SCS METHOD (24 HOUR) SCS METHOD (6 HOUR)	13693.00 13362.00 14349.00	
100-YEAR RUNOFF VOLUME (CU. FT.) MODIFIED RATIONAL METROD (70 MIN) SCS METHOD (24 HOUE) SCS METHOD (6 HOUR)	31440.00 36241.00 34432.00	
2-YEAR OFF-SITE DISCHARGE (CFS) MODIFIED RATIONAL METHOD (90 MIN) SCS METHOD (24 HOUR) SCS METHOD (6 HOUR)	0.54 0.12 0.22	
10-YEAR OFF-SITE DISCHARGE (CF3) MODITIED RATIONAL METHOD (70 MIN) SCS METHOD (24 HOUR) SCS METHOD (6 HOUR)	0.96 0.50 0.57	
100-YEAR OFF-SITE DISCHARGE (CFS) MODIFIED RATIONAL METHOD (70 MIN) SCS METHOD (24 HOUR) SCS METHOD (24 HOUR)	2.78 1.78	

TRAFFIC/PEDESTRIAN IMPACT STUDY PROPOSED PARKING LOT ADDITION ST. MARY'S HOSPITAL

•

 $\varphi^{(2)}$

.

.

July 1992

Prepared By:

Western Engineers, Inc. 2150 Hwy. 6 & 50 Grand Junction, CO 81505

.

TABLE OF CONTENTS

.

;

P	Δ	C.	F.
<u> </u>	_	≚.	<u> </u>

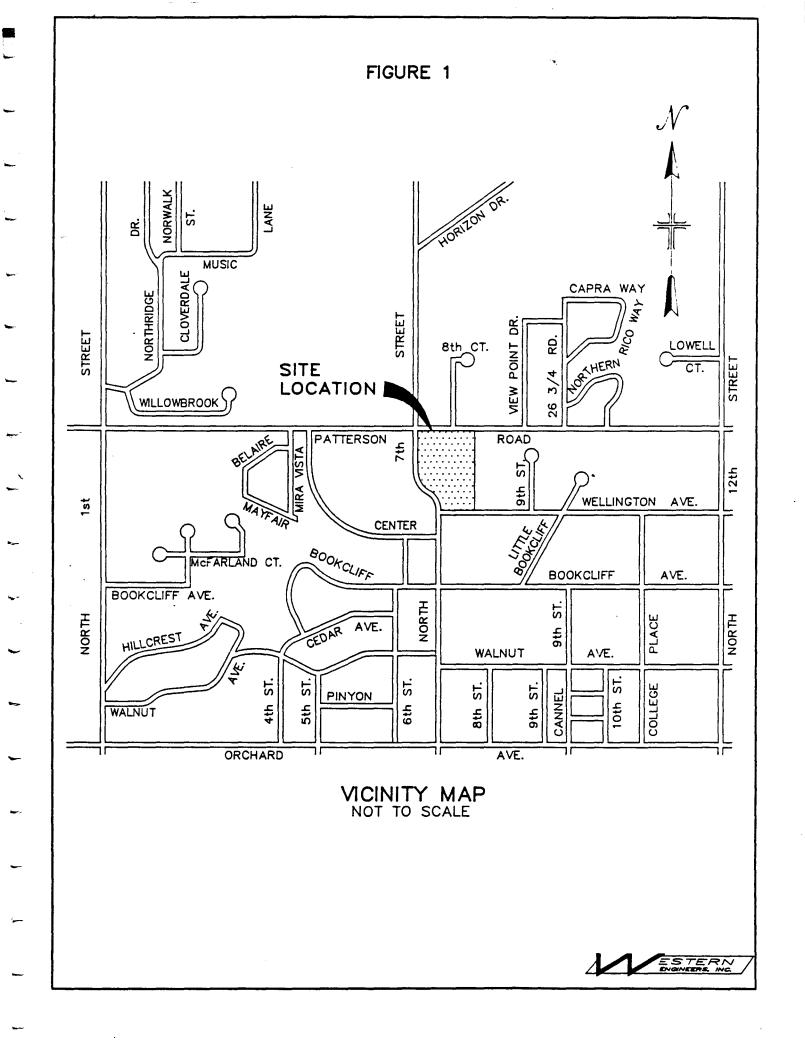
Summary of Alternative Solutions	1
Introduction	2
Projected Traffic Volume	3
Seventh and Wellington Vehicular Analysis	3
Proposed Patterson Driveway Traffic Analysis	5
Distribution Through Both Exits	5
Vehicle Gap Count	7
Existing Pedestrian Traffic	7
Seventh and Patterson Pedestrian Traffic	8
Tables	9
Appendix	

SUMMARY OF SOLUTIONS FOR VEHICLE/PEDESTRIAN CONFLICTS

As a result of investigation and traffic analysis, the following recommendations will provide for the safety of pedestrians and vehicular traffic flow.

- 1. By improving the line-of-sight for north bound vehicles on 7th street making a right turn to Patterson Road, will keep vehicles from encroaching in the pedestrian crosswalk. This will also be beneficial for vehicles merging with eastbound traffic, as they will be able to see oncoming traffic. This can be accomplished by the a combination of the following:
 - a) Remove 10 parking spaces, located at the southwest corner of the intersection bordering Patterson Road, from service.
 - b) Move the "stop-bar" for northbound traffic in the through and left-turn-only lanes to the south while keeping the "stop-bar" for the right-turn-only lane in the same location. This action will aid the vehicle performing the right turn maneuver to view on-coming traffic.
- 2. "No right turn on red when pedestrians in crosswalk" restriction at the south side of the intersection of Seventh St. with Patterson Road. This will give the pedestrian the right-of-way during the walk phase.
- 3. Lengthen the "walk" signal for pedestrians at the 7th Street and Patterson Road intersection. This will allow for a more comfortable crossing time for the expected increase in pedestrian traffic.
- 4. Install fencing and remove sidewalks adjacent to current parking lot on the east side of 7th Street. This plan will deter pedestrian traffic from crossing 7th Street in the middle of the block by allowing the only access to the sidewalk at the location of the signalized "crosswalk".
- 5. Provide parking lot entrance/exit on Patterson. This plan allows for a full access driveway to accommodate the parking lot located at the southeast corner of 7th Street and Patterson Road. The use of this driveway will allow vehicles to enter and exit the parking lot from Patterson Road, thus eliminating some congestion at the intersections of 7th Street and Wellington Avenue.
- 6. Minimize use of 7th and Wellington by providing employee information and signage at the Wellington exit directing traffic on Wellington to the Bookcliff and 12th intersection.

In conclusion, the combination of all solutions listed is recommended. Increased policing and enforcement will be required initially for new traffic regulations. Once implemented, the safety of pedestrians and vehicles will provide permanent benefit to the overall public.


INTRODUCTION

The following report is an impact study for traffic and pedestrian volumes generated by a proposed development of an employee parking lot for St. Mary's Hospital.

The proposed site for this facility is located at the southeast corner of 7th Street and Patterson Road (see Vicinity Map, Figure 1). There is an existing parking lot which is bordered by 7th Street on the west and Patterson Road on the north. This existing parking lot contains 130 parking stalls. The proposed addition will be constructed immediately to the east containing 360 additional parking stalls, making a total of <u>490</u> spaces. Both parking lots will be using a common entrance/exit located on Wellington Avenue near 7th Street, while a proposed full access driveway will be constructed on Patterson Road to accommodate both parking lots. The intersection most directly affected by the increase in vehicle traffic volume is 7th Street and Wellington Avenue. The general geometry of this intersection is a "T" shape with 7th Street being the main thoroughfare, north and south, and Wellington Avenue is a minor street to the east. 7th street has four lanes of travel with two in each direction separated by a painted meridian. This meridian serves as a left turn lane for south bound traffic and a merge lane for left turns off of Wellington. To lessen the impact of increased vehicle traffic volume at 7th Street and Wellington Avenue, in-house directives and special signage erected at the Wellington Avenue exit of the parking lot will encourage traffic to exit east towards Bookcliff Avenue.

* In 1985, the City of Grand Junction established a requirement to maintain a Level of Service (LOS) C for all traffic ways in the city. A Level of Service A is the most desirable whereas LOS F is unacceptable. The proposed parking lot will have a impact on the intersection of 7th Street and Wellington Avenue and the traffic of Patterson Road.

There will be an increase in pedestrian traffic across 7th Street to access the hospital and then return to the parking lot. The only designated crosswalk in the vicinity of the proposed facility is at the intersection of 7th Street and Patterson Road.

PROJECTED TRAFFIC VOLUME

The existing parking lot and the proposed project are on the east side of Seventh Street and are designated as employee parking only. To determine the increase of vehicular traffic entering and exiting the parking facilities, a correlation to the existing pedestrian traffic will be made. The largest pedestrian volume (including all people that are presently short cutting) at 7th and Patterson was observed during the 7:45 to 8:00 AM time period. During the 15 minute period 18 people were counted crossing the street from the parking lot to the hospital. At this particular time there were 49 vehicles occupying space in the existing lot. The 18 drivers (pedestrians) represent 37% of the parked vehicles. Prorating this to the total existing and proposed parking (37% of 490 spaces), the maximum number of vehicles considered to be exiting the lot will be 182. If these drivers arrive at the same shift it is entirely possible they may exit at the same time. Therefore it is possible to use the 182 vehicles for the morning peak, 7: 15 to 8:15 AM, or the afternoon peak traffic hour, 4:15 to 5:15 PM. for the worst case scenario.

SEVENTH AND WELLINGTON VEHICULAR ANALYSIS (With exit only for the North Entrance on Patterson)

7th Street, with many medical offices, facilities and clinics, is a major north and south thoroughfare for the City of Grand Junction. Wellington is a minor collector also serving a large majority of the medical services in Grand Junction. Table 1 provides traffic information as observed by Western Engineers, Inc. in May, 1992, at the 7th and Wellington intersection. There are two major peak times, one around the noon hour and the other between 3:15 to 4:15 P.M. The peak hour of traffic exiting the proposed parking lot is determined to be between 4:15 to 5:15 P.M. This report will focus on the latter time period for the analysis comparison.

Table 2 tabulates and collates the data of existing traffic to calculate the current LOS using the programmed sequences of the 1985 HCM Traffic Analysis software. The conclusions identify LOS for the following traffic movements as follows:

EXISTING LEVEL OF SERVICE

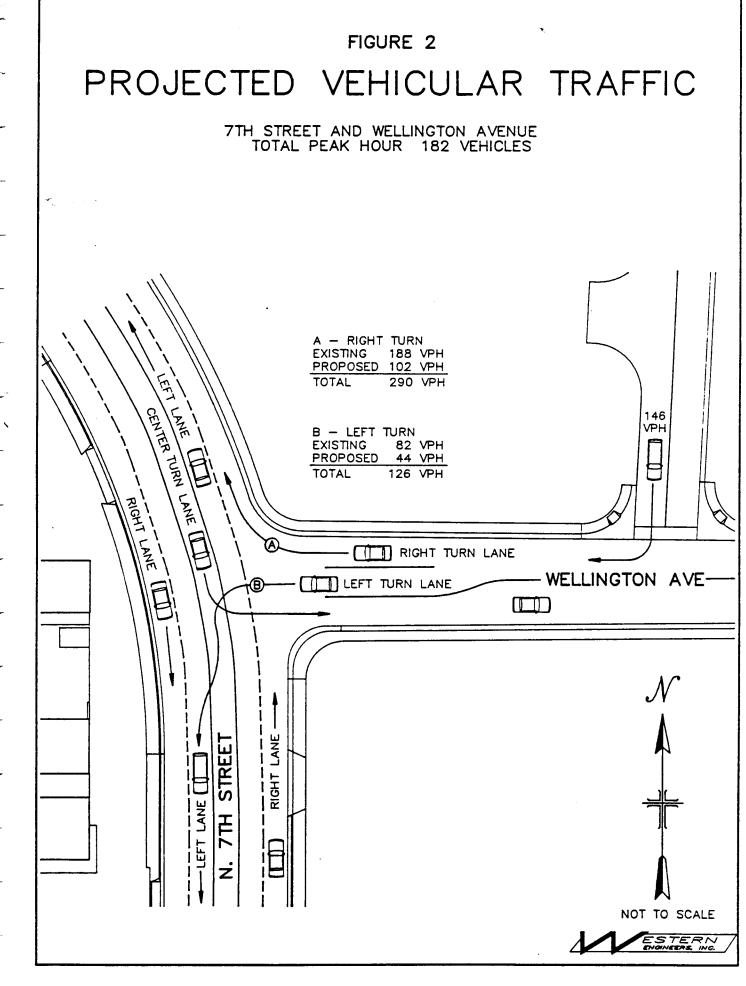
- 1. Left hand turn from Wellington to 7th LOS E
- 2. Right hand turn from Wellington to 7th LOS A
- 3. Left hand S/B lane of 7th to Wellington LOS A

Table 3 tabulates and collates information based on observation with direct proportion of pedestrians crossing 7th Street to the number of vehicles in the existing parking lot. This percentage (37%) was used to determine the number of vehicles anticipated during the peak hour. The largest impact on the intersection will be during the late afternoon shift change, when employees combined with vehicles from medical offices on Wellington Avenue attempt to exit onto 7th Street. The peak hour for vehicle traffic exiting the parking lot that will have the greatest impact on existing traffic is 4:15 to 5:15 P.M. Using the 37% described above, then applying this to a full capacity for both parking lots (490 vehicles), a peak vehicle traffic count of 182 VPH was arrived at. Assuming that 20% of the 182 vehicles will use the exit only on to Patterson Road, the remaining 146 vehicles will exit onto Wellington Avenue and ultimately use the intersection referenced. Using a ratio of vehicles currently using the intersection during the anticipated peak hour, 70% (102 vehicles) will turn right and 30% (44 vehicles) will turn left. This projected traffic volume at 7th Street and Wellington Avenue is 290 VPH right-turn and 126 VPH left-turn (see Figure 2).

Traffic Volumes

		EXISTING VPH	PROJECTED VPH	TOTAL VPH
1.	Left hand turn			
	Wellington to 7th	82	44	126
2.	Right hand turn			
	Wellington to 7th	188	102	290
з.	Left hand S/B lane			
	7th to Wellington	48	0	48

In comparison, volume of traffic and its direction of flow were derived from "Trip Generation", 5th Edition, Institute of Transportation Engineers. The pertaining section to the proposed parking lot is HOSPITAL 610 "Employees on a Weekday, Peak hour of adjacent Street Traffic, One Hour Between 4 and 6 P.M.". Using the average rate of vehicle per employee (in this case, employee will reference the number of parking stalls), 0.33 vehicle per employee, the resultant traffic volume is 162 VPH. This volume is well below the calculated 182 VHR, thus the higher estimated volume is used in the calculations to determine the LOS at the intersection.


PROJECTED LEVEL OF SERVICE

1. Left hand turn from Wellington to 7th	LOS E
--	-------

2. Right hand turn from Wellington to 7th LOS A

3. Left hand S/B lane of 7th to Wellington LOS A

Comparing the existing to the projected LOS, there is no change in the Level of Service of the intersection at 7th and Wellington due to the increased traffic from the proposed project.

For comparative purposes, two hypothetical traffic scenarios are presented in Table 4. These calculations determine the number of vehicles needed to raise the LOS to the next higher level on Wellington only.

PROPOSED PATTERSON ROAD DRIVEWAY TRAFFIC ANALYSIS (Without Wellington Avenue)

In order to relieve the impact of vehicles exiting the parking lot on the intersection of 7th and Wellington, a driveway can be constructed allowing right and left turns onto Patterson Road. As discussed earlier, the projected number of vehicles exiting the parking lot during the peak hour (4:14 - 5:15) is 182 cars. For the analysis, 54 VPH are estimated making a left-turn from the driveway and maintain a LOS E. The remaining 128 vehicles are assumed to make a right-turn movement. Table 5 tabulates the traffic count at the proposed parking lot driveway and Patterson Road.

Traffic Volumes

		PROJECTED VPH
1.	Left hand turn	
	Driveway and Patterson	54
2.	Right hand turn	
	Driveway to Patterson	128
3.	Left hand W/B lane	
	Patterson to Driveway	10

PROJECTED LEVEL OF SERVICE

1. Left hand turn from Driveway to Patter	son	LOS	E
---	-----	-----	---

2. Right hand turn from Driveway to Paterson LOS A

3. Left hand W/B lane of Patterson to Driveway LOS B

DISTRIBUTION THROUGH BOTH EXITS (Wellington and Patterson)

The total exodus from the parking lot will not occur at one particular exit. Drivers will use Wellington to some degree depending on their destination. A majority of the people will use Patterson as it provides the most efficient access to the greater parts of Grand Junction. The 182 vehicles were distributed between the two entrances/exits with 109 cars are proportioned to Patterson and 73 vehicles to Wellington.

The driveway exit at Wellington will distribute approximately 18 cars eastbound on Wellington and 55 cars to 7th Street. It is anticipated that the 18 cars going eastbound on Wellington are the result of the signage at the exit and the long delays to merge onto

7th Street. Of the 55 vehicle approaching 7th and Wellington, 25 vehicles will make left turns and the remaining 30 will right turn onto Wellington. These two turning motions must be added to the existing traffic as shown in Figure 3.

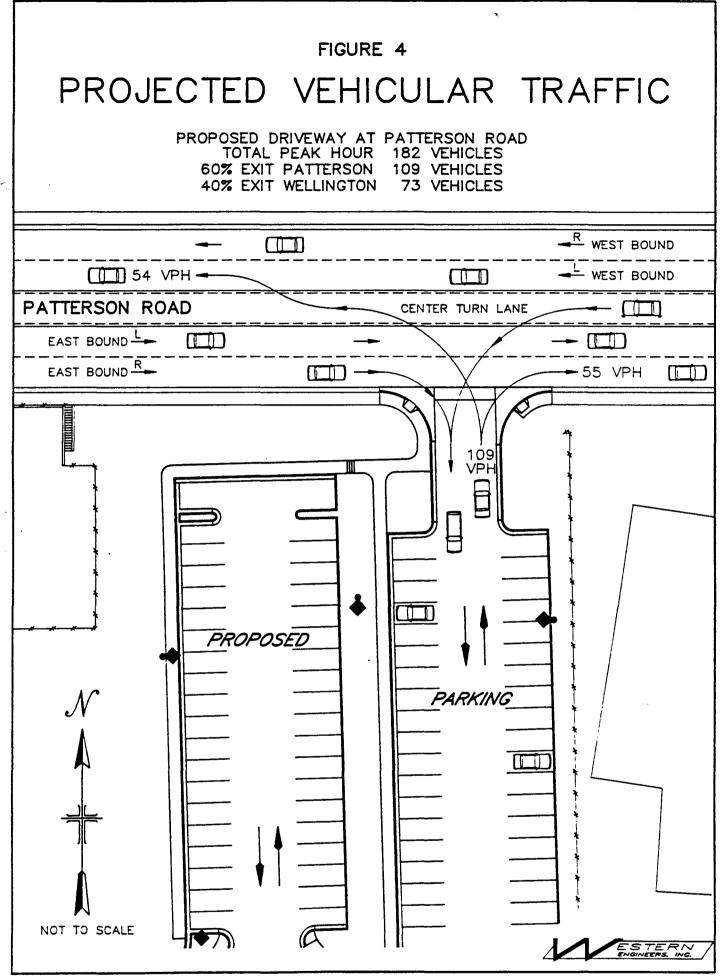
Traffic Volumes

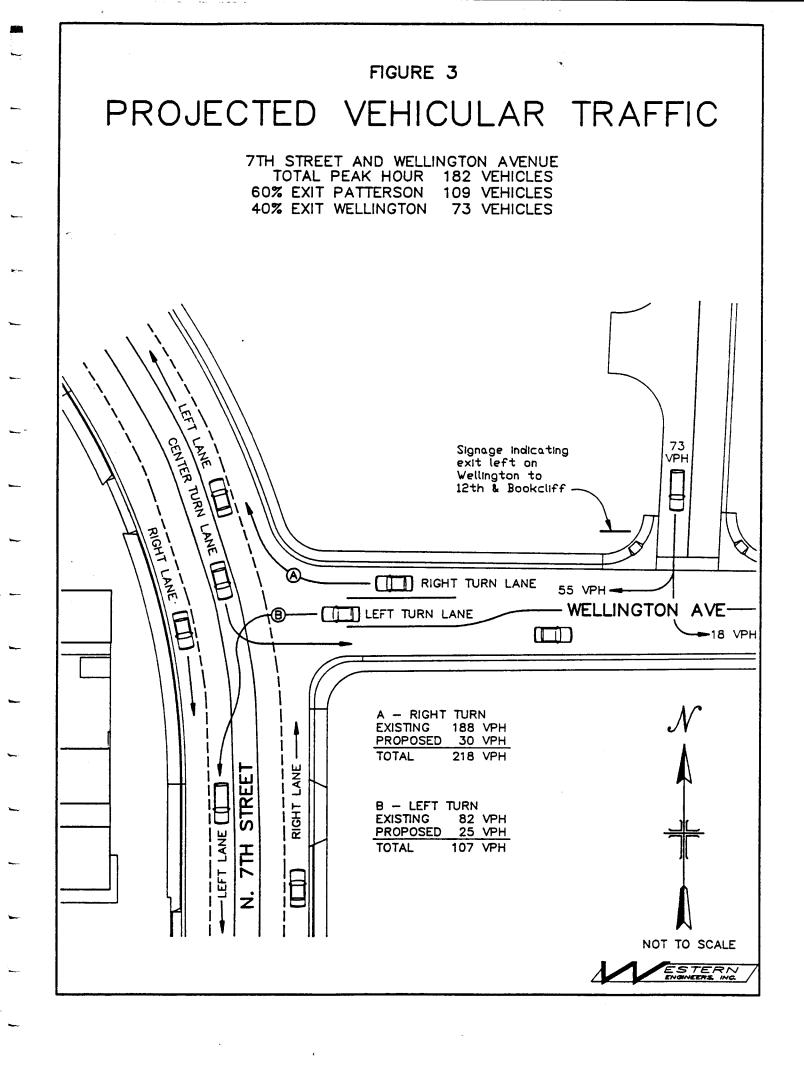
		EXISTING VPH	PROJECTED VPH	TOTAL VPH
1.	Left hand turn			
	Wellington to 7th	82	44	126
2.	Right hand turn			
	Wellington to 7th	188	102	290
з.	Left hand S/B lane			
	7th to Wellington	48	0	48
	/ ch to weilington	-10	Ŭ	

PROJECTED LEVEL OF SERVICE

1. Left hand turn from Wellington to 7th	LOS E
--	-------

- Right hand turn from Wellington to 7th LOS A
 Left hand S/B lane of 7th to Wellington LOS A


Returning to the driveway entrance and exit at Patterson, the 109 cars exiting onto Patterson are divided with 55 vehicles making right turns and 54 VPH making left hand turns onto Patterson. Also included are 10 left hand turns from the west bound lane on Patterson (see Figure 4).


Traffic Volumes

		PROJECTED VPH
1.	Left hand turn	• • • •
	Driveway and Patterson	55
2.	Right hand turn	
	Driveway to Patterson	54
з.	Left hand W/B lane	
	Patterson to Driveway	10

PROJECTED LEVEL OF SERVICE

1.	Left hand turn from Driveway to Patterson	LOS E
2.	Right hand turn from Driveway to Paterson	LOS A
3.	Left hand W/B lane of Patterson to Driveway	LOS B

VEHICLE GAP COUNT

The "critical gap", as defined in HIGHWAY CAPACITY MANUAL Special Report 209, Transportation Research Board, 1985, is the median time headway between two successive vehicles in the major street traffic stream that is accepted by drivers in a subject movement that must cross and/or merge with the major street flow. This gap must be considered in design whenever a vehicle attempts a movement that conflicts with the major traffic flow. The above referenced manual suggests a critical gap, based on the posted speed limit of 35 mph, of 7.3 seconds to make a left hand turn from the parking lot to westbound on Patterson. This 7.3 seconds is the suggested time that a driver can execute a selected maneuver with confidence that the gap will remain stable as the vehicle crosses through it. The critical gap of 7.3 seconds is applicable to both the 7th and Wellington intersection and the driveway access to Patterson Road. All remaining movements, ie. right turn, require a 5.5 second critical gap.

Table 6 tabulates the vehicle gap count at 7th Street and Wellington Avenue. Examining the 4:15 peak time there are 21 gaps greater than seven seconds. As a standard rule two cars can use a 10 second or greater gap. This allows for 34 turns in 15 minute period. Factoring to and hourly rate (4x34), provides an allowable turns of 136 VPH. This is in excess of the projected increase of 107 VPH at 7th and Wellington.

Using the same method above, Table 7 tabulates the vehicle gap count at the proposed driveway and Patterson Road. The critical peak time of 4:15 has an observed gap count of 13 greater than 7 seconds. This computes to 72 VPH ((2x5+8)x4). The proposed left hand turns on to Patterson of 54 VPH is less than the available volume of 72 VPH

This concludes that there are sufficient gaps in existing traffic flows at 7th and Wellington and the driveway location at Patterson to allow the increased turning movements created by the proposed parking lot.

EXISTING PEDESTRIAN TRAFFIC

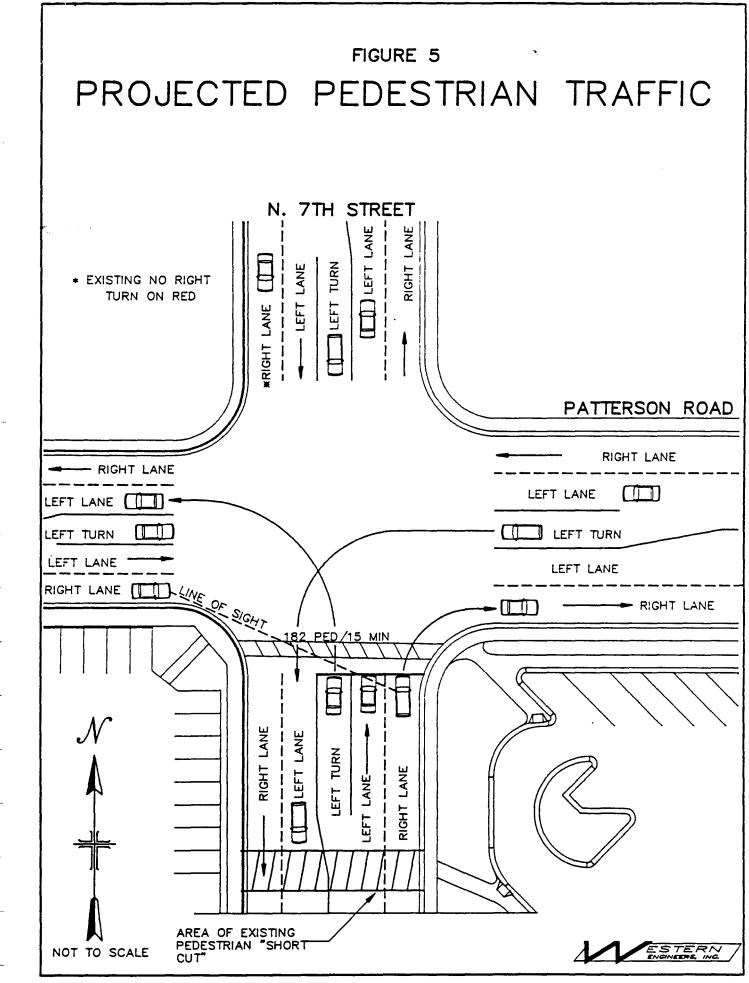
A significant amount of pedestrian traffic is directly related to the hospital on the west side of 7th street and the parking lot on the east side of 7th street. Table 8 provides pedestrian information as observed. There are two major peak times, one between 7:45 to 8:00 A.M. and the other between 4:00 to 4:15 P.M. One major observation noted during the study is the fact that approximately 2/3 of the pedestrian traffic use a "short cut" from the parking lot across 7th Street and the hospital. This short cut or "J Walking" generally occurs at a point where the sidewalk entrance to the existing parking lot connects with the sidewalk

parallelling 7th Street. Table 9 provides observed traffic through the intersection to be correlated with the pedestrian traffic. For purposes of this study, all pedestrian traffic is assumed to use the designated crosswalk at the intersection. Another observation made while obtaining traffic counts is the vehicles making a right turn from 7th Street to Patterson Road. Since the intersection is offset (Patterson Road west of 7th Street is offset to the north when aligned with Patterson Road east of 7th Street), this presents a hazard to both vehicle and pedestrian traffic. The majority of vehicles observed making a right turn on red had to commit themselves to the turn by completely blocking the crosswalk in order to see if any oncoming traffic would impede the completion of the turn. This is the major hazard to pedestrians attempting to cross the street (see Figure 5).

SEVENTH AND PATTERSON PEDESTRIAN ANALYSIS

Table 10 tabulates and collates the data of existing pedestrians to calculate the current LOS using the programmed sequences of the 1985 HCM Traffic Analysis software. The conclusions identify LOS levels for the following pedestrian movement as follows:

EXISTING LEVEL OF SERVICE


South	crosswalk	7th	and	Patterson	LOS A
Maxim	ım Surge				LOS A

The peak pedestrian traffic occurs between 7:45 to 8:00 A.M. and 4:00 to 4:15 P.M. There is a higher volume of vehicle traffic during the P.M. peak, therefore the pedestrian LOS is analyzed for the worst case scenario. Again, using 37% of parking lot capacity (182 vehicles), and assuming one pedestrian per vehicle, peak pedestrian volume is 182 pedestrians per 15-minutes. This information is reflected in Table 11.

PROJECTED LEVEL OF SERVICE

South	crosswalk	7th	and	Patterson	LOS B
Maxim	um Surge				LOS C

The projected increase in pedestrian traffic volume will raise the LOS at the referenced intersection. It should be noted that the intersection at 7th and Patterson meets the requirements for pedestrian traffic at LOS C.

.

Table	1	Existing Traffic Volumes - 7th & Wellington
Table	2	Existing Intersection and LOS
Table	3	Projected Vehicle Traffic LOS
Table	4	Level of Service Change
Table	5	Existing Traffic Volumes - Patterson Road
Table	6	Existing Gap Count - 7th & Wellington
Table	7	Existing Gap Count - Patterson Road
Table	8	Existing Pedestrian Volumes
Table	9	Observed Traffic Volumes - 7th & Patterson
Table	10	Existing Crosswalk LOS
m 1 3		

9

л. •

Table 11 Projected Pedestrian Traffic LOS

.

-

-

-

~

-

-

-

-

.

.

--

-

N

-

-

•

~

.

EXISTING TRAFFIC VOLUMES 7th STREET & WELLINGTON AVENUE

					5/27/92 Wed. (VHR)
SOUTH	IBOL	IND 7	th Stree	t	
		4:15		-	641
3:30	to	4:30	P.M.		595
3:45	to	4:45	P.M.		579
4:00	to	5:00	P.M.		525
4:15	to	5:15	P.M.		509
4:30	to	5:30	P.M.		507
		5:45			445
		6:00			423
5:15	to	6:15	P.M.		371
NORTH	IBOI	IND 7	7th Stree	t	
		4:15		•	710
		4:30			709
		4:45			666
		5:00			685
		5:15			659
4:30	to	5:30	P.M.		656
4:45	to	5:45	P.M.		641
5:00	to	6:00	P.M.		554
5:15	to	6:15	P.M.		448
WEST	1105	vn we	ellington	Avenue	
		4:15		nvenue	199
		4:30			203
		4:45			211
		5:00			227
		5:15			270
		5:30			280
		5:45			262
		6:00			226
5:15	to	6:15	P.M.		162

10

.

TABLE 2 EXISTING INTERSECTION AND LOS

1985 HCM: UNSIGNALIZED INTERSECTIONS Page-1 ************************************							
IDENTIFYING INFORMATION							
AVERAGE RUNNING SPEED, MAJOR STREET 30							
PEAK HOUR FACTOR 1							
AREA POPULATION							
NAME OF THE EAST/WEST STREET Wellington Ave.							
NAME OF THE NORTH/SOUTH STREET 7th Street							
NAME OF THE ANALYST							
DATE OF THE ANALYSIS (mm/dd/yy) 5/27/92							
TIME PERIOD ANALYZED							

INTERSECTION TYPE AND CONTROL - ---- ----- ----- -----

INTERSECTION TYPE: T-INTERSECTION MAJOR STREET DIRECTION: NORTH/SOUTH CONTROL TYPE WESTBOUND: STOP SIGN

TRAFFIC VOLUMES

٠

-

	EB	WB	NB	SB
LEFT		82	Ō	48
THRU		0	607	461
RIGHT		188	52	Ō

NUMBER OF LANES

	EB	WB	NB	SB
LANES		2	2	2

TABLE 2 (CONT.)

×

CAPACITY	AND	LEVEL-OF-SERVICE

*

Page- 2

MOVEMENT	FLOW- RATE v(pcph)	POTEN- TIAL CAPACITY c (pcph) P 	ACTUAL MOVEMENT CAPACITY c (pcph) M	SHARED CAPACITY c (pcph) SH	RESERVE CAPACITY c = c - v R SH	LOS
MINOR STREET						
WB LEFT RIGHT	90 207	155 763	145 763	145 763	55 557	E A
MAJOR STREET						
SB LEFT	53	517	517	517	464	A

TABLE 3PROJECTED VEHICLE TRAFFIC LOS

1985 HCM: UNSIGNALIZED INTERSECTIONS ************************************						
IDENTIFYING INFORMATION						
AVERAGE RUNNING SPEED, MAJOR STREET						
PEAK HOUR FACTOR 1						
AREA POPULATION						
NAME OF THE EAST/WEST STREET Wellington Ave	₽.					
NAME OF THE NORTH/SOUTH STREET						
NAME OF THE ANALYST Eng.						
DATE OF THE ANALYSIS (mm/dd/yy) PROJECTED						
TIME PERIOD ANALYZED 4:15 - 5:15						

.

INTERSECTION TYPE AND CONTROL

INTERSECTION TYPE: T-INTERSECTION MAJOR STREET DIRECTION: NORTH/SOUTH CONTROL TYPE WESTBOUND: STOP SIGN

TRAFFIC VOLUMES

	EB	WB	NB	SB
LEFT	anna anna dhire anna	126	0	48
THRU		0	607	461
RIGHT		290	52	0

NUMBER OF LANES

		•		
	EB	WB	NB	SB
LANES		2	2	2

TABLE 3 (CONT.)

CAPACITY AND LEVEL-OF-SERVICE

ک به هم هم بود بن هم من بند بند بند بند بند من خلو ان بدر بور بور مد بند بند بند بند بند بند بن بن بير برو بير بير بير ب

6

-

-

-

-

-

~...*

-

~

.....

-

-

~

•

-

•----

Page-2

٠.

and and a second se	MOVEMENT	FLOW- RATE v(pcph)	POTEN- TIAL CAPACITY c (pcph) P 	ACTUAL MOVEMENT CAPACITY c (pcph) M	SHARED CAPACITY c (pcph) SH	RESERVE CAPACITY c = c - v R SH	LOS
	MINOR STREET						
	WB LEFT RIGHT	139 319	155 763	145 763	145 763	ے 444	E A
	MAJOR STREET						
	SB LEFT	53	517	517	517	464	A

.

TABLE 4LEVEL OF SERVICE CHANGE

ъ.

1985 HCM: UNSIGNALIZED INTERSECTIONS ************************************	F'age-1 ***********
IDENTIFYING INFORMATION	
AVERAGE RUNNING SPEED, MAJOR STREET	30
PEAK HOUR FACTOR	1
AREA POPULATION	30000
NAME OF THE EAST/WEST STREET	Wellington Ave.
NAME OF THE NORTH/SOUTH STREET	7th Street
NAME OF THE ANALYST	Western Eng.
DATE OF THE ANALYSIS (mm/dd/yy)	PROJECTED
TIME PERIOD ANALYZED	4:15 - 5:15

INTERSECTION TYPE AND CONTROL

INTERSECTION TYPE: T-INTERSECTION MAJOR STREET DIRECTION: NORTH/SOUTH CONTROL TYPE WESTBOUND: STOP SIGN

TRAFFIC VOLUMES

.

.

	EB	WB	NB	SB
LEFT		132	0	48
THRU		0	607	461
RIGHT		331	52	0

NUMBER OF LANES

	EB	WB	NB	SB
LANES		2	2	2

•

TABLE 4 (CONT.)

·**,

CAPACITY AND LEVEL-OF-SERVICE

-

POTEN- ACTUAL FLOW- TIAL MOVEMENT SHARED RESERVE RATE CAPACITY CAPACITY CAPACITY v(pcph) c (pcph) c (pcph) c = c - v LOS p M SH R SH MOVEMENT -----MINOR STREET WB LEFT 145 155 145 RIGHT 364 763 763 WB LEFT 145 -0 F 399 763 В MAJOR STREET SB LEFT 53 517 517 517 464 A

Fage-2

ъ.

.

EXISTING VEHICLE VOLUMES PATTERSON ROAD AND DRIVEWAY

6/30/92 Tue.

	WESTBOUND	EASTBOUND	TOTAL
7:15 to 8:15 A.M.	826	402	1,228
7:30 to 8:30 A.M.	841	468	1,309
7:45 to 8:45 A.M.	766	506	1,272
8:00 to 9:00 A.M.	669	491	1,160
8:15 to 9:15 A.M.	664	495	1,159
	WESTBOUND	EASTBOUND	TOTAL
10:45 to 11:45 A.M.	667	618	1,285
11:00 to 12:30 P.M.	697	690	1,387
11:15 to 12:15 P.M.	709	717	1,426
11:30 to 12:30 P.M.	697	736	1,433
11:45 to 11:45 P.M.	714	745	1,459
12:00 to 1:00 P.M.	713	739	1,452
12:15 to 1:15 P.M.	682	663	1,345
	WESTBOUND	EASTBOUND	TOTAL
3:15 to 4:15 P.M.	743	932	1,675
3:30 to 4:30 P.M.	742	952	1,694
3:45 to 4:45 P.M.	731	960	1,691
4:00 to 5:00 P.M.	725	983	1,708
4:15 to 5:15 P.M.	684	1,085	1,769
4:30 to 5:30 P.M.	698	1,091	1,789
4:45 to 5:45 P.M.	670	1,078	1,748
5:00 to 6:00 P.M.	628	1,009	1,637
5:15 to 6:15 P.M.	605	853	1,458

,

.

٠.

.

2

and the second second

...

-

-

-

EXISTING VEHICLE GAP COUNT 7th ST. AND WELLINGTON AVENUE

TIME	5-6	6-7	7-8	8-9	9-10	+10
OF DAY	SEC	SEC	SEC	SEC	SEC	SEC
7:15-8:15 A.M.	11	22	10	10	16	58
7:30-8:30 A.M.	15	16	12	13	11	49
7:45-8:45 A.M.	14	18	11	14	9	44
8:00-9:00 A.M.	13	16	13	13	9	49
8:15-9:15 A.M.	15	16	13	14	12	54
10:45-11:45 A.M. 11:00-12:00 A.M. 11:15-12:15 A.M. 11:30-12:30 A.M. 11:45-12:45 P.M. 12:00- 1:00 P.M. 12:15- 1:15 P.M.	29 27 27 26 22 16 16	20 19 16 14 16 14 17	18 16 14 11 11 13 15	18 17 12 10 9 7 10	6 5 8 8 7 5	54 54 53 55 59 56
3:15-4:15 P.M.	26	24	14	15	9	39
3:30-4:30 P.M.	27	22	12	18	5	48
3:45-4:45 P.M.	24	20	15	21	10	48
4:00-5:00 P.M.	19	18	12	19	14	50
4:15-5:15 P.M.	17	18	10	18	12	52

<u>م</u>

•

EXISTING VEHICLE GAP COUNT PATTERSON ROAD AND DRIVEWAY

TIME	5-6	6-7	7-8	8 - 9	9-10	+10
OF DAY	SEC	<u>SEC</u>	SEC	SEC	SEC	
7:15-8:15 A.M.	15	23	14	12	11	55
7:30-8:30 A.M.	18	26	11	17	8	52
7:45-8:45 A.M.	23	27	12	18	8	48
8:00-9:00 A.M.	29	23	12	17	11	49
8:15-9:15 A.M.	28	19	16	16	11	47
10:45-11:45 A.M.	34	22	21	18	9	29
11:00-12:00 A.M.	29	24	19	17	8	33
11:15-12:15 A.M.	22	24	18	12	5	28
11:30-12:30 A.M.	21	26	15	10	5	29
11:45-12:45 F.M.	25	28	11	9	5	30
12:00- 1:00 P.M.	28	27	10	7	5	21
12:15- 1:15 P.M.	29	22	11	10	5	20
3:15-4:15 P.M. 3:30-4:30 F.M. 3:45-4:45 P.M. 4:00-5:00 P.M. 4:15-5:15 P.M. 4:30-5:30 P.M. 4:45-5:45 P.M. 5:00-6:00 P.M. 5:15-6:15 P.M.	22 22 20 27 26 23 25 25	21 22 25 24 20 19 20 19 24	11 10 12 11 12 13 11 15	12 14 15 17 16 13 12 9	12 9 4 6 6 11 8 13	23 21 24 23 24 23 19 27 30

.

_

EXISTING PEDESTRIAN VOLUMES 7th STREET & PATTERSON ROAD

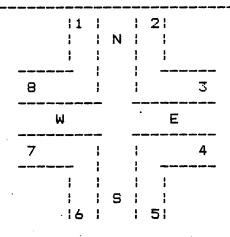
	· ·	6/30/92 Tue. (Ped/15 Min.)
	WESTBOUND	EASTBOUND
7:15 to 7:30 A.M.	5	2
7:30 to 7:45 A.M.	8	0
7:45 to 8:00 A.M.	18	0
8:00 to 8:15 A.M.	5	0
8:15 to 8:30 A.M.	12	0
8:30 to 8:45 A.M.	7	0
8:45 to 9:00 A.M.	6	0
9:00 to 9:15 A.M.	1	0
	WESTBOUND	EASTBOUND
11:45 to 12:00 P.M.	2	5
12:00 to 12:15 P.M.	1	7
12:15 to 12:30 P.M.	0	5
12:30 to 12:45 P.M.	0	7
12:45 to 1:00 P.M.	2	10
1:00 to 1:15 P.M.	0	5
	WESTBOUND	EASTBOUND
3:15 to 3:30 P.M.	2	4
3:30 to 3:45 P.M.	0	14
3:45 to 4:00 P.M.	2	5
4:00 to 4:15 P.M.	1	7
4:15 to 4:30 P.M.	0	5
4:30 to 4:45 P.M.	0	7
4:45 to 5:00 P.M.	2 0	10
5:00 to 5:15 P.M. 5:15 to 5:30 P.M.	1	5 3
	0	4
5:30 to 5:45 P.M. 5:45 to 6:00 P.M.	0	4
6:00 to 6:15 P.M.	0	5
0.00 (0 0.13 F.M.	5	5

4%

OBSERVED TRAFFIC VOLUMES SEVENTH STREET AND PATTERSON ROAD

		7/2/92
		Tue.
		(VHR)
EASTBOUND P		
3:15 to 4:15		739
3:30 to 4:30		777
3:45 to 4:45		762
4:00 to 5:00		768
4:15 to 5:15		830
4:30 to 5:30		810
4:45 to 5:45		810
5:00 to 6:00		768
5:15 to 6:15	P.M.	668
WESTBOUND Pa	tterson Rd.	
3:15 to 4:15		743
3:30 to 4:30		742
3:45 to 4:45		731
4:00 to 5:00		725
4:15 to 5:15		684
4:30 to 5:30	P.M.	698
4:45 to 5:45	P.M.	670
5:00 to 6:00	P.M.	628
5:15 to 6:15	P.M.	605
		.
	ght-Turn 7th to	
3:15 to 4:15		193
3:30 to 4:30		175
3:45 to 4:45 4:00 to 5:00		198
4:00 to 5:00 4:15 to 5:15		215 255
4:15 to 5:15 4:30 to 5:30		255 281
4:30 to 5:30 4:45 to 5:45		268
5:00 to 6:00		200
5:15 to 6:15		185
3.13 LU 0.13	F .H.	100

٦


\$--

FACILITY LOCATION	
TIME OF ANALYSIS	7:45 - 8:00 A.M.
DATE OF ANALYSIS MISC.INFORMATION	

A) INTERSECTION SCHEMATIC

.

B) CROSSWALK ANALYSIS

.

15-MINUTE PEDESTRIAN VOLUMES (VOLS. ARE OUTBOUND FROM CORNER)

FROM	1->2:	0	FROM	5->6:	18
FROM	2->1:	0	FROM	6->5:	0
FROM	3->4:	0	FROM	7->8:	0
FROM	4->3:	0	FROM	8->7:	0

CU	RB->CURB STREET WIDTH (Ft.)	XWALK WIDTH (Ft.)	CONFLICTING VEHICLE VOL. WITH PEDS (Veh/Cycle)	PED GREEN TIME (Sec)
NORTH EAST SOUTH WEST	55 55 66 55	5 5 5 5 5	0 2 2 0	40 35 40 35

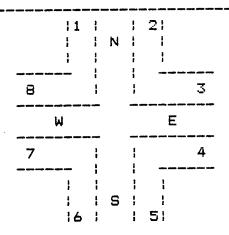

	WITHOUT VEHICLES ************************************		WITH VEHICLES ***************** SQ.FT. PER		MAXIMUM SURGE **************** SQ.FT. PER	
	PEDESTRIAN	LOS	PEDESTRIAN	LOS	PEDESTRIAN	LOS
			برور ها، چه ها ها خاه چه خاه خاه که			
NORTH	Ō		0		0	
EAST	0		0		0	
SOUTH	555	Α	537	A	313	A
WEST	0		0		0	

TABLE 11PROJECTED PEDESTRIAN TRAFFIC LOS

FACILITY LOCATION..... 7th & Patterson ANALYST...... Western Eng. TIME OF ANALYSIS..... 7:45 - 8:00 DATE OF ANALYSIS..... PROJECTED MISC.INFORMATION..... All Pedestrians

A) INTERSECTION SCHEMATIC

Ξ

B) CROSSWALK ANALYSIS

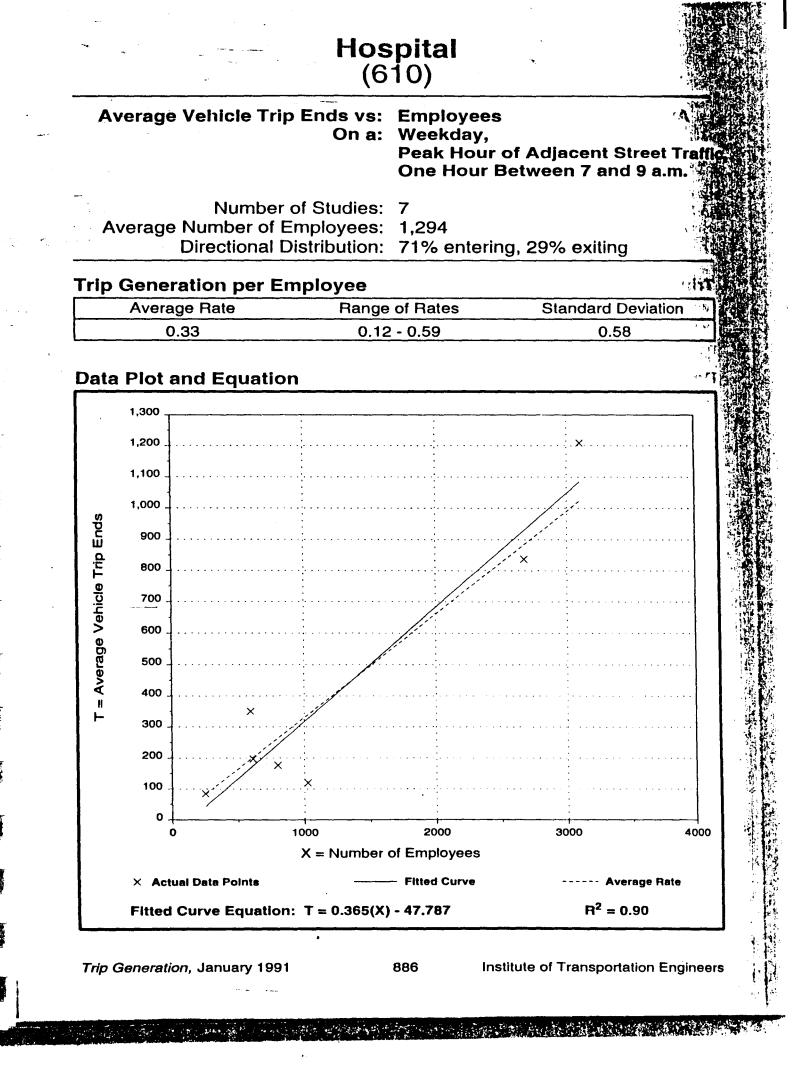
15-MINUTE PEDESTRIAN VOLUMES (VOLS. ARE OUTBOUND FROM CORNER)

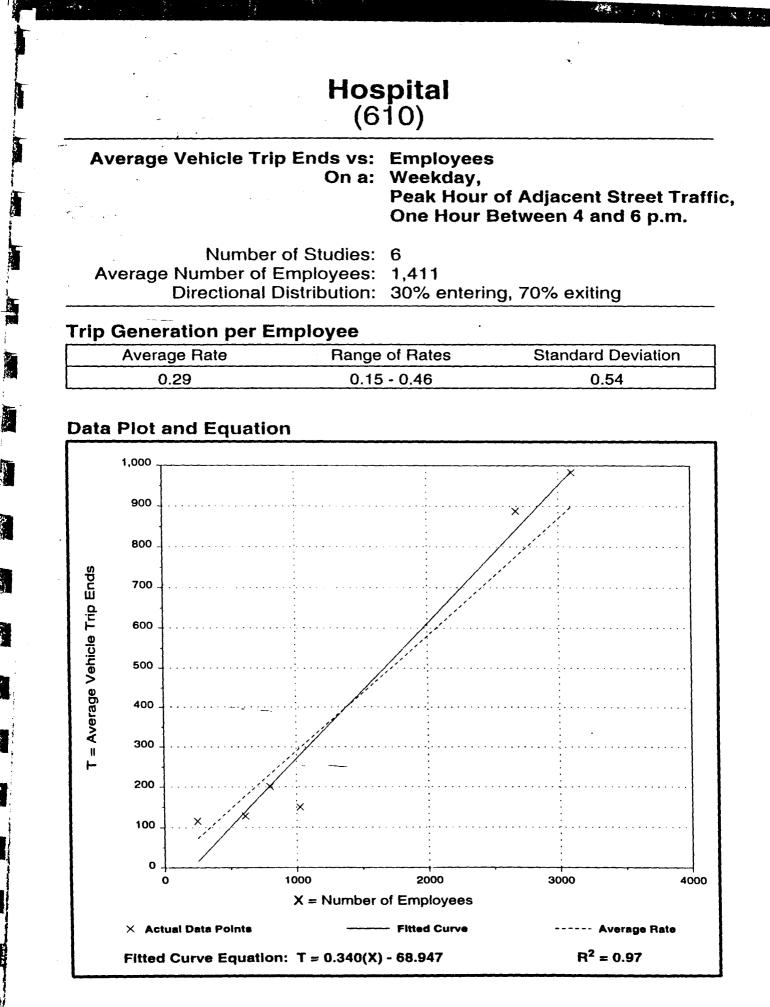
FROM 1->2:	0	FROM 5->6:	0
FROM 2->1:	0	FROM 6->5:	182
FROM 3->4:	0	FROM 7->8:	0
FROM 4->3:	0	FROM 8->7:	0

	JRB->CURB STREET WIDTH	XWALK WIDTH	CONFLICTING VEHICLE VOL. WITH PEDS	PED GREEN TIME		
LOCATION	(Ft.)	(Ft.)	(Veh/Cycle)	(Sec)		
			الله كان الله خلة النوحة عاد الله عنه فيه عمر.			
NORTH	55	5	0	40		
EAST	55	5	0	35		
SOUTH	66	5	2	40		
WEST	55	5	O	35		

	WITHOUT VEHI *************** SQ.FT. PER		WITH VEHICL *************** SO.FT. PER	****	MAXIMUM SURGE *************** SQ.FT. PER			
	PEDESTRIAN	LOS	PEDESTRIAN	LOS	PEDESTRIAN	LOS		
NORTH EAST SOUTH WEST	0 0 55 0	B	0 0 53 0	B	0 0 31 0	С		

APPENDIX


HOSPITAL (610)


EXISTING TRAFFIC/PEDESTRIAN COUNT DATA

. .

.

.

The Constation January 1991

ì

887

Institute of Transportation Engineers

11 -	8HOUR VEHICLE INTERSECTION VOLUME COUNT									Date <u>5-27-92</u>				
INTERSECTION VOLUME COUNT											Page lof 1			
7:15	7:30	7:45	8:00	· 8:15	8:30	8:45	9:00 .	9:15				TOTAL		
			••	•		•								
2	140	149	176	126	134	121	117	112	•			1075		
1	21	44	78	33	41	28	39	23				307		
4	q	14	13	7	12	11	16	17				99		
	6	7	2	5	- 8	12	13	13				65		
7	9	25	36	17	22	23	27	21				180		
	78	88	85	72	84	98	80	74				659		
α 	· · · · · · ·	·			-					•				
Gr														
_														
12														
1 1	262	327	390	260	301	293	292	260				2385		
A	161	193	<i>a</i> 54	159	175	149	156	135	·			1382		
-5	14	21	15	12	20	23	29	30				164		
•	87	113	121	89	106	121	107	95				839		
D														
· ¥	262	397	390	260	301	293	292	260				2385		
				- <u></u>	17	1						, , , ,		
-	- Turning Movements													

23 : Turning Movements 4~ rB N, 12 -11 -10 -WELLINGTON Ć ----7 - Wellington INTERSECTION 87 ŢĘ

.					8H	8HOUR VEHICLE ON VOLUME			s .			Date <u>5-27-92</u>		
- ·]1	NTER	SECT	ION	VOL	UME	COU	NT	• .	Pa	aqe lof2		
_ 45	11:00	11:15	11:30	· II:45	12:00	12:15	12:30 -	12:45	1:00			TOTAL		
1			·.	•		•								
-2	123	116	126	143	125	99	125	105	134.					
3	26	20	24	21	IS	15	12	24	34					
4	21	17	34	30	53	31	37	24	25					
_5														
6	24	22	26	30	25	22	18	21	9					
-7	27	25	21	15	. 18	10	15	17	39					
φ ω Ι φ	11:60	117	113	146	133	99	119	107	115					
9										·				
10														
11					•									
-12														
ITAL	337	317	344	385	369	2.76	324	298	356					
Ā	149	136	150	164	140	114	137	129	168					
В	45	39	60	60	78	53	55	45	34					
	143	192	134	161	151	109	134	124	154					
- D														
TAL	334	317	344	38≲	369	274	326	298	354					

57,02

•

った

12 |1 |0

r_B

1 1

Turning Movements

wellington

也 ington 1011 INTERS

8HOUR VEHICLE INTERSECTION VOLUME COUNT Date <u>5-27-92</u> Page 2012 TOTAL 1:15 • . 1205 109 34 225 4 296 24 5 15 212 23 210 1 3 102 1167 9 • . C. 11 ק-**AL** A 3 307 3315 143 1430 39 508 1 2 D 1372 125 3315 TAL 307.

: よっ Turning Movements Wellington · ---D 12 |1 |0 th + Wellingtor INTERSECTION

Date 5-27-92

8HOUR VEHICLE INTERSECTION VOLUME COUNT · Page 1082 TOTAL • 4:15 3:30 3:45 4:00 5.5 4:30 4:45 5:30 5:00* 5:15 • \mathbf{M} 7 ._.) -i // 12/ _9_ . -----• -12 - AL A Э C D TAL

> Turning Movements Wellington **PB** · - ŏ

7th INTERSECTION

8 HOUR VEHICLE INTERSECTION VOLUME COUNT Date 5-27-92 · Page Zd Z TOTAL 5:45 6:00 . 6:15 • O Z 4/20 - 1 í____ Ó • 11-12 • лц А _ Э TAL

Date 6-30-92

	8 HOUR								ι,	Date 6-30-92				
`	8 HOUR <i>PEDESTRIAN</i> INTERSECTION VOLUME COUNT									Page lof 1				
7:15	7:30	7:45	8:00	· 8:15	8:30	8:45	9:00.	9:15			TOTAL			
				-		•								
2									•					
-3							•							
4	ند													
-5	2	2	5	1	5	5	4	1			25			
6	3	6	13	4	7	2	2	Ø			37			
7										 				
-8														
9														
-10		_	•	-		-	1	1						
	2	-		-				-		 -	2			
12														
_ 57AL	8	8	18	5	12	7	6	_/			64			
A														
- B	5	8	18	5	12	7	6	/			42			
C											· · · ·			
D	2	<u> </u>	-	-		_	-	-			2			
_ OTAL	7.	8	18	5	12	7	6	1			64			
Turning Movements Turning Movements B B B B B C C St. Marys Hospital B B C C C C C C C C C C C C C														

.

Date 6-30-92

8HOUR PEDESTRIAN INTERSECTION VOLUME Page lof 1 COUNT TOTAL 10.45 11:15 11.00 11:30 71:45 12:30 12:00 12:15 12:45 1:00 1:15 1 23 4 • 5 9 1 4 1 -2 6 8 3 l 1 1 I - $\overline{\frac{7}{8}}$. 9 • 10 Ζ 2 1 2 3 3 18 5 -----11 4 2 l -2 1 -12 6 2 41 .3141 1 8 6 5 2 5 3 3 Α 3 В 2 2 17 1 1 4 Z 1 1 С 23 2 3 D 4 2 3 5 4 Ϊ Ī 5. 3 3 8 41 4 1 2 2 OTAL S : Turning Movements rB • . Ū, Pa Herson St. Mary's P. Lot. 10 51. MARYS Hospital 占 • INTERSECTION

Date 6-30-91 í 📷 8HOUR *DEDESTRIAN.* INTERSECTION VOLUME COUNT Page lotz JB TOTAL 4:00 3:45 · 41:15 5:00. 5:15 5:30 3:30 4:30 4:45 T 5 ł . • F છ L T 10/ OTAL રુ T Α В T С T D TOTAL 6. T : Turning Movements B J-walk Ū, Jusell Son INTERSECTION

Date <u>6-30-9:</u>

		2 2	BHOUR <i>PEDESTRIAN</i> INTERSECTION VOLUME COUNT Pa								te <u>6</u>	-30-9:	
			I	NTER	SECT	TION	VOL	UME	ζου	NT	Pe	, zge	2012.
	•	5:45	6:00	6:15	·								TOTAL
	1	8	7	4	•		•						
	2										•		
	3							·					
	4												
	5	-	-	-									2
	6												4
	7												
	8												
	9		•								·		
-1	10	1	4	3									49
۲ ⁻	11	3		2									49 24
-1	12												
•	TOTAL	4	4	5			-						81
	Α												
<u>_</u> ر	B		-	-									8
1	С	_			·								
٦	D	4	H	5									73
. •	TOTAL	4.	4	5									81
			X		12 14			f	Turn	ing Mov	'୧ IN ୧୩	its	-
· · · · · · · · · · · · · · · · · · ·	- '	.•	:		<u>10</u>		987		<u>7</u>	L TERSEC		l erso V	<u>n</u>